Supporting Information for:

Anionic Guest-Dependent Tuning of Slow Magnetic Relaxation in Co(II) Tripodal Iminopyridine Complexes

Christina M. Klug, Tarik J. Ozumerzifon, Indrani Bhowmick, Brooke N. Livesay Anthony K. Rappé, and Matthew P. Shores

Contents

Crystallography .. 3
 Table S1. Crystallographic and structural refinement data for 1–4. 3
 Table S2. Selected bond lengths and angles for 1–4. ... 3
 Figure S1. Crystal structures of 1–4. .. 4
 Figure S2. Intermolecular interactions in 4. .. 5
Other Spectroscopic Results .. 6
 Figure S3. Paramagnetic NMR spectra of 1–4. ... 6
 Figure S4. Stacked FT-IR spectra of 1–4. ... 7
 Figure S5. Zoom of 1740 cm\(^{-1}\) to 650 cm\(^{-1}\) region in stacked FT-IR spectra of 1–4... 8
DC Magnetic Measurements and Magnetic Fits... 9
 Figure S6. Field dependence of magnetization for 1 collected at 100 K. 9
 Figure S7. Field dependence of magnetization for 2 collected at 100 K. 9
 Figure S8. Field dependence of magnetization for 3 collected at 100 K. 10
 Figure S9. Field dependence of magnetization for 4 collected at 100 K. 10
 Figure S10. Magnetic susceptibility of 1. ... 11
 Figure S11. Magnetic susceptibility of 2. ... 11
 Figure S12. Magnetic susceptibility of 3. ... 12
 Figure S13. Magnetic susceptibility of 4. ... 12
 Table S3. Anisotropy parameters acquired from fitting magnetic susceptibility data using PHI.\(^1\) .. 13
 Figure S14. Reduced magnetization of 1–4. ... 13
 Table S4. Parameters acquired from fitting reduced magnetization data in ANISOFIT 2.0.\(^{2,a}\) .. 14
 Details of re-determination of D and E values obtained from ANISOFIT 2.0. 14
 Figure S15. Reduced magnetization of 1–4. Curves are presented for 1 (a), 2 (b), 3 (c), 4 (d), with lines representing fits obtained from PHI.\(^1\) .. 15
AC Magnetic Data .. 15
 Figure S16. Field scan of 1. .. 16
 Figure S17. Determination of optimal field for 1. ... 16
 Figure S18. Field scan for 2. .. 16
 Figure S19. Field scan for 3. .. 17
 Figure S20. Field scan for 4. .. 17
 Figure S21. Arrhenius plot for 1. .. 18
 Figure S22. Cole-Cole plot for 1. .. 18
 Figure S23. Field scan for [CoL\(^{2-\text{OMe}}\)](ClO\(_4\))\(_2\). ... 19
Electronic Structure Calculations

- **Table S6.** Total energies (in Hartrees) for computed structures [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 20
- **Table S7.** Co-N bond distances (Å) for [CoL\(^{5-}\text{ONHtBu}\)]\(_2\) computed structures. .. 20
- **Table S8.** Computed g matrices for [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 21
- **Table S9.** Computed D (cm\(^{-1}\)) and E/D for [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 21
- **Figure S24.** Calculated E/D (a), g\(_{\text{sm}}\) (b), g\(_{\text{med}}\) (c), and g\(_{\text{lr}}\) (d) as a function of the seventh Co-N distance (R) at given distortion angles calculated using CASCI. .. 22
- **Table S10.** Computed excitation energies (EE in eV), D (cm\(^{-1}\)), and E/D contributions per state for [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 23
- **Table S11.** Atomic coordinates for the B3LYP structure [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 24
- **Table S12.** Atomic coordinates for the B3LYP structure [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 26
- **Table S13.** Atomic coordinates for the B3LYP structure [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 29
- **Table S14.** Atomic coordinates for the B3LYP structure [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 32
- **Table S15.** Atomic coordinates for the APFD structure [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 35
- **Table S16.** Atomic coordinates for the APFD structure [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 37
- **Table S17.** Atomic coordinates for the APFD structure [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 40
- **Table S18.** Atomic coordinates for the APFD structure [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 43
- **Table S19.** Coordinates for the APFD (Co-N\(_{\text{bridge}}\) constrained) structure [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 46
- **Table S20.** Coordinates for the APFD (Co-N\(_{\text{bridge}}\) constrained) structure [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 48
- **Table S21.** Coordinates for the APFD (Co-N\(_{\text{bridge}}\) constrained) structure [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 51
- **Table S22.** Coordinates for the APFD (Co-N\(_{\text{bridge}}\) constrained) [CoL\(^{5-}\text{ONHtBu}\)]\(_2\). .. 54
- **Table S23.** Atomic coordinates for the APFD Co(NH\(_3\))\(_6\)•NH\(_3\) \(\varphi = 0^\circ\) model. .. 56
- **Table S24.** Atomic coordinates for the APFD Co(NH\(_3\))\(_6\)•NH\(_3\) \(\varphi = 15^\circ\) model. .. 57
- **Table S25.** Atomic coordinates for the APFD Co(NH\(_3\))\(_6\)•NH\(_3\) \(\varphi = 30^\circ\) model. .. 58
- **Table S26.** Atomic coordinates for the APFD Co(NH\(_3\))\(_6\)•NH\(_3\) \(\varphi = 37.5^\circ\) model. .. 59
- **Table S27.** Atomic coordinates for the APFD Co(NH\(_3\))\(_6\)•NH\(_3\) \(\varphi = 45^\circ\) model. .. 59
- **Table S28.** Atomic coordinates for the APFD Co(NH\(_3\))\(_6\)•NH\(_3\) \(\varphi = 52.5^\circ\) model. .. 60
- **Table S29.** Atomic coordinates for the APFD Co(NH\(_3\))\(_6\)•NH\(_3\) \(\varphi = 60^\circ\) model. .. 61
- **References.** .. 62
Crystallography

Table S1. Crystallographic and structural refinement data for 1–4.a

<table>
<thead>
<tr>
<th>Empirical formula</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{39}H_{54}CoN_{10}O_{3}Cl</td>
<td>805.30</td>
<td>849.76</td>
<td>896.75</td>
<td>968.75</td>
</tr>
<tr>
<td>Color</td>
<td>Orange</td>
<td>Orange</td>
<td>Orange</td>
<td>Yellow</td>
</tr>
<tr>
<td>Habit</td>
<td>Parallelepiped</td>
<td>Block</td>
<td>Block</td>
<td>Block</td>
</tr>
<tr>
<td>T (K)</td>
<td>120(2)</td>
<td>120(2)</td>
<td>120(2)</td>
<td>120(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Trigonal</td>
<td>Trigonal</td>
<td>Trigonal</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P\textoverline{3}</td>
<td>P\textoverline{3}</td>
<td>P\textoverline{3}</td>
<td>P\textoverline{1}</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>a (Å)</td>
<td>15.2335(1)</td>
<td>15.5579(15)</td>
<td>15.8091(7)</td>
<td>12.7632(10)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>15.2335(1)</td>
<td>15.5579(15)</td>
<td>15.8091(7)</td>
<td>12.8064(10)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>12.5157(2)</td>
<td>12.1716(17)</td>
<td>12.0675(10)</td>
<td>14.9046(11)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>75.900(4)</td>
</tr>
<tr>
<td>β (°)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>83.780(4)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>74.500(4)</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>2515.27(5)</td>
<td>2551.4(6)</td>
<td>2611.9(3)</td>
<td>2274.4(3)</td>
</tr>
<tr>
<td>(\rho_{\text{calc}}) (g cm⁻³)</td>
<td>1.063</td>
<td>1.106</td>
<td>1.140</td>
<td>1.415</td>
</tr>
<tr>
<td>GooF</td>
<td>1.073</td>
<td>1.157</td>
<td>1.086</td>
<td>1.023</td>
</tr>
<tr>
<td>(R_1) ((wR_2)^b) (%)</td>
<td>6.67 (22.37)</td>
<td>5.56 (20.06)</td>
<td>3.48 (10.26)</td>
<td>4.25 (9.40)</td>
</tr>
</tbody>
</table>

\(^{a}\)Obtained with graphite-monochromated Mo Kα (\(λ = 0.71073\) Å) radiation.

\(^{b}\)\(R_1 = \sum||F_o| - |F_c||/\sum|F_o|; \ wR_2 = \{\sum[w(F_o^2 - F_c^2)^2]/\sum[w(F_o^2)]\}^{1/2}\)

Table S2. Selected bond lengths and angles for 1–4.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co–N_{\text{imine}} (Å)</td>
<td>2.120(6)</td>
<td>2.106(6)</td>
<td>2.105(3)</td>
<td>2.100(5)(^a)</td>
</tr>
<tr>
<td>Co–N_{\text{pyridine}} (Å)</td>
<td>2.262(3)</td>
<td>2.253(3)</td>
<td>2.258(3)</td>
<td>2.246(5)(^a)</td>
</tr>
<tr>
<td>Co–N_{\text{bridge}} (Å)</td>
<td>2.574(5)</td>
<td>2.592(6)</td>
<td>2.633(2)</td>
<td>2.706(2)</td>
</tr>
<tr>
<td>N_{\text{imine}} plane···N_{\text{pyridine}} plane (Å)</td>
<td>2.099(2)</td>
<td>2.092(3)</td>
<td>2.068(4)</td>
<td>2.075(2)</td>
</tr>
<tr>
<td>Twist angle (°)</td>
<td>49.8(4)</td>
<td>50.5(3)</td>
<td>51.3(6)</td>
<td>51.2(9)</td>
</tr>
<tr>
<td>Θ (°)</td>
<td>200</td>
<td>189</td>
<td>193</td>
<td>187</td>
</tr>
<tr>
<td>Σ (°)</td>
<td>125.9(3)</td>
<td>120.4(4)</td>
<td>117.9(5)</td>
<td>113.3(2)</td>
</tr>
<tr>
<td>Area of Binding Pocket (Å²)(^b)</td>
<td>19.03(1)</td>
<td>20.32(1)</td>
<td>21.89(6)</td>
<td>21.12(5)</td>
</tr>
<tr>
<td>H_{\text{amide}}···X (Å)</td>
<td>2.483(3)</td>
<td>2.706(4)</td>
<td>2.924(2)</td>
<td>2.541(4)(^c)</td>
</tr>
<tr>
<td>Co···X (Å)</td>
<td>5.161(2)</td>
<td>5.238(1)</td>
<td>5.2116(6)</td>
<td>5.3027(7)(^d)</td>
</tr>
<tr>
<td>Shortest Co···Co (Å)</td>
<td>9.292(2)</td>
<td>9.392(1)</td>
<td>9.4798(9)</td>
<td>8.0030(8)</td>
</tr>
</tbody>
</table>

\(^{a}\)Averaged values of three arms

\(^{b}\)Calculated using amide carbonyl carbons as corners of triangle.

\(^{c}\)Defined using the closest O···H distance

\(^{d}\)Defined as Co···Cl distance
Figure S1. Crystal structures of 1–4. Structures are rendered with 40% thermal ellipsoids, and hydrogen atoms are omitted for clarity. Atoms labels are shown for the asymmetric unit of 1–3 for clarity.
Figure S2. Intermolecular interactions in 4. Atoms are rendered with 40% thermal ellipsoids. Hydrogen atoms, except those of the amides, are omitted for clarity.
Other Spectroscopic Results

Figure S3. Paramagnetic NMR spectra of 1–4. Spectra for 1 (top), 2 (second), 3 (third), 4 (bottom) obtained in d_3-acetonitrile at 23°C.
Figure S4. Stacked FT-IR spectra of 1–4. Spectra collected by pressing crystalline samples onto a ZnSe ATR crystal.
Figure S5. Zoom of 1740 cm\(^{-1}\) to 650 cm\(^{-1}\) region in stacked FT-IR spectra of 1–4.
DC Magnetic Measurements and Magnetic Fits

Figure S6. Field dependence of magnetization for 1 collected at 100 K. Fit: $y = 4.12 \times 10^{-6}(x) + 7.09 \times 10^{-5}$ ($R^2 = 0.99999$).

Figure S7. Field dependence of magnetization for 2 collected at 100 K. Fit: $y = 4.58 \times 10^{-6}(x) - 1.54 \times 10^{-6}$ ($R^2 = 1$).
Figure S8. Field dependence of magnetization for 3 collected at 100 K. Fit: $y = 4.28 \times 10^{-6}(x) + 2.42 \times 10^{-4}$ ($R^2 = 0.99993$).

Figure S9. Field dependence of magnetization for 4 collected at 100 K. Fit: $y = 2.99 \times 10^{-6}(x) + 8.59 \times 10^{-5}$ ($R^2 = 0.99997$).
Figure S10. Magnetic susceptibility of 1. Data collected from 1.8 K to 300 K under an applied dc field of 1000 Oe. Best fit acquired using PHI.¹

Figure S11. Magnetic susceptibility of 2. Data collected from 1.8 K to 300 K under an applied dc field of 1000 Oe. Best fit acquired using PHI.¹
Figure S12. Magnetic susceptibility of 3. Data collected from 1.8 K to 300 K under an applied dc field of 1000 Oe. Best fit acquired using PHI.1

Figure S13. Magnetic susceptibility of 4. Data collected from 1.8 K to 300 K under an applied dc field of 1000 Oe. The line represents the best fit using PHI.1
Table S3. Anisotropy parameters acquired from fitting magnetic susceptibility data using PHI.1

<table>
<thead>
<tr>
<th>Compound</th>
<th>g_x, g_y, g_z (cm$^{-1}$)</th>
<th>D (cm$^{-1}$)</th>
<th>E (cm$^{-1}$)</th>
<th>TIP (cm3 mol$^{-1}$)</th>
<th>zJ (cm$^{-1}$)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.31, 2.39, 2.10</td>
<td>9.20</td>
<td>0.0173</td>
<td>0.00170</td>
<td>-0.099</td>
<td>0.99996</td>
</tr>
<tr>
<td>2</td>
<td>1.87, 2.56, 2.39</td>
<td>2.19</td>
<td>0.0011</td>
<td>0.00118</td>
<td>-</td>
<td>0.99999</td>
</tr>
<tr>
<td>3</td>
<td>2.14, 2.25, 2.32</td>
<td>3.61</td>
<td>1.44</td>
<td>0.00234</td>
<td>-</td>
<td>0.99998</td>
</tr>
<tr>
<td>4</td>
<td>3.55, 0.755, 1.04</td>
<td>4.21</td>
<td>0.253</td>
<td>0.00218</td>
<td>0.0281</td>
<td>0.99859</td>
</tr>
</tbody>
</table>

Figure S14. Reduced magnetization of 1–4. Curves are presented for 1 (a), 2 (b), 3 (c), 4 (d), with best fit lines determined using ANISOFIT 2.0.2
Table S4. Parameters acquired from fitting reduced magnetization data in ANISOFIT 2.0.2,a

<table>
<thead>
<tr>
<th>Salt</th>
<th>(g_{\text{initial}})</th>
<th>(g_{\text{fit}})</th>
<th>(D_{\text{initial}}) ((\text{cm}^{-1}))</th>
<th>(D_{\text{fit}}) ((\text{cm}^{-1}))</th>
<th>(D_{\text{red}}) ((\text{cm}^{-1}))</th>
<th>(E_{\text{initial}}) ((\text{cm}^{-1}))</th>
<th>(E_{\text{fit}}) ((\text{cm}^{-1}))</th>
<th>(E_{\text{red}}) ((\text{cm}^{-1}))</th>
<th>(f_{\text{sum}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.30</td>
<td>2.32</td>
<td>10</td>
<td>9.490</td>
<td>–</td>
<td>3</td>
<td>-0.039</td>
<td>–</td>
<td>0.005031</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2.307</td>
<td>–10</td>
<td>5.384</td>
<td>7.829</td>
<td>3</td>
<td>3.425</td>
<td>0.9792</td>
<td>0.02729</td>
</tr>
<tr>
<td>2</td>
<td>2.20</td>
<td>2.30</td>
<td>5</td>
<td>2.530</td>
<td>–</td>
<td>0.100</td>
<td>0.146</td>
<td>–</td>
<td>0.034279</td>
</tr>
<tr>
<td>2</td>
<td>2.20</td>
<td>2.30</td>
<td>–5</td>
<td>1.516</td>
<td>2.495</td>
<td>0.100</td>
<td>1.158</td>
<td>0.1793</td>
<td>0.023729</td>
</tr>
<tr>
<td>3</td>
<td>2.20</td>
<td>2.30</td>
<td>10</td>
<td>4.502</td>
<td>–</td>
<td>3</td>
<td>1.3488</td>
<td>–</td>
<td>0.007271</td>
</tr>
<tr>
<td>3</td>
<td>2.20</td>
<td>2.17</td>
<td>–10</td>
<td>3.770</td>
<td>4.218</td>
<td>3</td>
<td>1.571</td>
<td>1.414</td>
<td>0.004421</td>
</tr>
<tr>
<td>3</td>
<td>2.20</td>
<td>2.17</td>
<td>100</td>
<td>0.5015</td>
<td>4.248</td>
<td>3</td>
<td>2.665</td>
<td>1.082</td>
<td>0.003642</td>
</tr>
<tr>
<td>3</td>
<td>2.20</td>
<td>2.17</td>
<td>–100</td>
<td>3.770</td>
<td>4.218</td>
<td>3</td>
<td>1.571</td>
<td>1.414</td>
<td>0.004421</td>
</tr>
<tr>
<td>4</td>
<td>2.30</td>
<td>2.22</td>
<td>10</td>
<td>2.226</td>
<td>4.628</td>
<td>3</td>
<td>2.349</td>
<td>0.053</td>
<td>0.02462</td>
</tr>
<tr>
<td>4</td>
<td>2.22</td>
<td>2.22</td>
<td>–10</td>
<td>-2.226</td>
<td>4.628</td>
<td>3</td>
<td>2.349</td>
<td>0.053</td>
<td>0.02464</td>
</tr>
<tr>
<td>4</td>
<td>2.22</td>
<td>2.22</td>
<td>100</td>
<td>2.217</td>
<td>4.769</td>
<td>3</td>
<td>2.440</td>
<td>0.112</td>
<td>0.04126</td>
</tr>
<tr>
<td>4</td>
<td>2.22</td>
<td>2.22</td>
<td>–100</td>
<td>2.217</td>
<td>4.769</td>
<td>3</td>
<td>2.440</td>
<td>0.112</td>
<td>0.04126</td>
</tr>
</tbody>
</table>

a Subscript definitions: “initial” refers to the value put into the program; “fit” refers to the final value; “red” refers to the re-determined value according to the procedure described below.

b For completeness, the fit and re-determined values are quoted out to the .001, but the actual value is best described to the nearest 0.1.

Details of re-determination of \(D\) and \(E\) values obtained from ANISOFIT 2.0.

In cases where the initial fits from ANISOFIT 2.0 produced values \(|E| \geq |1/3D|\), the principal values of the \(D\)-tensor were reassigned to fulfill the following relationship:

\[
|D_{zz}| \geq |D_{yy}| \geq |D_{xx}|
\] (1)

The values of \(D_{zz}\), \(D_{yy}\), and \(D_{xx}\) were determined by the following equations, using the output \(D\) and \(E\) values obtained from ANISOFIT2.0:

\[
D_{zz} = 2/3D \quad (2a)
\]
\[
D_{yy} = 1/3D - E \quad (2b)
\]
\[
D_{xx} = 1/3D + E \quad (2c)
\]

Cyclic permutations were performed in order to transform the largest value determined from the equations above to satisfy (1). Upon reorientation of the \(D\)-tensors the following equations are employed to calculate the new \(D\) and \(E\) values:

\[
D = 3/2D_{zz} = -3/2(D_{xx} + D_{yy}) \quad (3)
\]
\[
E = \sqrt{2}(D_{xx} - D_{yy}) \quad (4)
\]
Figure S15. Reduced magnetization of 1–4. Curves are presented for 1 (a), 2 (b), 3 (c), 4 (d), with lines representing fits obtained from PHI.1

AC Magnetic Data
Figure S16. Field scan of 1. Frequency dependence of χ' (left) and χ'' (right) for 1 at various applied fields. Lines are guides for the eye. $T = 1.9$ K, $H_{ac} = 4$ Oe.

![Graph showing frequency dependence of χ' and χ'' for 1.]()

Figure S17. Determination of optimal field for 1. Plot of χ'' maxima as a function of applied dc field for 1. Line is a guide for the eye. 2500 Oe was selected as the optimal field for data collection.

![Graph showing plot of χ'' maxima vs. applied field for 1.](image)

Figure S18. Field scan for 2. Frequency dependence of χ' (left) and χ'' (right) for 2 at applied fields. Lines are guides for the eye. $T = 1.9$ K, $H_{ac} = 4$ Oe.

![Graph showing frequency dependence of χ' and χ'' for 2.](image)
Figure S19. Field scan for 3. Frequency dependence of χ' (left) and χ'' (right) for 3 at applied fields. Lines are guides for the eye. $T = 1.9$ K, $H_{ac} = 4$ Oe.

Figure S20. Field scan for 4. Frequency dependence of χ' (left) and χ'' (right) for 4 at applied fields. Lines are guides for the eye. $T = 1.9$ K, $H_{ac} = 4$ Oe.
Figure S21. Arrhenius plot for 1. Plot of frequency of χ'' maxima as a function of temperature. The black line represents the fit for an Orbach-only process according to: $\tau^{-1} = \tau_0^{-1} \exp(-U_{\text{eff}}/k_B T)$, giving $\tau_0 = 1.33 \times 10^{-6}$, $U_{\text{eff}} = 13.2$ K ($R^2 = 0.99585$). Inclusion of a term for a Raman process gave a better overall fit, but the values obtained were unreasonable.

Figure S22. Cole-Cole plot for 1. The solid lines represent the fits obtained using CC-FIT.4
Table 5. Cole-Cole fitting parameters for 1 obtained from CC-FIT.\(^4\) (R\(^2\) = 0.999994 – 0.998939)

<table>
<thead>
<tr>
<th>(T) (K)</th>
<th>(\chi_T) (cm(^3) mol(^{-1}))</th>
<th>(\chi_s) (cm(^3) mol(^{-1}))</th>
<th>(\tau) (s)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>0.440992</td>
<td>0.0405351</td>
<td>0.00101355</td>
<td>0.223774</td>
</tr>
<tr>
<td>1.9</td>
<td>0.421695</td>
<td>0.0386417</td>
<td>0.000872805</td>
<td>0.234623</td>
</tr>
<tr>
<td>2.0</td>
<td>0.402011</td>
<td>0.0383541</td>
<td>0.000739255</td>
<td>0.240319</td>
</tr>
<tr>
<td>2.1</td>
<td>0.385489</td>
<td>0.0398789</td>
<td>0.000625119</td>
<td>0.246331</td>
</tr>
<tr>
<td>2.2</td>
<td>0.374114</td>
<td>0.0401691</td>
<td>0.000555120</td>
<td>0.242854</td>
</tr>
<tr>
<td>2.3</td>
<td>0.358760</td>
<td>0.0433569</td>
<td>0.000460015</td>
<td>0.233843</td>
</tr>
<tr>
<td>2.4</td>
<td>0.345062</td>
<td>0.0453503</td>
<td>0.000383200</td>
<td>0.226611</td>
</tr>
<tr>
<td>2.5</td>
<td>0.332303</td>
<td>0.0500297</td>
<td>0.000310977</td>
<td>0.208008</td>
</tr>
<tr>
<td>2.6</td>
<td>0.317976</td>
<td>0.0519745</td>
<td>0.000240475</td>
<td>0.183466</td>
</tr>
</tbody>
</table>

These parameters were fit for an Orbach only process according to \(\tau^{-1} = \tau_0^{-1} \exp(-U_{\text{eff}}/k_B T)\), giving \(\tau_0 = 8.25 \times 10^{-7}\), \(U_{\text{eff}} = 10.1\) K (R\(^2\) = 0.99559).

Figure S23. Field scan for [CoL\(^{5-OOMe}\)](ClO\(_4\))\(_2\). Frequency dependence of \(\chi''\) for the perchlorate salt of the ester-containing Co(II) complex at applied fields. Lines are guides for the eye. \(T = 1.9\) K, \(H_{ac} = 4\) Oe.
Electronic Structure Calculations

Electronic structure computations were started from the X-ray coordinates of 1, with sp^3 C-H bond distances adjusted to 1.096 Å and sp^2 C-H bond distances adjusted to 1.090 Å prior to optimization. To maintain consistency, halide and perchlorate ions were placed along the three-fold axis, even for the anions that are disordered in the experimentally determined crystal structures. Geometry optimizations were carried out for each complex and Co-N metric parameters are collected in Table 1 in the main manuscript; computed total energies are collected in Table S7; atomic coordinates are provided as supplemental material (Tables S12-S23). Geometry optimizations in the G09 suite of electronic structure codes utilized the LANL2 basis and effective core potential for Cl, Br, and Cr; the Stoll basis and potential were used for I and H, C, and N were described with a 6-31g* model. Restricted and unrestricted B3LYP and APFD hybrid density functionals were used in geometry optimizations. All CASSCF, CASCI, and NEVPT2 computations utilized the ORCA suite of electronic structure codes, and the Ahlrichs basis and Stuttgart pseudopotential for I.

For the $[\text{Co(NH}_3)_7]^{2+}$ model calculations, optimized trigonal prismatic and octahedral structures were used to determine the rotational interpolation coordinate. Following a rotation about the centroid of facial plane, the Co-centroid-nitrogen angle was adjusted to maintain the Co-N distance.

Table S6. Total energies (in Hartrees) for computed structures $[\text{CoL}^{5-\text{ONH}}\text{Bu}]X_2$.

<table>
<thead>
<tr>
<th>X</th>
<th>Related to</th>
<th>B3LYP</th>
<th>APFD</th>
<th>APFD (constrained)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>(1)</td>
<td>-2467.00834602</td>
<td>-2465.41060693</td>
<td>-2465.41514016</td>
</tr>
<tr>
<td>Br</td>
<td>(2)</td>
<td>-2463.44634974</td>
<td>-2461.86356267</td>
<td>-2461.86250858</td>
</tr>
<tr>
<td>I</td>
<td>(3)</td>
<td>-3028.72939569</td>
<td>-3027.06745301</td>
<td>-3027.06612363</td>
</tr>
<tr>
<td>ClO$_4$</td>
<td>(4)</td>
<td>-3067.64838012</td>
<td>-3065.61813113</td>
<td>-3065.61606927</td>
</tr>
</tbody>
</table>

aCo-N$_{\text{bridge}}$ distance constrained to that found experimentally

Table S7. Co-N bond distances (Å) for $[\text{CoL}^{5-\text{ONH}}\text{Bu}]X_2$ computed structures.

<table>
<thead>
<tr>
<th>X</th>
<th>B3LYP</th>
<th>APFD</th>
<th>APFD (constrained)a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co-N$_{\text{bridge}}$</td>
<td>Co-N$_{\text{im}}$</td>
<td>Co-N$_{\text{py}}$</td>
</tr>
<tr>
<td>Cl</td>
<td>2.711</td>
<td>2.169</td>
<td>2.310</td>
</tr>
<tr>
<td>Br</td>
<td>2.767</td>
<td>2.166</td>
<td>2.298</td>
</tr>
<tr>
<td>I</td>
<td>2.806</td>
<td>2.164</td>
<td>2.289</td>
</tr>
<tr>
<td>ClO$_4$</td>
<td>2.82</td>
<td>2.155</td>
<td>2.304</td>
</tr>
</tbody>
</table>

aCo-N$_{\text{bridge}}$ distance constrained to that found experimentally
Table S8. Computed g matrices for [CoL$_5$–ONHtBu]X$_2$.

<table>
<thead>
<tr>
<th>X</th>
<th>Theory</th>
<th>g_{xx}</th>
<th>g_{yy}</th>
<th>g_{zz}</th>
<th>g_{iso}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>B3LYP</td>
<td>2.068542</td>
<td>2.081424</td>
<td>2.081706</td>
<td>2.077257</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>2.177436</td>
<td>2.29738</td>
<td>2.298286</td>
<td>2.257701</td>
</tr>
<tr>
<td></td>
<td>NEVPT2</td>
<td>2.152467</td>
<td>2.23867</td>
<td>2.239258</td>
<td>2.210132</td>
</tr>
<tr>
<td></td>
<td>CASCI</td>
<td>2.181483</td>
<td>2.300091</td>
<td>2.301655</td>
<td>2.261076</td>
</tr>
<tr>
<td>Br</td>
<td>B3LYP</td>
<td>2.0526756</td>
<td>2.0643781</td>
<td>2.0646598</td>
<td>2.0605712</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>2.172846</td>
<td>2.300113</td>
<td>2.302075</td>
<td>2.258345</td>
</tr>
<tr>
<td></td>
<td>NEVPT2</td>
<td>2.148605</td>
<td>2.241192</td>
<td>2.242514</td>
<td>2.21077</td>
</tr>
<tr>
<td></td>
<td>CASCI</td>
<td>2.176595</td>
<td>2.303329</td>
<td>2.304911</td>
<td>2.261612</td>
</tr>
<tr>
<td>I</td>
<td>B3LYP</td>
<td>2.0683886</td>
<td>2.0862396</td>
<td>2.086908</td>
<td>2.080512</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>2.166893</td>
<td>2.314089</td>
<td>2.315256</td>
<td>2.265413</td>
</tr>
<tr>
<td></td>
<td>NEVPT2</td>
<td>2.143905</td>
<td>2.252294</td>
<td>2.252877</td>
<td>2.216359</td>
</tr>
<tr>
<td></td>
<td>CASCI</td>
<td>2.170405</td>
<td>2.314814</td>
<td>2.318342</td>
<td>2.267854</td>
</tr>
<tr>
<td>ClO$_4$</td>
<td>B3LYP</td>
<td>2.0691314</td>
<td>2.0890993</td>
<td>2.089304</td>
<td>2.0825116</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>2.157189</td>
<td>2.338906</td>
<td>2.340017</td>
<td>2.278704</td>
</tr>
<tr>
<td></td>
<td>NEVPT2</td>
<td>2.156937</td>
<td>2.338928</td>
<td>2.340034</td>
<td>2.278633</td>
</tr>
<tr>
<td></td>
<td>CASCI</td>
<td>2.160941</td>
<td>2.340566</td>
<td>2.343033</td>
<td>2.281514</td>
</tr>
</tbody>
</table>

Table S9. Computed D (cm$^{-1}$) and E/D for [CoL$_5$–ONHtBu]X$_2$.

<table>
<thead>
<tr>
<th>X</th>
<th>CASSCF</th>
<th>NEVPT2</th>
<th>CASCI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>E/D</td>
<td>D</td>
</tr>
<tr>
<td>Cl</td>
<td>9.145237</td>
<td>0.003495</td>
<td>5.41296</td>
</tr>
<tr>
<td>Br</td>
<td>9.815953</td>
<td>0.008753</td>
<td>5.939889</td>
</tr>
<tr>
<td>I</td>
<td>11.631674</td>
<td>0.005952</td>
<td>7.235317</td>
</tr>
<tr>
<td>ClO$_4$</td>
<td>14.844217</td>
<td>0.00345</td>
<td>8.204523</td>
</tr>
</tbody>
</table>
Figure S24. Calculated E/D (a), g_{sml} (b), g_{med} (c), and g_{lg} (d) as a function of the seventh Co-N distance (R) at given distortion angles calculated using CASCI.
Table S10. Computed excitation energies (EE in eV), D (cm\(^{-1}\)), and E/D contributions per state for [CoL\(^{5-}\text{ONHtBu}\)]\(_2\).

<table>
<thead>
<tr>
<th>X</th>
<th>State(^a)</th>
<th>CASSCF</th>
<th>NEVPT2</th>
<th>APFD TD-DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EE</td>
<td>D</td>
<td>E/D</td>
</tr>
<tr>
<td>Cl</td>
<td>1(Q)</td>
<td>0.409</td>
<td>12.917</td>
<td>4.451</td>
</tr>
<tr>
<td></td>
<td>2(Q)</td>
<td>0.411</td>
<td>12.829</td>
<td>-4.454</td>
</tr>
<tr>
<td></td>
<td>3(Q)</td>
<td>0.913</td>
<td>-18.447</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>4(Q)</td>
<td>1.055</td>
<td>13.455</td>
<td>0.633</td>
</tr>
<tr>
<td></td>
<td>5(Q)</td>
<td>1.063</td>
<td>1.257</td>
<td>-0.595</td>
</tr>
<tr>
<td></td>
<td>6(D)</td>
<td>2.188</td>
<td>-1.244</td>
<td>-0.918</td>
</tr>
<tr>
<td></td>
<td>7(D)</td>
<td>2.193</td>
<td>-1.268</td>
<td>0.924</td>
</tr>
<tr>
<td>Br</td>
<td>1(Q)</td>
<td>0.401</td>
<td>13.037</td>
<td>11.82</td>
</tr>
<tr>
<td></td>
<td>2(Q)</td>
<td>0.403</td>
<td>12.979</td>
<td>-11.773</td>
</tr>
<tr>
<td></td>
<td>3(Q)</td>
<td>0.93</td>
<td>-18.085</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>4(Q)</td>
<td>1.065</td>
<td>1.346</td>
<td>1.143</td>
</tr>
<tr>
<td></td>
<td>5(Q)</td>
<td>1.072</td>
<td>1.289</td>
<td>-1.096</td>
</tr>
<tr>
<td></td>
<td>6(D)</td>
<td>2.163</td>
<td>-1.289</td>
<td>-1.245</td>
</tr>
<tr>
<td></td>
<td>7(D)</td>
<td>2.168</td>
<td>-1.301</td>
<td>1.254</td>
</tr>
<tr>
<td>I</td>
<td>1(Q)</td>
<td>0.375</td>
<td>13.62</td>
<td>-1.471</td>
</tr>
<tr>
<td></td>
<td>2(Q)</td>
<td>0.375</td>
<td>13.59</td>
<td>1.484</td>
</tr>
<tr>
<td></td>
<td>3(Q)</td>
<td>0.948</td>
<td>-17.808</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4(Q)</td>
<td>1.067</td>
<td>1.427</td>
<td>0.837</td>
</tr>
<tr>
<td></td>
<td>5(Q)</td>
<td>1.071</td>
<td>1.376</td>
<td>-0.79</td>
</tr>
<tr>
<td></td>
<td>6(D)</td>
<td>2.124</td>
<td>-1.374</td>
<td>0.574</td>
</tr>
<tr>
<td></td>
<td>7(D)</td>
<td>2.127</td>
<td>-1.371</td>
<td>-0.55</td>
</tr>
<tr>
<td>ClO(_4)</td>
<td>1(Q)</td>
<td>0.334</td>
<td>14.737</td>
<td>9.303</td>
</tr>
<tr>
<td></td>
<td>2(Q)</td>
<td>0.335</td>
<td>14.712</td>
<td>-9.281</td>
</tr>
<tr>
<td></td>
<td>3(Q)</td>
<td>0.975</td>
<td>-17.382</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>4(Q)</td>
<td>1.068</td>
<td>1.516</td>
<td>1.506</td>
</tr>
<tr>
<td></td>
<td>5(Q)</td>
<td>1.071</td>
<td>1.479</td>
<td>-1.474</td>
</tr>
<tr>
<td></td>
<td>6(D)</td>
<td>2.048</td>
<td>-1.498</td>
<td>-1.401</td>
</tr>
<tr>
<td></td>
<td>7(D)</td>
<td>2.05</td>
<td>-1.505</td>
<td>1.411</td>
</tr>
</tbody>
</table>

\(^a\) Q = quartet; D = doublet

For comparison, the computed D, E/D and g data for the bis-trispyrazolylborate Co(II) complex compares well to the experimental results of 1.0 and 8.5

Table S11. Atomic coordinates for the B3LYP structure [CoL5-ONHtBu]Cl\textsubscript{2}.

<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>2.292053</td>
<td>0.001273</td>
<td>-0.002163</td>
</tr>
<tr>
<td>N</td>
<td>0.946536</td>
<td>-0.929712</td>
<td>1.629185</td>
</tr>
<tr>
<td>N</td>
<td>3.09149</td>
<td>0.677524</td>
<td>1.896426</td>
</tr>
<tr>
<td>N</td>
<td>5.003348</td>
<td>-0.00029</td>
<td>-0.002733</td>
</tr>
<tr>
<td>N</td>
<td>3.091229</td>
<td>-1.982462</td>
<td>-0.36833</td>
</tr>
<tr>
<td>N</td>
<td>0.943605</td>
<td>-0.945061</td>
<td>-1.622142</td>
</tr>
<tr>
<td>N</td>
<td>3.09175</td>
<td>1.305953</td>
<td>-1.538931</td>
</tr>
<tr>
<td>N</td>
<td>0.946974</td>
<td>1.878719</td>
<td>-0.012453</td>
</tr>
<tr>
<td>C</td>
<td>-0.129451</td>
<td>-1.709224</td>
<td>1.490451</td>
</tr>
<tr>
<td>C</td>
<td>-0.835052</td>
<td>-2.243411</td>
<td>2.581502</td>
</tr>
<tr>
<td>C</td>
<td>-0.37938</td>
<td>-1.945572</td>
<td>3.866094</td>
</tr>
<tr>
<td>C</td>
<td>0.715246</td>
<td>-1.098739</td>
<td>4.022429</td>
</tr>
<tr>
<td>C</td>
<td>1.353227</td>
<td>-0.609958</td>
<td>2.881133</td>
</tr>
<tr>
<td>C</td>
<td>2.536108</td>
<td>0.251456</td>
<td>2.966357</td>
</tr>
<tr>
<td>C</td>
<td>4.368967</td>
<td>1.373911</td>
<td>1.945614</td>
</tr>
<tr>
<td>C</td>
<td>5.425282</td>
<td>0.435368</td>
<td>1.343487</td>
</tr>
<tr>
<td>C</td>
<td>5.425947</td>
<td>-1.38372</td>
<td>-0.298997</td>
</tr>
<tr>
<td>C</td>
<td>4.368714</td>
<td>-2.375354</td>
<td>0.209148</td>
</tr>
<tr>
<td>C</td>
<td>2.534288</td>
<td>-2.694259</td>
<td>-1.272643</td>
</tr>
<tr>
<td>C</td>
<td>1.349735</td>
<td>-2.188854</td>
<td>-1.972926</td>
</tr>
<tr>
<td>C</td>
<td>0.708557</td>
<td>-2.932864</td>
<td>-2.964886</td>
</tr>
<tr>
<td>C</td>
<td>-0.38921</td>
<td>-2.374848</td>
<td>-3.615583</td>
</tr>
<tr>
<td>C</td>
<td>-0.84443</td>
<td>-1.113889</td>
<td>-3.229102</td>
</tr>
<tr>
<td>C</td>
<td>-0.135419</td>
<td>-0.436062</td>
<td>-2.223409</td>
</tr>
<tr>
<td>C</td>
<td>5.426129</td>
<td>0.947596</td>
<td>-1.052848</td>
</tr>
<tr>
<td>C</td>
<td>4.369497</td>
<td>1.000648</td>
<td>-2.16652</td>
</tr>
<tr>
<td>C</td>
<td>2.534071</td>
<td>2.444101</td>
<td>-1.707354</td>
</tr>
<tr>
<td>C</td>
<td>1.350576</td>
<td>2.800516</td>
<td>-0.919364</td>
</tr>
<tr>
<td>C</td>
<td>0.70863</td>
<td>4.030674</td>
<td>-1.071506</td>
</tr>
<tr>
<td>C</td>
<td>-0.386858</td>
<td>4.318571</td>
<td>-0.260992</td>
</tr>
<tr>
<td>C</td>
<td>-0.839011</td>
<td>3.357625</td>
<td>0.643935</td>
</tr>
<tr>
<td>C</td>
<td>-0.129388</td>
<td>2.148374</td>
<td>0.731584</td>
</tr>
<tr>
<td>H</td>
<td>-0.435919</td>
<td>-1.924799</td>
<td>0.475287</td>
</tr>
<tr>
<td>C</td>
<td>-2.0058</td>
<td>-3.195227</td>
<td>2.444349</td>
</tr>
<tr>
<td>H</td>
<td>-0.888413</td>
<td>-2.387963</td>
<td>4.716055</td>
</tr>
<tr>
<td>H</td>
<td>1.082014</td>
<td>-0.828486</td>
<td>5.008279</td>
</tr>
<tr>
<td>H</td>
<td>2.934801</td>
<td>0.486264</td>
<td>3.95915</td>
</tr>
<tr>
<td>H</td>
<td>4.644205</td>
<td>1.653225</td>
<td>2.971801</td>
</tr>
<tr>
<td>H</td>
<td>4.281125</td>
<td>2.289822</td>
<td>1.350514</td>
</tr>
<tr>
<td>H</td>
<td>6.43068</td>
<td>0.880006</td>
<td>1.311868</td>
</tr>
<tr>
<td>H</td>
<td>5.497849</td>
<td>-0.448165</td>
<td>1.985923</td>
</tr>
<tr>
<td>H</td>
<td>6.430514</td>
<td>-1.579427</td>
<td>0.103515</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>H</td>
<td>5.501147</td>
<td>-1.497219</td>
<td>-1.385331</td>
</tr>
<tr>
<td>H</td>
<td>4.64402</td>
<td>-3.402979</td>
<td>-0.0649</td>
</tr>
<tr>
<td>H</td>
<td>4.280887</td>
<td>-2.32129</td>
<td>1.300048</td>
</tr>
<tr>
<td>H</td>
<td>2.931875</td>
<td>-3.67135</td>
<td>-1.567459</td>
</tr>
<tr>
<td>H</td>
<td>1.074731</td>
<td>-3.921669</td>
<td>-3.224966</td>
</tr>
<tr>
<td>H</td>
<td>-0.901236</td>
<td>-2.890141</td>
<td>-4.421537</td>
</tr>
<tr>
<td>C</td>
<td>-2.019027</td>
<td>-0.520243</td>
<td>-3.980191</td>
</tr>
<tr>
<td>H</td>
<td>-0.442516</td>
<td>0.550092</td>
<td>-1.900778</td>
</tr>
<tr>
<td>H</td>
<td>6.431409</td>
<td>0.697066</td>
<td>-1.42201</td>
</tr>
<tr>
<td>H</td>
<td>5.499953</td>
<td>1.945465</td>
<td>-0.60857</td>
</tr>
<tr>
<td>H</td>
<td>4.645088</td>
<td>1.749656</td>
<td>-2.921436</td>
</tr>
<tr>
<td>H</td>
<td>4.281741</td>
<td>0.027352</td>
<td>-2.662321</td>
</tr>
<tr>
<td>H</td>
<td>2.931023</td>
<td>3.185759</td>
<td>-2.408838</td>
</tr>
<tr>
<td>H</td>
<td>1.072694</td>
<td>4.74723</td>
<td>-1.801883</td>
</tr>
<tr>
<td>H</td>
<td>-0.899272</td>
<td>5.27385</td>
<td>-0.307143</td>
</tr>
<tr>
<td>C</td>
<td>-2.010568</td>
<td>3.715408</td>
<td>1.535831</td>
</tr>
<tr>
<td>H</td>
<td>-0.433608</td>
<td>1.378862</td>
<td>1.428783</td>
</tr>
<tr>
<td>O</td>
<td>-2.196428</td>
<td>-0.861647</td>
<td>-5.151552</td>
</tr>
<tr>
<td>O</td>
<td>-2.17904</td>
<td>-4.040072</td>
<td>3.325417</td>
</tr>
<tr>
<td>O</td>
<td>-2.188407</td>
<td>4.902142</td>
<td>1.81884</td>
</tr>
<tr>
<td>C</td>
<td>-3.993966</td>
<td>1.020324</td>
<td>-3.813884</td>
</tr>
<tr>
<td>C</td>
<td>-3.978287</td>
<td>-3.828777</td>
<td>1.025951</td>
</tr>
<tr>
<td>C</td>
<td>-3.977526</td>
<td>2.804973</td>
<td>2.802962</td>
</tr>
<tr>
<td>N</td>
<td>-2.75947</td>
<td>-3.034281</td>
<td>1.331043</td>
</tr>
<tr>
<td>H</td>
<td>-2.685835</td>
<td>-2.132796</td>
<td>0.847133</td>
</tr>
<tr>
<td>N</td>
<td>-2.771122</td>
<td>0.363477</td>
<td>-3.282421</td>
</tr>
<tr>
<td>H</td>
<td>-2.693466</td>
<td>0.334626</td>
<td>-2.260001</td>
</tr>
<tr>
<td>N</td>
<td>-2.759122</td>
<td>2.670803</td>
<td>1.962526</td>
</tr>
<tr>
<td>H</td>
<td>-2.68568</td>
<td>1.797843</td>
<td>1.428842</td>
</tr>
<tr>
<td>C</td>
<td>-5.056353</td>
<td>-3.572502</td>
<td>2.097502</td>
</tr>
<tr>
<td>H</td>
<td>-5.964656</td>
<td>-4.139774</td>
<td>1.863038</td>
</tr>
<tr>
<td>H</td>
<td>-4.698585</td>
<td>3.880854</td>
<td>3.083027</td>
</tr>
<tr>
<td>H</td>
<td>-5.317702</td>
<td>-2.508825</td>
<td>2.133436</td>
</tr>
<tr>
<td>C</td>
<td>-4.474419</td>
<td>-3.348171</td>
<td>-0.347749</td>
</tr>
<tr>
<td>H</td>
<td>-4.686583</td>
<td>-2.273813</td>
<td>-0.340871</td>
</tr>
<tr>
<td>H</td>
<td>-3.724157</td>
<td>-3.539278</td>
<td>-1.123887</td>
</tr>
<tr>
<td>H</td>
<td>-5.390245</td>
<td>-3.883457</td>
<td>-0.619382</td>
</tr>
<tr>
<td>C</td>
<td>-3.625179</td>
<td>-5.324853</td>
<td>0.957467</td>
</tr>
<tr>
<td>H</td>
<td>-4.515394</td>
<td>-5.901118</td>
<td>0.680626</td>
</tr>
<tr>
<td>H</td>
<td>-2.854695</td>
<td>-5.50253</td>
<td>0.198241</td>
</tr>
<tr>
<td>H</td>
<td>-3.25794</td>
<td>-5.685894</td>
<td>1.919912</td>
</tr>
<tr>
<td>C</td>
<td>-4.490827</td>
<td>1.968075</td>
<td>-2.709992</td>
</tr>
<tr>
<td>H</td>
<td>-3.743411</td>
<td>2.739279</td>
<td>-2.48995</td>
</tr>
</tbody>
</table>
Table S12. Atomic coordinates for the B3LYP structure [CoL₅-ONHtBu]Br₂.

<table>
<thead>
<tr>
<th>atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>1.971376</td>
<td>-0.000084</td>
<td>-0.001506</td>
</tr>
<tr>
<td>N</td>
<td>0.667258</td>
<td>1.847444</td>
<td>-0.407728</td>
</tr>
<tr>
<td>N</td>
<td>2.796374</td>
<td>0.924446</td>
<td>-1.778195</td>
</tr>
<tr>
<td>N</td>
<td>4.738019</td>
<td>-0.000684</td>
<td>-0.002075</td>
</tr>
<tr>
<td>N</td>
<td>2.796541</td>
<td>1.074445</td>
<td>1.688199</td>
</tr>
<tr>
<td>N</td>
<td>0.666287</td>
<td>-0.572506</td>
<td>1.80149</td>
</tr>
<tr>
<td>N</td>
<td>2.796766</td>
<td>-2.001713</td>
<td>0.082802</td>
</tr>
<tr>
<td>N</td>
<td>0.663568</td>
<td>-1.274624</td>
<td>-1.395904</td>
</tr>
<tr>
<td>C</td>
<td>-0.379972</td>
<td>2.307919</td>
<td>0.283476</td>
</tr>
<tr>
<td>C</td>
<td>-1.049553</td>
<td>3.499072</td>
<td>-0.042569</td>
</tr>
<tr>
<td>C</td>
<td>-0.596077</td>
<td>4.224718</td>
<td>-1.145021</td>
</tr>
<tr>
<td>C</td>
<td>0.466515</td>
<td>3.731389</td>
<td>-1.897612</td>
</tr>
<tr>
<td>C</td>
<td>1.078438</td>
<td>2.542854</td>
<td>-1.495407</td>
</tr>
<tr>
<td>C</td>
<td>2.246366</td>
<td>2.001025</td>
<td>-2.195901</td>
</tr>
<tr>
<td>C</td>
<td>4.063078</td>
<td>0.469828</td>
<td>-2.331855</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C</td>
<td>5.140301</td>
<td>0.667907</td>
<td>-1.25257</td>
</tr>
<tr>
<td>C</td>
<td>5.140497</td>
<td>0.748045</td>
<td>1.202101</td>
</tr>
<tr>
<td>C</td>
<td>4.063121</td>
<td>1.781565</td>
<td>1.570539</td>
</tr>
<tr>
<td>C</td>
<td>2.247355</td>
<td>0.896568</td>
<td>2.829608</td>
</tr>
<tr>
<td>C</td>
<td>1.079099</td>
<td>0.019199</td>
<td>2.948256</td>
</tr>
<tr>
<td>C</td>
<td>0.468511</td>
<td>-0.229231</td>
<td>4.178949</td>
</tr>
<tr>
<td>C</td>
<td>-0.594101</td>
<td>-1.127778</td>
<td>4.22905</td>
</tr>
<tr>
<td>C</td>
<td>-1.049272</td>
<td>-1.716605</td>
<td>3.048424</td>
</tr>
<tr>
<td>C</td>
<td>-0.381254</td>
<td>-1.400767</td>
<td>1.853868</td>
</tr>
<tr>
<td>C</td>
<td>5.141157</td>
<td>-1.417601</td>
<td>0.044089</td>
</tr>
<tr>
<td>C</td>
<td>4.063551</td>
<td>-2.254674</td>
<td>0.753167</td>
</tr>
<tr>
<td>C</td>
<td>2.246453</td>
<td>-2.900355</td>
<td>-0.641794</td>
</tr>
<tr>
<td>C</td>
<td>1.077141</td>
<td>-2.563457</td>
<td>-1.459032</td>
</tr>
<tr>
<td>C</td>
<td>0.46557</td>
<td>-3.50483</td>
<td>-2.28961</td>
</tr>
<tr>
<td>C</td>
<td>-0.599244</td>
<td>-3.099458</td>
<td>-3.089369</td>
</tr>
<tr>
<td>C</td>
<td>-1.055176</td>
<td>-1.783012</td>
<td>-3.00699</td>
</tr>
<tr>
<td>C</td>
<td>-0.386288</td>
<td>-0.9066</td>
<td>-2.136551</td>
</tr>
<tr>
<td>H</td>
<td>-0.685838</td>
<td>1.716665</td>
<td>1.137361</td>
</tr>
<tr>
<td>C</td>
<td>-2.168888</td>
<td>4.096737</td>
<td>0.785754</td>
</tr>
<tr>
<td>H</td>
<td>-1.078753</td>
<td>5.166695</td>
<td>-1.383354</td>
</tr>
<tr>
<td>H</td>
<td>0.832791</td>
<td>4.263087</td>
<td>-2.770831</td>
</tr>
<tr>
<td>H</td>
<td>2.642775</td>
<td>2.560726</td>
<td>-3.049812</td>
</tr>
<tr>
<td>H</td>
<td>4.332609</td>
<td>1.01842</td>
<td>-3.244668</td>
</tr>
<tr>
<td>H</td>
<td>3.963035</td>
<td>-0.591693</td>
<td>-2.584371</td>
</tr>
<tr>
<td>H</td>
<td>6.130896</td>
<td>0.327286</td>
<td>-1.586587</td>
</tr>
<tr>
<td>H</td>
<td>5.233213</td>
<td>1.741074</td>
<td>-1.057828</td>
</tr>
<tr>
<td>H</td>
<td>6.131117</td>
<td>1.207435</td>
<td>1.073844</td>
</tr>
<tr>
<td>H</td>
<td>5.233166</td>
<td>0.042879</td>
<td>2.034162</td>
</tr>
<tr>
<td>H</td>
<td>4.332892</td>
<td>2.297868</td>
<td>2.501943</td>
</tr>
<tr>
<td>H</td>
<td>3.96268</td>
<td>2.530819</td>
<td>0.777364</td>
</tr>
<tr>
<td>H</td>
<td>2.644472</td>
<td>1.355101</td>
<td>3.741503</td>
</tr>
<tr>
<td>H</td>
<td>0.83643</td>
<td>0.258751</td>
<td>5.076671</td>
</tr>
<tr>
<td>H</td>
<td>-1.07539</td>
<td>-1.39479</td>
<td>5.164052</td>
</tr>
<tr>
<td>C</td>
<td>-2.167922</td>
<td>-2.733511</td>
<td>3.150225</td>
</tr>
<tr>
<td>H</td>
<td>-0.688379</td>
<td>-1.842568</td>
<td>0.914297</td>
</tr>
<tr>
<td>H</td>
<td>6.130884</td>
<td>-1.536012</td>
<td>0.507971</td>
</tr>
<tr>
<td>H</td>
<td>5.236425</td>
<td>-1.785076</td>
<td>-0.982655</td>
</tr>
<tr>
<td>H</td>
<td>4.333369</td>
<td>-3.319388</td>
<td>0.732155</td>
</tr>
<tr>
<td>H</td>
<td>3.963782</td>
<td>-1.945053</td>
<td>1.799666</td>
</tr>
<tr>
<td>H</td>
<td>2.642746</td>
<td>-3.919635</td>
<td>-0.701667</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>H</td>
<td>0.833976</td>
<td>-4.52605</td>
<td>-2.316605</td>
</tr>
<tr>
<td>H</td>
<td>-1.081601</td>
<td>-3.775485</td>
<td>-3.787526</td>
</tr>
<tr>
<td>C</td>
<td>-2.176005</td>
<td>-1.363574</td>
<td>-3.936424</td>
</tr>
<tr>
<td>H</td>
<td>-0.695438</td>
<td>0.127052</td>
<td>-2.046996</td>
</tr>
<tr>
<td>O</td>
<td>-2.289733</td>
<td>-3.361851</td>
<td>4.203431</td>
</tr>
<tr>
<td>O</td>
<td>-2.29136</td>
<td>5.323</td>
<td>0.79971</td>
</tr>
<tr>
<td>O</td>
<td>-2.299087</td>
<td>-1.962339</td>
<td>-5.006591</td>
</tr>
<tr>
<td>C</td>
<td>-4.105539</td>
<td>-3.791041</td>
<td>1.951086</td>
</tr>
<tr>
<td>C</td>
<td>-4.102562</td>
<td>3.591214</td>
<td>2.307424</td>
</tr>
<tr>
<td>C</td>
<td>-4.114291</td>
<td>0.203447</td>
<td>-4.251221</td>
</tr>
<tr>
<td>N</td>
<td>-2.93211</td>
<td>3.211846</td>
<td>1.471307</td>
</tr>
<tr>
<td>H</td>
<td>-2.920879</td>
<td>2.241734</td>
<td>1.144382</td>
</tr>
<tr>
<td>N</td>
<td>-2.933534</td>
<td>-2.879194</td>
<td>2.042044</td>
</tr>
<tr>
<td>H</td>
<td>-2.922268</td>
<td>-2.108356</td>
<td>1.368183</td>
</tr>
<tr>
<td>N</td>
<td>-2.940962</td>
<td>-0.330368</td>
<td>-3.508636</td>
</tr>
<tr>
<td>H</td>
<td>-2.927523</td>
<td>-0.130278</td>
<td>-2.504799</td>
</tr>
<tr>
<td>C</td>
<td>-5.193518</td>
<td>4.232618</td>
<td>1.427684</td>
</tr>
<tr>
<td>H</td>
<td>-6.065698</td>
<td>4.493385</td>
<td>2.038369</td>
</tr>
<tr>
<td>H</td>
<td>-4.818233</td>
<td>5.141867</td>
<td>0.951494</td>
</tr>
<tr>
<td>H</td>
<td>-5.513874</td>
<td>3.533525</td>
<td>0.649057</td>
</tr>
<tr>
<td>C</td>
<td>-4.62748</td>
<td>2.289236</td>
<td>2.933589</td>
</tr>
<tr>
<td>H</td>
<td>-4.918397</td>
<td>1.565242</td>
<td>2.164932</td>
</tr>
<tr>
<td>H</td>
<td>-3.8639</td>
<td>1.823019</td>
<td>3.567223</td>
</tr>
<tr>
<td>H</td>
<td>-5.502157</td>
<td>2.504168</td>
<td>3.556406</td>
</tr>
<tr>
<td>C</td>
<td>-3.659119</td>
<td>4.559851</td>
<td>3.418307</td>
</tr>
<tr>
<td>H</td>
<td>-4.513436</td>
<td>4.794763</td>
<td>4.063201</td>
</tr>
<tr>
<td>H</td>
<td>-2.880405</td>
<td>4.101518</td>
<td>4.038971</td>
</tr>
<tr>
<td>H</td>
<td>-3.270066</td>
<td>5.489114</td>
<td>2.99825</td>
</tr>
<tr>
<td>C</td>
<td>-4.636324</td>
<td>-3.673646</td>
<td>0.513279</td>
</tr>
<tr>
<td>H</td>
<td>-3.876861</td>
<td>-3.988043</td>
<td>-0.212161</td>
</tr>
<tr>
<td>H</td>
<td>-5.51341</td>
<td>-4.317252</td>
<td>0.388672</td>
</tr>
<tr>
<td>H</td>
<td>-4.925153</td>
<td>-2.643917</td>
<td>0.276926</td>
</tr>
<tr>
<td>C</td>
<td>-5.192074</td>
<td>-3.355556</td>
<td>2.953838</td>
</tr>
<tr>
<td>H</td>
<td>-6.065185</td>
<td>-4.013612</td>
<td>2.873816</td>
</tr>
<tr>
<td>H</td>
<td>-4.812199</td>
<td>-3.405331</td>
<td>3.977315</td>
</tr>
<tr>
<td>H</td>
<td>-5.517186</td>
<td>-2.329867</td>
<td>2.746628</td>
</tr>
<tr>
<td>C</td>
<td>-3.661978</td>
<td>-5.239182</td>
<td>2.224347</td>
</tr>
<tr>
<td>H</td>
<td>-2.886763</td>
<td>-5.543757</td>
<td>1.51167</td>
</tr>
<tr>
<td>H</td>
<td>-3.268398</td>
<td>-5.346023</td>
<td>3.236852</td>
</tr>
<tr>
<td>H</td>
<td>-4.517586</td>
<td>-5.913613</td>
<td>2.10551</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>C</td>
<td>-5.201017</td>
<td>-0.882878</td>
<td>-4.370626</td>
</tr>
<tr>
<td>H</td>
<td>-6.076192</td>
<td>-0.484806</td>
<td>-4.897195</td>
</tr>
<tr>
<td>H</td>
<td>-4.823658</td>
<td>-1.74499</td>
<td>-4.926174</td>
</tr>
<tr>
<td>H</td>
<td>-5.522172</td>
<td>-1.215115</td>
<td>-3.37706</td>
</tr>
<tr>
<td>C</td>
<td>-3.674123</td>
<td>0.689042</td>
<td>-5.643979</td>
</tr>
<tr>
<td>H</td>
<td>-3.283844</td>
<td>-0.135467</td>
<td>-6.243245</td>
</tr>
<tr>
<td>H</td>
<td>-4.530552</td>
<td>1.130218</td>
<td>-6.166387</td>
</tr>
<tr>
<td>H</td>
<td>-2.897402</td>
<td>1.457412</td>
<td>-5.554591</td>
</tr>
<tr>
<td>C</td>
<td>-4.642881</td>
<td>1.391317</td>
<td>-3.431212</td>
</tr>
<tr>
<td>H</td>
<td>-4.928622</td>
<td>1.083031</td>
<td>-2.41979</td>
</tr>
<tr>
<td>H</td>
<td>-3.883425</td>
<td>2.177187</td>
<td>-3.34467</td>
</tr>
<tr>
<td>H</td>
<td>-5.521589</td>
<td>1.819715</td>
<td>-3.924528</td>
</tr>
<tr>
<td>Br</td>
<td>8.350041</td>
<td>0.000492</td>
<td>-0.000481</td>
</tr>
<tr>
<td>Br</td>
<td>-3.063996</td>
<td>-0.000326</td>
<td>0.00448</td>
</tr>
</tbody>
</table>

Table S13. Atomic coordinates for the B3LYP structure \([\text{CoL}^{\text{5-ONHtBu}}\text{I}_2].\)

<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>-1.691952</td>
<td>0.000069</td>
<td>0.001714</td>
</tr>
<tr>
<td>N</td>
<td>-0.416911</td>
<td>1.877014</td>
<td>0.304285</td>
</tr>
<tr>
<td>N</td>
<td>-2.533917</td>
<td>1.004051</td>
<td>1.724793</td>
</tr>
<tr>
<td>N</td>
<td>-4.498391</td>
<td>0.00011</td>
<td>0.002359</td>
</tr>
<tr>
<td>N</td>
<td>-2.534143</td>
<td>0.988258</td>
<td>-1.729609</td>
</tr>
<tr>
<td>N</td>
<td>-0.41643</td>
<td>-0.677808</td>
<td>-1.774537</td>
</tr>
<tr>
<td>N</td>
<td>-2.534157</td>
<td>-1.993723</td>
<td>0.011778</td>
</tr>
<tr>
<td>N</td>
<td>-0.414857</td>
<td>-1.199657</td>
<td>1.475197</td>
</tr>
<tr>
<td>C</td>
<td>0.602883</td>
<td>2.328743</td>
<td>-0.432717</td>
</tr>
<tr>
<td>C</td>
<td>1.243995</td>
<td>3.553978</td>
<td>-0.184191</td>
</tr>
<tr>
<td>C</td>
<td>0.80129</td>
<td>4.316929</td>
<td>0.897492</td>
</tr>
<tr>
<td>C</td>
<td>-0.230567</td>
<td>3.834007</td>
<td>1.698401</td>
</tr>
<tr>
<td>C</td>
<td>-0.825338</td>
<td>2.616402</td>
<td>1.363315</td>
</tr>
<tr>
<td>C</td>
<td>-1.983383</td>
<td>2.096263</td>
<td>2.097676</td>
</tr>
<tr>
<td>C</td>
<td>-3.793672</td>
<td>0.56467</td>
<td>2.306605</td>
</tr>
<tr>
<td>C</td>
<td>-4.884864</td>
<td>0.711554</td>
<td>1.231734</td>
</tr>
<tr>
<td>C</td>
<td>-4.8851</td>
<td>0.708904</td>
<td>-1.228545</td>
</tr>
<tr>
<td>C</td>
<td>-3.793602</td>
<td>1.71238</td>
<td>-1.639936</td>
</tr>
<tr>
<td>C</td>
<td>-1.984669</td>
<td>0.763085</td>
<td>-2.862077</td>
</tr>
<tr>
<td>C</td>
<td>-0.826701</td>
<td>-0.133142</td>
<td>-2.945036</td>
</tr>
<tr>
<td>C</td>
<td>-0.233693</td>
<td>-0.454485</td>
<td>-4.167198</td>
</tr>
<tr>
<td>C</td>
<td>0.798312</td>
<td>-1.389424</td>
<td>-4.184355</td>
</tr>
<tr>
<td>C</td>
<td>1.243081</td>
<td>-1.94161</td>
<td>-2.982113</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>C</td>
<td>0.603733</td>
<td>-1.541569</td>
<td>-1.796746</td>
</tr>
<tr>
<td>C</td>
<td>-4.88517</td>
<td>-1.420241</td>
<td>0.004284</td>
</tr>
<tr>
<td>C</td>
<td>-3.794002</td>
<td>-2.27845</td>
<td>-0.659299</td>
</tr>
<tr>
<td>C</td>
<td>-1.983648</td>
<td>-2.862002</td>
<td>0.772133</td>
</tr>
<tr>
<td>C</td>
<td>-0.824494</td>
<td>-2.485928</td>
<td>1.588216</td>
</tr>
<tr>
<td>C</td>
<td>-0.229272</td>
<td>-3.384385</td>
<td>2.475403</td>
</tr>
<tr>
<td>C</td>
<td>0.804526</td>
<td>-2.932331</td>
<td>3.291683</td>
</tr>
<tr>
<td>C</td>
<td>1.248706</td>
<td>-1.614825</td>
<td>3.169132</td>
</tr>
<tr>
<td>C</td>
<td>0.606899</td>
<td>-0.787431</td>
<td>2.23241</td>
</tr>
<tr>
<td>H</td>
<td>0.901291</td>
<td>1.704711</td>
<td>-1.266156</td>
</tr>
<tr>
<td>C</td>
<td>2.305288</td>
<td>4.157602</td>
<td>-1.082409</td>
</tr>
<tr>
<td>H</td>
<td>1.262561</td>
<td>5.282119</td>
<td>1.077893</td>
</tr>
<tr>
<td>H</td>
<td>-0.591389</td>
<td>4.398851</td>
<td>2.552831</td>
</tr>
<tr>
<td>H</td>
<td>-2.374519</td>
<td>2.687655</td>
<td>2.932341</td>
</tr>
<tr>
<td>H</td>
<td>-4.059197</td>
<td>1.147757</td>
<td>3.19885</td>
</tr>
<tr>
<td>H</td>
<td>-3.685453</td>
<td>-0.485259</td>
<td>2.600863</td>
</tr>
<tr>
<td>H</td>
<td>-5.862007</td>
<td>0.374612</td>
<td>1.604822</td>
</tr>
<tr>
<td>H</td>
<td>-4.993908</td>
<td>1.775387</td>
<td>0.998555</td>
</tr>
<tr>
<td>H</td>
<td>-5.861889</td>
<td>1.201146</td>
<td>-1.123039</td>
</tr>
<tr>
<td>H</td>
<td>-4.995145</td>
<td>-0.025224</td>
<td>-2.032884</td>
</tr>
<tr>
<td>H</td>
<td>-4.0594</td>
<td>2.19288</td>
<td>-2.591291</td>
</tr>
<tr>
<td>H</td>
<td>-3.684646</td>
<td>2.492803</td>
<td>-0.878521</td>
</tr>
<tr>
<td>H</td>
<td>-2.376631</td>
<td>1.188762</td>
<td>-3.791891</td>
</tr>
<tr>
<td>H</td>
<td>-0.595967</td>
<td>0.000797</td>
<td>-5.084134</td>
</tr>
<tr>
<td>H</td>
<td>1.258174</td>
<td>-1.717873</td>
<td>-5.110403</td>
</tr>
<tr>
<td>C</td>
<td>2.304815</td>
<td>-3.02091</td>
<td>-3.054287</td>
</tr>
<tr>
<td>H</td>
<td>0.903949</td>
<td>-1.949197</td>
<td>-0.839315</td>
</tr>
<tr>
<td>H</td>
<td>-5.862188</td>
<td>-1.574895</td>
<td>-0.474278</td>
</tr>
<tr>
<td>H</td>
<td>-4.994806</td>
<td>-1.749623</td>
<td>1.042318</td>
</tr>
<tr>
<td>H</td>
<td>-4.059668</td>
<td>-3.342601</td>
<td>-0.599256</td>
</tr>
<tr>
<td>H</td>
<td>-3.685771</td>
<td>-2.009665</td>
<td>-1.716025</td>
</tr>
<tr>
<td>H</td>
<td>-2.375209</td>
<td>-3.880237</td>
<td>0.868394</td>
</tr>
<tr>
<td>H</td>
<td>-0.591063</td>
<td>-4.406303</td>
<td>2.53932</td>
</tr>
<tr>
<td>H</td>
<td>1.266316</td>
<td>-3.570714</td>
<td>4.037429</td>
</tr>
<tr>
<td>C</td>
<td>2.3126</td>
<td>-1.138641</td>
<td>4.138083</td>
</tr>
<tr>
<td>H</td>
<td>0.906261</td>
<td>0.245869</td>
<td>2.106931</td>
</tr>
<tr>
<td>O</td>
<td>2.371952</td>
<td>-3.697091</td>
<td>-4.081827</td>
</tr>
<tr>
<td>O</td>
<td>2.375405</td>
<td>5.385706</td>
<td>-1.148671</td>
</tr>
<tr>
<td>O</td>
<td>2.383208</td>
<td>-1.692647</td>
<td>5.236098</td>
</tr>
<tr>
<td>C</td>
<td>4.184744</td>
<td>-4.164131</td>
<td>-1.8413</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C</td>
<td>4.181731</td>
<td>3.681945</td>
<td>-2.683936</td>
</tr>
<tr>
<td>C</td>
<td>4.192203</td>
<td>0.484279</td>
<td>4.52005</td>
</tr>
<tr>
<td>N</td>
<td>3.075104</td>
<td>3.280368</td>
<td>-1.772241</td>
</tr>
<tr>
<td>H</td>
<td>3.124282</td>
<td>2.324614</td>
<td>-1.411684</td>
</tr>
<tr>
<td>N</td>
<td>3.078091</td>
<td>-3.174114</td>
<td>-1.951296</td>
</tr>
<tr>
<td>H</td>
<td>3.129153</td>
<td>-2.380887</td>
<td>-1.30772</td>
</tr>
<tr>
<td>N</td>
<td>3.083857</td>
<td>-0.105239</td>
<td>3.71944</td>
</tr>
<tr>
<td>H</td>
<td>3.131771</td>
<td>0.058179</td>
<td>2.711028</td>
</tr>
<tr>
<td>C</td>
<td>5.282125</td>
<td>4.41226</td>
<td>-1.889826</td>
</tr>
<tr>
<td>H</td>
<td>6.105076</td>
<td>4.692154</td>
<td>-2.55764</td>
</tr>
<tr>
<td>H</td>
<td>4.885826</td>
<td>5.319864</td>
<td>-1.428051</td>
</tr>
<tr>
<td>H</td>
<td>5.685381</td>
<td>3.762569</td>
<td>-1.104854</td>
</tr>
<tr>
<td>C</td>
<td>4.740394</td>
<td>2.384676</td>
<td>-3.289754</td>
</tr>
<tr>
<td>H</td>
<td>5.111246</td>
<td>1.706088</td>
<td>-2.513822</td>
</tr>
<tr>
<td>H</td>
<td>3.971254</td>
<td>1.856489</td>
<td>-3.865612</td>
</tr>
<tr>
<td>H</td>
<td>5.569324</td>
<td>2.619702</td>
<td>-3.965435</td>
</tr>
<tr>
<td>C</td>
<td>3.630380</td>
<td>4.580787</td>
<td>-3.805452</td>
</tr>
<tr>
<td>H</td>
<td>4.436084</td>
<td>4.82835</td>
<td>-4.505723</td>
</tr>
<tr>
<td>H</td>
<td>2.843267</td>
<td>4.059931</td>
<td>-4.36303</td>
</tr>
<tr>
<td>H</td>
<td>3.219484</td>
<td>5.057856</td>
<td>-3.401836</td>
</tr>
<tr>
<td>C</td>
<td>4.746543</td>
<td>-4.03388</td>
<td>-0.416703</td>
</tr>
<tr>
<td>H</td>
<td>3.978452</td>
<td>-4.263305</td>
<td>0.33136</td>
</tr>
<tr>
<td>H</td>
<td>5.574527</td>
<td>-4.737299</td>
<td>-0.280523</td>
</tr>
<tr>
<td>H</td>
<td>5.119583</td>
<td>-3.022284</td>
<td>-0.222826</td>
</tr>
<tr>
<td>C</td>
<td>5.282837</td>
<td>-3.846323</td>
<td>-2.874761</td>
</tr>
<tr>
<td>H</td>
<td>6.10619</td>
<td>-4.563953</td>
<td>-2.781676</td>
</tr>
<tr>
<td>H</td>
<td>4.884239</td>
<td>-3.905224</td>
<td>-3.890484</td>
</tr>
<tr>
<td>H</td>
<td>5.686134</td>
<td>-2.840738</td>
<td>-2.710301</td>
</tr>
<tr>
<td>C</td>
<td>3.632782</td>
<td>-5.585735</td>
<td>-2.051341</td>
</tr>
<tr>
<td>H</td>
<td>2.847442</td>
<td>-5.804929</td>
<td>-1.318579</td>
</tr>
<tr>
<td>H</td>
<td>3.219397</td>
<td>-5.704211</td>
<td>-3.054471</td>
</tr>
<tr>
<td>H</td>
<td>4.438798</td>
<td>-6.315368</td>
<td>-1.914287</td>
</tr>
<tr>
<td>C</td>
<td>5.29175</td>
<td>-0.569271</td>
<td>4.756591</td>
</tr>
<tr>
<td>H</td>
<td>6.115935</td>
<td>-0.13059</td>
<td>5.330909</td>
</tr>
<tr>
<td>H</td>
<td>4.895124</td>
<td>-1.42125</td>
<td>5.314154</td>
</tr>
<tr>
<td>H</td>
<td>5.693405</td>
<td>-0.926838</td>
<td>3.801771</td>
</tr>
<tr>
<td>C</td>
<td>3.643399</td>
<td>1.010057</td>
<td>5.858717</td>
</tr>
<tr>
<td>H</td>
<td>3.232646</td>
<td>0.198928</td>
<td>6.462498</td>
</tr>
<tr>
<td>H</td>
<td>4.450442</td>
<td>1.493444</td>
<td>6.420712</td>
</tr>
<tr>
<td>H</td>
<td>2.856706</td>
<td>1.753643</td>
<td>5.685744</td>
</tr>
</tbody>
</table>
Table S14. Atomic coordinates for the B3LYP structure [CoL₅⁻ONH₄Bu](ClO₄)₂.

<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4.750919</td>
<td>1.654799</td>
<td>3.695609</td>
</tr>
<tr>
<td>H</td>
<td>5.119885</td>
<td>1.319093</td>
<td>2.720266</td>
</tr>
<tr>
<td>H</td>
<td>3.98232</td>
<td>2.417964</td>
<td>3.525224</td>
</tr>
<tr>
<td>H</td>
<td>5.581173</td>
<td>2.122987</td>
<td>4.234484</td>
</tr>
<tr>
<td>I</td>
<td>-8.405622</td>
<td>0.000291</td>
<td>0.000137</td>
</tr>
<tr>
<td>I</td>
<td>3.518257</td>
<td>0.001544</td>
<td>-0.005958</td>
</tr>
</tbody>
</table>

atom | x | y | z |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>-1.748585</td>
<td>0.007244</td>
<td>0.000397</td>
</tr>
<tr>
<td>N</td>
<td>-0.4768</td>
<td>1.821473</td>
<td>-0.622801</td>
</tr>
<tr>
<td>N</td>
<td>-2.597262</td>
<td>1.689959</td>
<td>1.045909</td>
</tr>
<tr>
<td>N</td>
<td>-4.568438</td>
<td>0.004153</td>
<td>-0.001944</td>
</tr>
<tr>
<td>N</td>
<td>-2.593239</td>
<td>0.070306</td>
<td>-1.981157</td>
</tr>
<tr>
<td>N</td>
<td>-0.478373</td>
<td>-1.448558</td>
<td>-1.259372</td>
</tr>
<tr>
<td>N</td>
<td>-2.593186</td>
<td>-1.742369</td>
<td>0.933449</td>
</tr>
<tr>
<td>N</td>
<td>-0.481087</td>
<td>-0.35652</td>
<td>1.889109</td>
</tr>
<tr>
<td>C</td>
<td>0.541018</td>
<td>1.892773</td>
<td>-1.486857</td>
</tr>
<tr>
<td>C</td>
<td>1.157641</td>
<td>3.102528</td>
<td>-1.847618</td>
</tr>
<tr>
<td>C</td>
<td>0.683801</td>
<td>4.276562</td>
<td>-1.260226</td>
</tr>
<tr>
<td>C</td>
<td>-0.350474</td>
<td>4.20938</td>
<td>-0.330965</td>
</tr>
<tr>
<td>C</td>
<td>-0.913398</td>
<td>2.965988</td>
<td>-0.044864</td>
</tr>
<tr>
<td>C</td>
<td>-2.065797</td>
<td>2.834982</td>
<td>0.85477</td>
</tr>
<tr>
<td>C</td>
<td>-3.848256</td>
<td>1.559706</td>
<td>1.782488</td>
</tr>
<tr>
<td>C</td>
<td>-4.955454</td>
<td>1.192215</td>
<td>0.781195</td>
</tr>
<tr>
<td>C</td>
<td>-4.951726</td>
<td>0.088711</td>
<td>-1.423495</td>
</tr>
<tr>
<td>C</td>
<td>-3.842985</td>
<td>0.775117</td>
<td>-2.238009</td>
</tr>
<tr>
<td>C</td>
<td>-2.064086</td>
<td>-0.670377</td>
<td>-2.876403</td>
</tr>
<tr>
<td>C</td>
<td>-0.914813</td>
<td>-1.518826</td>
<td>-2.539555</td>
</tr>
<tr>
<td>C</td>
<td>-0.355614</td>
<td>-2.39069</td>
<td>-3.473366</td>
</tr>
<tr>
<td>C</td>
<td>0.674653</td>
<td>-3.23375</td>
<td>-3.066762</td>
</tr>
<tr>
<td>C</td>
<td>1.148002</td>
<td>-3.157636</td>
<td>-1.756075</td>
</tr>
<tr>
<td>C</td>
<td>0.535595</td>
<td>-2.237428</td>
<td>-0.888971</td>
</tr>
<tr>
<td>C</td>
<td>-4.951411</td>
<td>-1.269713</td>
<td>0.634711</td>
</tr>
<tr>
<td>C</td>
<td>-3.841816</td>
<td>-2.317426</td>
<td>0.448992</td>
</tr>
<tr>
<td>C</td>
<td>-2.064104</td>
<td>-2.148281</td>
<td>2.022154</td>
</tr>
<tr>
<td>C</td>
<td>-0.914879</td>
<td>-1.432086</td>
<td>2.588482</td>
</tr>
<tr>
<td>C</td>
<td>-0.351728</td>
<td>-1.807804</td>
<td>3.807807</td>
</tr>
<tr>
<td>C</td>
<td>0.681681</td>
<td>-1.036682</td>
<td>4.332239</td>
</tr>
<tr>
<td>C</td>
<td>1.154484</td>
<td>0.060508</td>
<td>3.610704</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>C</td>
<td>0.536349</td>
<td>0.355872</td>
<td>2.384282</td>
</tr>
<tr>
<td>H</td>
<td>0.870824</td>
<td>0.949595</td>
<td>-1.905883</td>
</tr>
<tr>
<td>C</td>
<td>2.253869</td>
<td>3.256506</td>
<td>-2.888063</td>
</tr>
<tr>
<td>H</td>
<td>1.131208</td>
<td>5.219336</td>
<td>-1.555934</td>
</tr>
<tr>
<td>H</td>
<td>-0.733273</td>
<td>5.104178</td>
<td>0.150887</td>
</tr>
<tr>
<td>H</td>
<td>-2.46848</td>
<td>3.745014</td>
<td>1.312225</td>
</tr>
<tr>
<td>H</td>
<td>-4.10718</td>
<td>2.486382</td>
<td>2.312379</td>
</tr>
<tr>
<td>H</td>
<td>-3.722465</td>
<td>0.762987</td>
<td>2.524098</td>
</tr>
<tr>
<td>H</td>
<td>-5.912423</td>
<td>1.043831</td>
<td>1.296422</td>
</tr>
<tr>
<td>H</td>
<td>-5.095504</td>
<td>2.031913</td>
<td>0.094463</td>
</tr>
<tr>
<td>H</td>
<td>-5.909829</td>
<td>0.606481</td>
<td>-1.555326</td>
</tr>
<tr>
<td>H</td>
<td>-5.087625</td>
<td>-0.925821</td>
<td>-1.809038</td>
</tr>
<tr>
<td>H</td>
<td>-4.0993</td>
<td>0.773309</td>
<td>-3.306098</td>
</tr>
<tr>
<td>H</td>
<td>-3.717065</td>
<td>1.814792</td>
<td>-1.9158</td>
</tr>
<tr>
<td>H</td>
<td>-2.467417</td>
<td>-0.729065</td>
<td>-3.892992</td>
</tr>
<tr>
<td>H</td>
<td>-0.738462</td>
<td>-2.419112</td>
<td>-4.489238</td>
</tr>
<tr>
<td>H</td>
<td>1.118618</td>
<td>-3.963351</td>
<td>-3.73575</td>
</tr>
<tr>
<td>C</td>
<td>2.238372</td>
<td>-4.141046</td>
<td>-1.367462</td>
</tr>
<tr>
<td>H</td>
<td>0.86527</td>
<td>-2.132141</td>
<td>0.13774</td>
</tr>
<tr>
<td>H</td>
<td>-5.90827</td>
<td>-1.644231</td>
<td>0.250678</td>
</tr>
<tr>
<td>H</td>
<td>-5.089319</td>
<td>-1.096619</td>
<td>1.705857</td>
</tr>
<tr>
<td>H</td>
<td>-4.098854</td>
<td>-3.242248</td>
<td>0.983035</td>
</tr>
<tr>
<td>H</td>
<td>-3.714062</td>
<td>-2.556655</td>
<td>-0.6126</td>
</tr>
<tr>
<td>H</td>
<td>-2.466163</td>
<td>-3.000753</td>
<td>2.579877</td>
</tr>
<tr>
<td>H</td>
<td>-0.733527</td>
<td>-2.674332</td>
<td>4.339518</td>
</tr>
<tr>
<td>H</td>
<td>1.129327</td>
<td>-1.2537</td>
<td>5.29608</td>
</tr>
<tr>
<td>C</td>
<td>2.251164</td>
<td>0.884091</td>
<td>4.263382</td>
</tr>
<tr>
<td>H</td>
<td>0.86483</td>
<td>1.194057</td>
<td>1.78131</td>
</tr>
<tr>
<td>O</td>
<td>2.34552</td>
<td>-5.171747</td>
<td>-2.034966</td>
</tr>
<tr>
<td>O</td>
<td>2.371468</td>
<td>4.353158</td>
<td>-3.438469</td>
</tr>
<tr>
<td>O</td>
<td>2.363231</td>
<td>0.82058</td>
<td>5.489249</td>
</tr>
<tr>
<td>C</td>
<td>4.168859</td>
<td>-4.621772</td>
<td>0.164588</td>
</tr>
<tr>
<td>C</td>
<td>4.180477</td>
<td>2.16506</td>
<td>-4.071517</td>
</tr>
<tr>
<td>C</td>
<td>4.188603</td>
<td>2.440893</td>
<td>3.906025</td>
</tr>
<tr>
<td>N</td>
<td>3.019156</td>
<td>2.16966</td>
<td>-3.137887</td>
</tr>
<tr>
<td>H</td>
<td>2.957725</td>
<td>1.373762</td>
<td>-2.505047</td>
</tr>
<tr>
<td>N</td>
<td>3.01106</td>
<td>-3.81134</td>
<td>-0.307415</td>
</tr>
<tr>
<td>H</td>
<td>2.955885</td>
<td>-2.863088</td>
<td>0.060589</td>
</tr>
<tr>
<td>N</td>
<td>3.023611</td>
<td>1.634328</td>
<td>3.444636</td>
</tr>
<tr>
<td>H</td>
<td>2.96377</td>
<td>1.479069</td>
<td>2.439663</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>C</td>
<td>5.243549</td>
<td>3.172772</td>
<td>-3.592213</td>
</tr>
<tr>
<td>H</td>
<td>6.109857</td>
<td>3.148902</td>
<td>-4.2632</td>
</tr>
<tr>
<td>H</td>
<td>4.839694</td>
<td>4.187611</td>
<td>-3.581326</td>
</tr>
<tr>
<td>H</td>
<td>5.586651</td>
<td>2.91702</td>
<td>-2.58343</td>
</tr>
<tr>
<td>C</td>
<td>4.76355</td>
<td>0.743213</td>
<td>-4.044855</td>
</tr>
<tr>
<td>H</td>
<td>5.103493</td>
<td>0.465136</td>
<td>-3.042118</td>
</tr>
<tr>
<td>H</td>
<td>4.021803</td>
<td>0.004065</td>
<td>-4.369034</td>
</tr>
<tr>
<td>H</td>
<td>5.619427</td>
<td>0.68657</td>
<td>-4.725125</td>
</tr>
<tr>
<td>C</td>
<td>3.703899</td>
<td>2.507358</td>
<td>-5.49474</td>
</tr>
<tr>
<td>H</td>
<td>4.552517</td>
<td>2.470767</td>
<td>-6.187165</td>
</tr>
<tr>
<td>H</td>
<td>2.955872</td>
<td>1.781687</td>
<td>-5.834478</td>
</tr>
<tr>
<td>H</td>
<td>3.265689</td>
<td>3.506579</td>
<td>-5.531035</td>
</tr>
<tr>
<td>C</td>
<td>4.766785</td>
<td>-3.87773</td>
<td>1.36931</td>
</tr>
<tr>
<td>H</td>
<td>4.032063</td>
<td>-3.773488</td>
<td>2.176135</td>
</tr>
<tr>
<td>H</td>
<td>5.621248</td>
<td>-4.44068</td>
<td>1.758353</td>
</tr>
<tr>
<td>H</td>
<td>5.11232</td>
<td>-2.875968</td>
<td>1.094065</td>
</tr>
<tr>
<td>C</td>
<td>5.223461</td>
<td>-4.734001</td>
<td>-0.953605</td>
</tr>
<tr>
<td>H</td>
<td>6.087706</td>
<td>-5.304851</td>
<td>-0.595005</td>
</tr>
<tr>
<td>H</td>
<td>4.809452</td>
<td>-5.241297</td>
<td>-1.827804</td>
</tr>
<tr>
<td>H</td>
<td>5.572363</td>
<td>-3.739385</td>
<td>-1.253026</td>
</tr>
<tr>
<td>C</td>
<td>3.683196</td>
<td>-6.016127</td>
<td>0.600152</td>
</tr>
<tr>
<td>H</td>
<td>2.938796</td>
<td>-5.931455</td>
<td>1.40035</td>
</tr>
<tr>
<td>H</td>
<td>3.237622</td>
<td>-6.554874</td>
<td>-0.238341</td>
</tr>
<tr>
<td>H</td>
<td>4.528861</td>
<td>-6.598801</td>
<td>0.982575</td>
</tr>
<tr>
<td>C</td>
<td>5.242427</td>
<td>1.520312</td>
<td>4.551826</td>
</tr>
<tr>
<td>H</td>
<td>6.109834</td>
<td>2.110712</td>
<td>4.868532</td>
</tr>
<tr>
<td>H</td>
<td>4.82976</td>
<td>1.012058</td>
<td>5.426152</td>
</tr>
<tr>
<td>H</td>
<td>5.586416</td>
<td>0.767648</td>
<td>3.83355</td>
</tr>
<tr>
<td>C</td>
<td>3.714944</td>
<td>3.513742</td>
<td>4.903237</td>
</tr>
<tr>
<td>H</td>
<td>3.270214</td>
<td>3.055666</td>
<td>5.788789</td>
</tr>
<tr>
<td>H</td>
<td>4.566441</td>
<td>4.128651</td>
<td>5.215972</td>
</tr>
<tr>
<td>H</td>
<td>2.973155</td>
<td>4.171898</td>
<td>4.436166</td>
</tr>
<tr>
<td>C</td>
<td>4.781846</td>
<td>3.114105</td>
<td>2.658143</td>
</tr>
<tr>
<td>H</td>
<td>5.119725</td>
<td>2.375702</td>
<td>1.923889</td>
</tr>
<tr>
<td>H</td>
<td>4.046844</td>
<td>3.765465</td>
<td>2.171225</td>
</tr>
<tr>
<td>H</td>
<td>5.640577</td>
<td>3.728152</td>
<td>2.947875</td>
</tr>
<tr>
<td>Cl</td>
<td>3.547985</td>
<td>-0.006583</td>
<td>-0.007431</td>
</tr>
<tr>
<td>O</td>
<td>2.958663</td>
<td>-1.122208</td>
<td>1.0365</td>
</tr>
<tr>
<td>O</td>
<td>2.968594</td>
<td>1.458277</td>
<td>0.439519</td>
</tr>
<tr>
<td>O</td>
<td>2.961451</td>
<td>-0.348474</td>
<td>-1.498144</td>
</tr>
<tr>
<td>atom</td>
<td>(x)</td>
<td>(y)</td>
<td>(z)</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>O</td>
<td>5.150926</td>
<td>-0.013808</td>
<td>-0.007697</td>
</tr>
<tr>
<td>Cl</td>
<td>-8.40099</td>
<td>-0.002869</td>
<td>0.002479</td>
</tr>
<tr>
<td>O</td>
<td>-7.818336</td>
<td>-0.117682</td>
<td>1.527192</td>
</tr>
<tr>
<td>O</td>
<td>-10.004912</td>
<td>-0.007469</td>
<td>0.008585</td>
</tr>
<tr>
<td>O</td>
<td>-7.830397</td>
<td>1.378677</td>
<td>-0.662032</td>
</tr>
<tr>
<td>O</td>
<td>-7.823953</td>
<td>-1.265017</td>
<td>-0.86367</td>
</tr>
</tbody>
</table>

Table S15. Atomic coordinates for the APFD structure [CoL\(^5\)-ONH\(\text{Bu}\)]Cl\(_2\).
<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.063631</td>
<td>-0.76129</td>
<td>-2.017907</td>
</tr>
<tr>
<td>H</td>
<td>-0.226178</td>
<td>1.621907</td>
<td>1.272008</td>
</tr>
<tr>
<td>C</td>
<td>-1.990045</td>
<td>3.719368</td>
<td>0.865478</td>
</tr>
<tr>
<td>H</td>
<td>-1.220694</td>
<td>4.734771</td>
<td>-1.502569</td>
</tr>
<tr>
<td>H</td>
<td>0.687031</td>
<td>3.936236</td>
<td>-2.944877</td>
</tr>
<tr>
<td>H</td>
<td>2.707739</td>
<td>2.412319</td>
<td>-3.190655</td>
</tr>
<tr>
<td>H</td>
<td>4.565542</td>
<td>0.87879</td>
<td>-3.240486</td>
</tr>
<tr>
<td>H</td>
<td>4.126168</td>
<td>-0.702462</td>
<td>-2.547367</td>
</tr>
<tr>
<td>H</td>
<td>6.229053</td>
<td>0.309853</td>
<td>-1.381005</td>
</tr>
<tr>
<td>H</td>
<td>5.224227</td>
<td>1.698952</td>
<td>-0.99956</td>
</tr>
<tr>
<td>H</td>
<td>6.203252</td>
<td>1.069097</td>
<td>1.074194</td>
</tr>
<tr>
<td>H</td>
<td>5.223546</td>
<td>0.009668</td>
<td>2.085431</td>
</tr>
<tr>
<td>H</td>
<td>4.519173</td>
<td>2.340841</td>
<td>2.516542</td>
</tr>
<tr>
<td>H</td>
<td>4.119021</td>
<td>2.555618</td>
<td>0.795513</td>
</tr>
<tr>
<td>H</td>
<td>2.626689</td>
<td>1.550177</td>
<td>3.756866</td>
</tr>
<tr>
<td>H</td>
<td>0.560647</td>
<td>0.592526</td>
<td>4.896447</td>
</tr>
<tr>
<td>H</td>
<td>-1.350015</td>
<td>-1.048381</td>
<td>4.821032</td>
</tr>
<tr>
<td>C</td>
<td>-2.054637</td>
<td>-2.617067</td>
<td>2.7319</td>
</tr>
<tr>
<td>H</td>
<td>-0.229526</td>
<td>-1.930886</td>
<td>0.779353</td>
</tr>
<tr>
<td>H</td>
<td>6.162834</td>
<td>-1.49814</td>
<td>0.520159</td>
</tr>
<tr>
<td>H</td>
<td>5.200782</td>
<td>-1.82181</td>
<td>-0.908109</td>
</tr>
<tr>
<td>H</td>
<td>4.468392</td>
<td>-3.338478</td>
<td>0.911828</td>
</tr>
<tr>
<td>H</td>
<td>4.051525</td>
<td>-1.934005</td>
<td>1.92367</td>
</tr>
<tr>
<td>H</td>
<td>2.571096</td>
<td>-4.028837</td>
<td>-0.410223</td>
</tr>
<tr>
<td>H</td>
<td>0.536147</td>
<td>-4.525181</td>
<td>-1.840677</td>
</tr>
<tr>
<td>H</td>
<td>-1.347824</td>
<td>-3.631346</td>
<td>-3.260116</td>
</tr>
<tr>
<td>C</td>
<td>-2.040193</td>
<td>-1.062772</td>
<td>-3.596639</td>
</tr>
<tr>
<td>H</td>
<td>-0.18199</td>
<td>0.313233</td>
<td>-2.045359</td>
</tr>
<tr>
<td>O</td>
<td>-2.396347</td>
<td>-3.213461</td>
<td>3.757046</td>
</tr>
<tr>
<td>O</td>
<td>-2.261291</td>
<td>4.924458</td>
<td>0.882247</td>
</tr>
<tr>
<td>O</td>
<td>-2.391733</td>
<td>-1.693632</td>
<td>-4.596153</td>
</tr>
<tr>
<td>C</td>
<td>-3.664883</td>
<td>-3.701001</td>
<td>1.151148</td>
</tr>
<tr>
<td>C</td>
<td>-3.717371</td>
<td>2.948581</td>
<td>2.503713</td>
</tr>
<tr>
<td>C</td>
<td>-3.720731</td>
<td>0.785115</td>
<td>-3.762135</td>
</tr>
<tr>
<td>N</td>
<td>-2.584082</td>
<td>2.749732</td>
<td>1.589169</td>
</tr>
<tr>
<td>H</td>
<td>-2.482395</td>
<td>1.793176</td>
<td>1.229231</td>
</tr>
<tr>
<td>N</td>
<td>-2.558898</td>
<td>-2.797232</td>
<td>1.495987</td>
</tr>
<tr>
<td>H</td>
<td>-2.423606</td>
<td>-2.012217</td>
<td>0.850332</td>
</tr>
<tr>
<td>N</td>
<td>-2.561119</td>
<td>0.103661</td>
<td>-3.165994</td>
</tr>
<tr>
<td>H</td>
<td>-2.396547</td>
<td>0.318</td>
<td>-2.178224</td>
</tr>
<tr>
<td>C</td>
<td>-4.945072</td>
<td>3.422207</td>
<td>1.7165</td>
</tr>
<tr>
<td>H</td>
<td>-5.808489</td>
<td>3.529065</td>
<td>2.382996</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>H</td>
<td>-4.745161</td>
<td>4.388306</td>
<td>1.245239</td>
</tr>
<tr>
<td>H</td>
<td>-5.200244</td>
<td>2.696661</td>
<td>0.934793</td>
</tr>
<tr>
<td>C</td>
<td>-3.994002</td>
<td>1.586845</td>
<td>3.145778</td>
</tr>
<tr>
<td>H</td>
<td>-4.256993</td>
<td>0.838635</td>
<td>2.389273</td>
</tr>
<tr>
<td>H</td>
<td>-3.112543</td>
<td>1.22718</td>
<td>3.689606</td>
</tr>
<tr>
<td>H</td>
<td>-4.825111</td>
<td>1.66958</td>
<td>3.853537</td>
</tr>
<tr>
<td>C</td>
<td>-3.343884</td>
<td>3.959261</td>
<td>3.590733</td>
</tr>
<tr>
<td>H</td>
<td>-4.175844</td>
<td>4.067221</td>
<td>4.295554</td>
</tr>
<tr>
<td>H</td>
<td>-2.464364</td>
<td>3.615063</td>
<td>4.146936</td>
</tr>
<tr>
<td>H</td>
<td>-3.122668</td>
<td>4.936322</td>
<td>3.156792</td>
</tr>
<tr>
<td>C</td>
<td>-3.821858</td>
<td>-3.621973</td>
<td>-0.369709</td>
</tr>
<tr>
<td>H</td>
<td>-2.903224</td>
<td>-3.947207</td>
<td>-0.871386</td>
</tr>
<tr>
<td>H</td>
<td>-4.64094</td>
<td>-4.270219</td>
<td>-0.696548</td>
</tr>
<tr>
<td>H</td>
<td>-4.043118</td>
<td>-2.597916</td>
<td>-0.689841</td>
</tr>
<tr>
<td>C</td>
<td>-4.951786</td>
<td>-3.233482</td>
<td>1.838674</td>
</tr>
<tr>
<td>H</td>
<td>-5.790839</td>
<td>-3.885463</td>
<td>1.570218</td>
</tr>
<tr>
<td>H</td>
<td>-4.828549</td>
<td>-3.25263</td>
<td>2.925303</td>
</tr>
<tr>
<td>H</td>
<td>-5.196606</td>
<td>-2.210333</td>
<td>1.532059</td>
</tr>
<tr>
<td>C</td>
<td>-3.317381</td>
<td>-5.134297</td>
<td>1.558774</td>
</tr>
<tr>
<td>H</td>
<td>-2.386858</td>
<td>-5.452884</td>
<td>1.075776</td>
</tr>
<tr>
<td>H</td>
<td>-3.19354</td>
<td>-5.216369</td>
<td>2.640925</td>
</tr>
<tr>
<td>H</td>
<td>-4.117582</td>
<td>-5.812789</td>
<td>1.242328</td>
</tr>
<tr>
<td>C</td>
<td>-4.972361</td>
<td>-0.090765</td>
<td>-3.626284</td>
</tr>
<tr>
<td>H</td>
<td>-5.848606</td>
<td>0.427543</td>
<td>-4.032596</td>
</tr>
<tr>
<td>H</td>
<td>-4.841662</td>
<td>-1.032106</td>
<td>-4.167206</td>
</tr>
<tr>
<td>H</td>
<td>-5.162485</td>
<td>-0.316939</td>
<td>-2.571068</td>
</tr>
<tr>
<td>C</td>
<td>-3.442028</td>
<td>1.111549</td>
<td>-5.229603</td>
</tr>
<tr>
<td>H</td>
<td>-3.303946</td>
<td>0.199251</td>
<td>-5.814852</td>
</tr>
<tr>
<td>H</td>
<td>-4.284059</td>
<td>1.67438</td>
<td>-5.647772</td>
</tr>
<tr>
<td>H</td>
<td>-2.539359</td>
<td>1.726233</td>
<td>-5.3194</td>
</tr>
<tr>
<td>C</td>
<td>-3.904455</td>
<td>2.083494</td>
<td>-2.973948</td>
</tr>
<tr>
<td>H</td>
<td>-4.080165</td>
<td>1.873808</td>
<td>-1.913146</td>
</tr>
<tr>
<td>H</td>
<td>-3.014262</td>
<td>2.717935</td>
<td>-3.056467</td>
</tr>
<tr>
<td>H</td>
<td>-4.76112</td>
<td>2.642644</td>
<td>-3.363899</td>
</tr>
<tr>
<td>Cl</td>
<td>8.682654</td>
<td>0.061454</td>
<td>-0.237932</td>
</tr>
<tr>
<td>Cl</td>
<td>-2.639597</td>
<td>-0.002214</td>
<td>0.012017</td>
</tr>
</tbody>
</table>

Table S16. Atomic coordinates for the APFD structure [CoL_{5-ONHBu}]Br_2.
<table>
<thead>
<tr>
<th>atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>-4.43597</td>
<td>-0.009197</td>
<td>0.012013</td>
</tr>
<tr>
<td>N</td>
<td>-2.637201</td>
<td>1.561347</td>
<td>-1.318401</td>
</tr>
<tr>
<td>N</td>
<td>-0.648308</td>
<td>-0.983668</td>
<td>-1.789312</td>
</tr>
<tr>
<td>N</td>
<td>-2.642756</td>
<td>-1.947486</td>
<td>-0.686675</td>
</tr>
<tr>
<td>N</td>
<td>-0.645205</td>
<td>-1.530942</td>
<td>0.981746</td>
</tr>
<tr>
<td>C</td>
<td>0.329449</td>
<td>2.21615</td>
<td>0.204472</td>
</tr>
<tr>
<td>C</td>
<td>1.119344</td>
<td>3.203911</td>
<td>0.804421</td>
</tr>
<tr>
<td>C</td>
<td>0.867077</td>
<td>3.528076</td>
<td>2.133701</td>
</tr>
<tr>
<td>C</td>
<td>-0.142199</td>
<td>2.855636</td>
<td>2.818429</td>
</tr>
<tr>
<td>C</td>
<td>-0.888952</td>
<td>1.903649</td>
<td>2.130235</td>
</tr>
<tr>
<td>C</td>
<td>-2.023985</td>
<td>1.206059</td>
<td>2.742324</td>
</tr>
<tr>
<td>C</td>
<td>-3.886264</td>
<td>-0.255262</td>
<td>2.403569</td>
</tr>
<tr>
<td>C</td>
<td>-4.889971</td>
<td>0.276784</td>
<td>1.381799</td>
</tr>
<tr>
<td>C</td>
<td>-4.890104</td>
<td>1.034487</td>
<td>-0.920323</td>
</tr>
<tr>
<td>C</td>
<td>-3.883101</td>
<td>2.181828</td>
<td>-0.977524</td>
</tr>
<tr>
<td>C</td>
<td>-2.027862</td>
<td>1.73087</td>
<td>-2.418461</td>
</tr>
<tr>
<td>C</td>
<td>-0.889785</td>
<td>0.852874</td>
<td>-2.710269</td>
</tr>
<tr>
<td>C</td>
<td>-0.140885</td>
<td>0.964389</td>
<td>-3.878609</td>
</tr>
<tr>
<td>C</td>
<td>0.876906</td>
<td>0.040615</td>
<td>-4.105448</td>
</tr>
<tr>
<td>C</td>
<td>1.135708</td>
<td>-0.933872</td>
<td>-3.14712</td>
</tr>
<tr>
<td>C</td>
<td>0.34174</td>
<td>-0.952784</td>
<td>-1.994904</td>
</tr>
<tr>
<td>C</td>
<td>-4.895196</td>
<td>-1.337033</td>
<td>-0.423906</td>
</tr>
<tr>
<td>C</td>
<td>-3.891512</td>
<td>-1.964648</td>
<td>-1.389631</td>
</tr>
<tr>
<td>C</td>
<td>-2.032422</td>
<td>-2.985428</td>
<td>-0.286545</td>
</tr>
<tr>
<td>C</td>
<td>-0.885807</td>
<td>-2.801496</td>
<td>0.608827</td>
</tr>
<tr>
<td>C</td>
<td>-0.122487</td>
<td>-3.869982</td>
<td>1.070994</td>
</tr>
<tr>
<td>C</td>
<td>0.911015</td>
<td>-3.608704</td>
<td>1.967567</td>
</tr>
<tr>
<td>C</td>
<td>1.16854</td>
<td>-2.293987</td>
<td>2.343136</td>
</tr>
<tr>
<td>C</td>
<td>0.357406</td>
<td>-1.284938</td>
<td>1.810861</td>
</tr>
<tr>
<td>H</td>
<td>0.476865</td>
<td>1.940158</td>
<td>-0.831833</td>
</tr>
<tr>
<td>C</td>
<td>2.158612</td>
<td>3.971063</td>
<td>0.038232</td>
</tr>
<tr>
<td>H</td>
<td>1.4554</td>
<td>4.304403</td>
<td>2.613473</td>
</tr>
<tr>
<td>H</td>
<td>-0.36212</td>
<td>3.075336</td>
<td>3.858673</td>
</tr>
<tr>
<td>H</td>
<td>-2.32804</td>
<td>1.471581</td>
<td>3.75863</td>
</tr>
<tr>
<td>H</td>
<td>-4.203243</td>
<td>-0.010173</td>
<td>3.425185</td>
</tr>
<tr>
<td>H</td>
<td>-3.77883</td>
<td>-1.342875</td>
<td>2.318816</td>
</tr>
<tr>
<td>H</td>
<td>-5.898501</td>
<td>-0.122084</td>
<td>1.551652</td>
</tr>
<tr>
<td>H</td>
<td>-4.948148</td>
<td>1.362754</td>
<td>1.505735</td>
</tr>
<tr>
<td>H</td>
<td>-5.896795</td>
<td>1.384563</td>
<td>-0.657307</td>
</tr>
<tr>
<td>H</td>
<td>-4.953998</td>
<td>0.597345</td>
<td>-1.921875</td>
</tr>
<tr>
<td>H</td>
<td>-4.200695</td>
<td>2.942331</td>
<td>-1.702088</td>
</tr>
<tr>
<td>H</td>
<td>-3.771199</td>
<td>2.655438</td>
<td>0.004906</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>H</td>
<td>-2.335259</td>
<td>2.470839</td>
<td>-3.162615</td>
</tr>
<tr>
<td>H</td>
<td>-0.364636</td>
<td>1.745568</td>
<td>-4.598522</td>
</tr>
<tr>
<td>H</td>
<td>1.467054</td>
<td>0.062508</td>
<td>-5.01665</td>
</tr>
<tr>
<td>C</td>
<td>2.185541</td>
<td>-1.975913</td>
<td>-3.406532</td>
</tr>
<tr>
<td>H</td>
<td>0.494788</td>
<td>-1.703994</td>
<td>-1.230809</td>
</tr>
<tr>
<td>H</td>
<td>-5.902835</td>
<td>-1.281171</td>
<td>-0.856343</td>
</tr>
<tr>
<td>H</td>
<td>-4.959363</td>
<td>-1.985214</td>
<td>0.455576</td>
</tr>
<tr>
<td>H</td>
<td>-4.209745</td>
<td>-2.973923</td>
<td>-1.680299</td>
</tr>
<tr>
<td>H</td>
<td>-3.782213</td>
<td>-1.35523</td>
<td>-2.294251</td>
</tr>
<tr>
<td>H</td>
<td>-2.343726</td>
<td>-3.999337</td>
<td>-0.553071</td>
</tr>
<tr>
<td>H</td>
<td>-0.345474</td>
<td>-4.881568</td>
<td>0.745997</td>
</tr>
<tr>
<td>H</td>
<td>1.514771</td>
<td>-4.410009</td>
<td>2.382717</td>
</tr>
<tr>
<td>C</td>
<td>2.235552</td>
<td>-2.00507</td>
<td>3.360134</td>
</tr>
<tr>
<td>H</td>
<td>0.506986</td>
<td>-0.249714</td>
<td>2.089798</td>
</tr>
<tr>
<td>O</td>
<td>2.436707</td>
<td>-2.311905</td>
<td>-4.565643</td>
</tr>
<tr>
<td>O</td>
<td>2.404941</td>
<td>5.138266</td>
<td>0.349136</td>
</tr>
<tr>
<td>O</td>
<td>2.510711</td>
<td>-2.852783</td>
<td>4.211676</td>
</tr>
<tr>
<td>C</td>
<td>3.806468</td>
<td>-3.502848</td>
<td>-2.25962</td>
</tr>
<tr>
<td>C</td>
<td>3.767118</td>
<td>3.791125</td>
<td>-1.873035</td>
</tr>
<tr>
<td>C</td>
<td>3.85118</td>
<td>-0.241507</td>
<td>4.107131</td>
</tr>
<tr>
<td>N</td>
<td>2.715516</td>
<td>3.283358</td>
<td>-0.979614</td>
</tr>
<tr>
<td>H</td>
<td>2.661518</td>
<td>2.265923</td>
<td>-0.908605</td>
</tr>
<tr>
<td>N</td>
<td>2.744728</td>
<td>-2.485795</td>
<td>-2.289648</td>
</tr>
<tr>
<td>H</td>
<td>2.685997</td>
<td>-1.896235</td>
<td>-1.4572</td>
</tr>
<tr>
<td>N</td>
<td>2.780582</td>
<td>-0.775746</td>
<td>3.252719</td>
</tr>
<tr>
<td>H</td>
<td>2.704571</td>
<td>-0.33729</td>
<td>2.33294</td>
</tr>
<tr>
<td>C</td>
<td>5.046287</td>
<td>4.062619</td>
<td>-1.073526</td>
</tr>
<tr>
<td>H</td>
<td>5.842745</td>
<td>4.415549</td>
<td>-1.738345</td>
</tr>
<tr>
<td>H</td>
<td>4.865417</td>
<td>4.824351</td>
<td>-0.309946</td>
</tr>
<tr>
<td>H</td>
<td>5.389324</td>
<td>3.146145</td>
<td>-0.580124</td>
</tr>
<tr>
<td>C</td>
<td>4.014779</td>
<td>2.690233</td>
<td>-2.90649</td>
</tr>
<tr>
<td>H</td>
<td>4.349695</td>
<td>1.76369</td>
<td>-2.425638</td>
</tr>
<tr>
<td>H</td>
<td>3.100197</td>
<td>2.472583</td>
<td>-3.470766</td>
</tr>
<tr>
<td>H</td>
<td>4.78767</td>
<td>3.009512</td>
<td>-3.612902</td>
</tr>
<tr>
<td>C</td>
<td>3.285328</td>
<td>5.06021</td>
<td>-2.579434</td>
</tr>
<tr>
<td>H</td>
<td>4.051039</td>
<td>5.401782</td>
<td>-3.284559</td>
</tr>
<tr>
<td>H</td>
<td>2.365803</td>
<td>4.859882</td>
<td>-3.141099</td>
</tr>
<tr>
<td>H</td>
<td>3.088986</td>
<td>5.858642</td>
<td>-1.86041</td>
</tr>
<tr>
<td>C</td>
<td>4.062305</td>
<td>-3.805409</td>
<td>-0.781635</td>
</tr>
<tr>
<td>H</td>
<td>3.151649</td>
<td>-4.175744</td>
<td>-0.296221</td>
</tr>
<tr>
<td>H</td>
<td>4.838845</td>
<td>-4.571056</td>
<td>-0.686332</td>
</tr>
<tr>
<td>H</td>
<td>4.395918</td>
<td>-2.909002</td>
<td>-0.245765</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>C</td>
<td>5.078067</td>
<td>-2.95219</td>
<td>-2.913846</td>
</tr>
<tr>
<td>H</td>
<td>5.882177</td>
<td>-3.695194</td>
<td>-2.86725</td>
</tr>
<tr>
<td>H</td>
<td>4.891151</td>
<td>-2.70422</td>
<td>-3.962363</td>
</tr>
<tr>
<td>H</td>
<td>5.412645</td>
<td>-2.047674</td>
<td>-2.39337</td>
</tr>
<tr>
<td>C</td>
<td>3.331851</td>
<td>-4.772533</td>
<td>-2.969981</td>
</tr>
<tr>
<td>H</td>
<td>2.419384</td>
<td>-5.155993</td>
<td>-2.499326</td>
</tr>
<tr>
<td>H</td>
<td>3.125984</td>
<td>-4.577322</td>
<td>-4.024826</td>
</tr>
<tr>
<td>H</td>
<td>4.105626</td>
<td>-5.544896</td>
<td>-2.899607</td>
</tr>
<tr>
<td>C</td>
<td>5.134312</td>
<td>-1.055129</td>
<td>3.90745</td>
</tr>
<tr>
<td>H</td>
<td>5.94382</td>
<td>-0.647167</td>
<td>4.523309</td>
</tr>
<tr>
<td>H</td>
<td>4.97228</td>
<td>-2.099102</td>
<td>4.190304</td>
</tr>
<tr>
<td>H</td>
<td>5.448155</td>
<td>-1.020315</td>
<td>2.857866</td>
</tr>
<tr>
<td>C</td>
<td>3.412022</td>
<td>-0.263523</td>
<td>5.572857</td>
</tr>
<tr>
<td>H</td>
<td>3.242872</td>
<td>-1.286023</td>
<td>5.917434</td>
</tr>
<tr>
<td>H</td>
<td>4.189071</td>
<td>0.193397</td>
<td>6.195478</td>
</tr>
<tr>
<td>H</td>
<td>2.486511</td>
<td>0.308864</td>
<td>5.702826</td>
</tr>
<tr>
<td>C</td>
<td>4.068314</td>
<td>1.205722</td>
<td>3.65954</td>
</tr>
<tr>
<td>H</td>
<td>4.372029</td>
<td>1.254009</td>
<td>2.607287</td>
</tr>
<tr>
<td>H</td>
<td>3.149183</td>
<td>1.791697</td>
<td>3.778426</td>
</tr>
<tr>
<td>H</td>
<td>4.853072</td>
<td>1.669405</td>
<td>4.265748</td>
</tr>
<tr>
<td>Br</td>
<td>-8.467854</td>
<td>0.004954</td>
<td>0.007238</td>
</tr>
<tr>
<td>Br</td>
<td>3.073049</td>
<td>0.028789</td>
<td>-0.034014</td>
</tr>
</tbody>
</table>

Table S17. Atomic coordinates for the APFD structure [CoL\(^{5-}\text{ONH}_{Bu}\)]I\(_2\).
<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.602556</td>
<td>-2.323572</td>
<td>-0.614479</td>
</tr>
<tr>
<td>C</td>
<td>1.747043</td>
<td>-2.114249</td>
<td>-2.11147</td>
</tr>
<tr>
<td>C</td>
<td>0.620531</td>
<td>-1.285458</td>
<td>-2.553135</td>
</tr>
<tr>
<td>C</td>
<td>-0.11406</td>
<td>-1.578416</td>
<td>-3.698862</td>
</tr>
<tr>
<td>C</td>
<td>-1.100536</td>
<td>-0.681627</td>
<td>-4.101191</td>
</tr>
<tr>
<td>C</td>
<td>-1.345471</td>
<td>0.450793</td>
<td>-3.330257</td>
</tr>
<tr>
<td>C</td>
<td>-0.574811</td>
<td>0.643796</td>
<td>-2.177415</td>
</tr>
<tr>
<td>C</td>
<td>4.620184</td>
<td>1.236543</td>
<td>-0.662597</td>
</tr>
<tr>
<td>C</td>
<td>3.609352</td>
<td>1.690087</td>
<td>-1.714928</td>
</tr>
<tr>
<td>C</td>
<td>1.753335</td>
<td>2.886222</td>
<td>-0.793322</td>
</tr>
<tr>
<td>C</td>
<td>0.623228</td>
<td>2.85729</td>
<td>0.14151</td>
</tr>
<tr>
<td>C</td>
<td>-0.112557</td>
<td>3.99676</td>
<td>0.455299</td>
</tr>
<tr>
<td>C</td>
<td>-1.103803</td>
<td>3.898698</td>
<td>1.428728</td>
</tr>
<tr>
<td>C</td>
<td>-1.351548</td>
<td>2.666202</td>
<td>2.025572</td>
</tr>
<tr>
<td>C</td>
<td>-0.579517</td>
<td>1.570587</td>
<td>1.62154</td>
</tr>
<tr>
<td>H</td>
<td>-0.720414</td>
<td>-2.101967</td>
<td>-0.529266</td>
</tr>
<tr>
<td>C</td>
<td>-2.331712</td>
<td>-4.029608</td>
<td>0.644319</td>
</tr>
<tr>
<td>H</td>
<td>-1.661521</td>
<td>-3.905245</td>
<td>3.249032</td>
</tr>
<tr>
<td>H</td>
<td>0.111189</td>
<td>-2.441824</td>
<td>4.286065</td>
</tr>
<tr>
<td>H</td>
<td>2.051091</td>
<td>-0.844016</td>
<td>3.933486</td>
</tr>
<tr>
<td>H</td>
<td>3.92381</td>
<td>0.56916</td>
<td>3.361344</td>
</tr>
<tr>
<td>H</td>
<td>3.494037</td>
<td>1.697421</td>
<td>2.048772</td>
</tr>
<tr>
<td>H</td>
<td>5.622177</td>
<td>0.388114</td>
<td>1.503651</td>
</tr>
<tr>
<td>H</td>
<td>4.689373</td>
<td>-1.096537</td>
<td>1.698444</td>
</tr>
<tr>
<td>H</td>
<td>5.617019</td>
<td>-1.503098</td>
<td>-0.424764</td>
</tr>
<tr>
<td>H</td>
<td>4.68754</td>
<td>-0.924547</td>
<td>-1.807492</td>
</tr>
<tr>
<td>H</td>
<td>3.917725</td>
<td>-3.196841</td>
<td>-1.199163</td>
</tr>
<tr>
<td>H</td>
<td>3.485827</td>
<td>-2.623775</td>
<td>0.433315</td>
</tr>
<tr>
<td>H</td>
<td>2.044773</td>
<td>-2.975056</td>
<td>-2.716153</td>
</tr>
<tr>
<td>H</td>
<td>0.101978</td>
<td>-2.474594</td>
<td>-4.272522</td>
</tr>
<tr>
<td>H</td>
<td>-1.673817</td>
<td>-0.843</td>
<td>-5.009043</td>
</tr>
<tr>
<td>C</td>
<td>-2.345395</td>
<td>1.467097</td>
<td>-3.800955</td>
</tr>
<tr>
<td>H</td>
<td>-0.713109</td>
<td>1.51947</td>
<td>-1.555722</td>
</tr>
<tr>
<td>H</td>
<td>5.621674</td>
<td>1.112031</td>
<td>-1.096473</td>
</tr>
<tr>
<td>H</td>
<td>4.692887</td>
<td>2.024843</td>
<td>0.093412</td>
</tr>
<tr>
<td>H</td>
<td>3.926894</td>
<td>2.631903</td>
<td>-2.179532</td>
</tr>
<tr>
<td>H</td>
<td>3.491756</td>
<td>0.932481</td>
<td>-2.498553</td>
</tr>
<tr>
<td>H</td>
<td>2.051261</td>
<td>3.838515</td>
<td>-1.240331</td>
</tr>
<tr>
<td>H</td>
<td>0.106338</td>
<td>4.940435</td>
<td>-0.034784</td>
</tr>
<tr>
<td>H</td>
<td>-1.67665</td>
<td>4.766687</td>
<td>1.740673</td>
</tr>
<tr>
<td>C</td>
<td>-2.346543</td>
<td>2.573051</td>
<td>3.146368</td>
</tr>
<tr>
<td>H</td>
<td>-0.722275</td>
<td>0.594887</td>
<td>2.069608</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>O</td>
<td>-2.542467</td>
<td>1.608939</td>
<td>-5.008964</td>
</tr>
<tr>
<td>O</td>
<td>-2.514846</td>
<td>-5.147924</td>
<td>1.128062</td>
</tr>
<tr>
<td>O</td>
<td>-2.545402</td>
<td>3.556804</td>
<td>3.861304</td>
</tr>
<tr>
<td>C</td>
<td>-3.918366</td>
<td>3.249122</td>
<td>-3.006226</td>
</tr>
<tr>
<td>C</td>
<td>-3.8976</td>
<td>-4.261081</td>
<td>-1.297602</td>
</tr>
<tr>
<td>C</td>
<td>-3.899965</td>
<td>1.00117</td>
<td>4.328058</td>
</tr>
<tr>
<td>N</td>
<td>-2.915003</td>
<td>-3.542757</td>
<td>-0.471137</td>
</tr>
<tr>
<td>H</td>
<td>-2.915648</td>
<td>-2.527554</td>
<td>-0.57061</td>
</tr>
<tr>
<td>N</td>
<td>-2.923754</td>
<td>2.182375</td>
<td>-2.813219</td>
</tr>
<tr>
<td>H</td>
<td>-2.908673</td>
<td>1.759918</td>
<td>-1.884571</td>
</tr>
<tr>
<td>N</td>
<td>-2.914992</td>
<td>1.357828</td>
<td>3.294016</td>
</tr>
<tr>
<td>H</td>
<td>-2.901474</td>
<td>0.75192</td>
<td>2.473438</td>
</tr>
<tr>
<td>C</td>
<td>-5.172929</td>
<td>-4.521815</td>
<td>-0.489654</td>
</tr>
<tr>
<td>H</td>
<td>-5.917216</td>
<td>-5.034355</td>
<td>-1.109483</td>
</tr>
<tr>
<td>H</td>
<td>-4.953418</td>
<td>-5.146019</td>
<td>0.380917</td>
</tr>
<tr>
<td>H</td>
<td>-5.605461</td>
<td>-3.576059</td>
<td>-0.142955</td>
</tr>
<tr>
<td>C</td>
<td>-4.204268</td>
<td>-3.349505</td>
<td>-2.487067</td>
</tr>
<tr>
<td>H</td>
<td>-4.640408</td>
<td>-2.399173</td>
<td>-2.156537</td>
</tr>
<tr>
<td>H</td>
<td>-3.293514</td>
<td>-3.130684</td>
<td>-3.057006</td>
</tr>
<tr>
<td>H</td>
<td>-4.919501</td>
<td>-3.838242</td>
<td>-3.156291</td>
</tr>
<tr>
<td>C</td>
<td>-3.29164</td>
<td>-5.573726</td>
<td>-1.800176</td>
</tr>
<tr>
<td>H</td>
<td>-4.006619</td>
<td>-6.080646</td>
<td>-2.457235</td>
</tr>
<tr>
<td>H</td>
<td>-2.37713</td>
<td>-5.379287</td>
<td>-2.371958</td>
</tr>
<tr>
<td>H</td>
<td>-3.049384</td>
<td>-6.238316</td>
<td>-0.967852</td>
</tr>
<tr>
<td>C</td>
<td>-4.216977</td>
<td>3.808696</td>
<td>-1.614222</td>
</tr>
<tr>
<td>H</td>
<td>-3.308054</td>
<td>4.212489</td>
<td>-1.152293</td>
</tr>
<tr>
<td>H</td>
<td>-4.953019</td>
<td>4.615728</td>
<td>-1.686719</td>
</tr>
<tr>
<td>H</td>
<td>-4.622936</td>
<td>3.033056</td>
<td>-0.953648</td>
</tr>
<tr>
<td>C</td>
<td>-5.194028</td>
<td>2.672745</td>
<td>-3.629875</td>
</tr>
<tr>
<td>H</td>
<td>-5.944696</td>
<td>3.460988</td>
<td>-3.755674</td>
</tr>
<tr>
<td>H</td>
<td>-4.977804</td>
<td>2.236737</td>
<td>-4.609079</td>
</tr>
<tr>
<td>H</td>
<td>-5.616828</td>
<td>1.89402</td>
<td>-2.984541</td>
</tr>
<tr>
<td>C</td>
<td>-3.332189</td>
<td>4.354668</td>
<td>-3.888312</td>
</tr>
<tr>
<td>H</td>
<td>-2.414566</td>
<td>4.754736</td>
<td>-3.442307</td>
</tr>
<tr>
<td>H</td>
<td>-3.101011</td>
<td>3.978788</td>
<td>-4.887476</td>
</tr>
<tr>
<td>H</td>
<td>-4.054888</td>
<td>5.172802</td>
<td>-3.979871</td>
</tr>
<tr>
<td>C</td>
<td>-5.182208</td>
<td>1.818588</td>
<td>4.141707</td>
</tr>
<tr>
<td>H</td>
<td>-5.925486</td>
<td>1.533691</td>
<td>4.894892</td>
</tr>
<tr>
<td>H</td>
<td>-4.973618</td>
<td>2.886967</td>
<td>4.242586</td>
</tr>
<tr>
<td>H</td>
<td>-5.610701</td>
<td>1.635896</td>
<td>3.149502</td>
</tr>
<tr>
<td>C</td>
<td>-3.299989</td>
<td>1.234227</td>
<td>5.717106</td>
</tr>
<tr>
<td>H</td>
<td>-3.068643</td>
<td>2.290357</td>
<td>5.872713</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>H</td>
<td>-4.013743</td>
<td>0.915163</td>
<td>6.484356</td>
</tr>
<tr>
<td>H</td>
<td>-2.380311</td>
<td>0.650815</td>
<td>5.838313</td>
</tr>
<tr>
<td>C</td>
<td>-4.194199</td>
<td>-0.488069</td>
<td>4.140556</td>
</tr>
<tr>
<td>H</td>
<td>-4.617114</td>
<td>-0.68746</td>
<td>3.148556</td>
</tr>
<tr>
<td>H</td>
<td>-3.280693</td>
<td>-1.084245</td>
<td>4.251872</td>
</tr>
<tr>
<td>H</td>
<td>-4.915845</td>
<td>-0.822044</td>
<td>4.892858</td>
</tr>
<tr>
<td>I</td>
<td>8.537909</td>
<td>-0.000576</td>
<td>0.006729</td>
</tr>
<tr>
<td>I</td>
<td>-3.48071</td>
<td>-0.014931</td>
<td>0.003497</td>
</tr>
</tbody>
</table>

Table S18. Atomic coordinates for the APFD structure [CoL$_5$ONH$_{Bu}$](ClO$_4$)$_2$.

<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>1.88308</td>
<td>0.003785</td>
<td>-0.016611</td>
</tr>
<tr>
<td>N</td>
<td>0.54649</td>
<td>1.63483</td>
<td>-0.820678</td>
</tr>
<tr>
<td>N</td>
<td>2.52821</td>
<td>0.374073</td>
<td>-2.030081</td>
</tr>
<tr>
<td>N</td>
<td>4.341141</td>
<td>0.004049</td>
<td>-0.017363</td>
</tr>
<tr>
<td>N</td>
<td>2.529146</td>
<td>1.560354</td>
<td>1.31344</td>
</tr>
<tr>
<td>N</td>
<td>0.547492</td>
<td>-0.117581</td>
<td>1.802627</td>
</tr>
<tr>
<td>N</td>
<td>2.52913</td>
<td>-1.925139</td>
<td>0.666464</td>
</tr>
<tr>
<td>N</td>
<td>0.53595</td>
<td>-1.50629</td>
<td>-1.021633</td>
</tr>
<tr>
<td>C</td>
<td>-0.427832</td>
<td>2.264624</td>
<td>-0.182341</td>
</tr>
<tr>
<td>C</td>
<td>-1.225755</td>
<td>3.242131</td>
<td>-0.788086</td>
</tr>
<tr>
<td>C</td>
<td>-0.979545</td>
<td>3.550138</td>
<td>-2.122331</td>
</tr>
<tr>
<td>C</td>
<td>0.034104</td>
<td>2.882509</td>
<td>-2.802959</td>
</tr>
<tr>
<td>C</td>
<td>0.7826</td>
<td>1.93539</td>
<td>-2.112126</td>
</tr>
<tr>
<td>C</td>
<td>1.91215</td>
<td>1.234184</td>
<td>-2.729428</td>
</tr>
<tr>
<td>C</td>
<td>3.764491</td>
<td>-0.246273</td>
<td>-2.401738</td>
</tr>
<tr>
<td>C</td>
<td>4.788537</td>
<td>0.272256</td>
<td>-1.393373</td>
</tr>
<tr>
<td>C</td>
<td>4.788515</td>
<td>1.062136</td>
<td>0.902342</td>
</tr>
<tr>
<td>C</td>
<td>3.763718</td>
<td>2.193603</td>
<td>0.958594</td>
</tr>
<tr>
<td>C</td>
<td>1.918156</td>
<td>1.731949</td>
<td>2.411545</td>
</tr>
<tr>
<td>C</td>
<td>0.789447</td>
<td>0.845819</td>
<td>2.712153</td>
</tr>
<tr>
<td>C</td>
<td>0.047059</td>
<td>0.96567</td>
<td>3.88249</td>
</tr>
<tr>
<td>C</td>
<td>-0.96456</td>
<td>0.040946</td>
<td>4.122312</td>
</tr>
<tr>
<td>C</td>
<td>-1.216427</td>
<td>-0.956086</td>
<td>3.185332</td>
</tr>
<tr>
<td>C</td>
<td>-0.42617</td>
<td>-0.985959</td>
<td>2.030485</td>
</tr>
<tr>
<td>C</td>
<td>4.798877</td>
<td>-1.321469</td>
<td>0.437854</td>
</tr>
<tr>
<td>C</td>
<td>3.765969</td>
<td>-1.939333</td>
<td>1.388311</td>
</tr>
<tr>
<td>C</td>
<td>1.913312</td>
<td>-2.959922</td>
<td>0.268745</td>
</tr>
<tr>
<td>C</td>
<td>0.777379</td>
<td>-2.775058</td>
<td>-0.639125</td>
</tr>
<tr>
<td>C</td>
<td>0.023867</td>
<td>-3.847539</td>
<td>-1.1046</td>
</tr>
<tr>
<td>C</td>
<td>-1.000013</td>
<td>-3.592937</td>
<td>-2.011598</td>
</tr>
<tr>
<td>C</td>
<td>-1.251507</td>
<td>-2.283714</td>
<td>-2.409697</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>C</td>
<td>-0.448169</td>
<td>-1.269315</td>
<td>-1.875911</td>
</tr>
<tr>
<td>H</td>
<td>-0.572322</td>
<td>1.98616</td>
<td>0.854698</td>
</tr>
<tr>
<td>C</td>
<td>-2.319303</td>
<td>3.990577</td>
<td>-0.078483</td>
</tr>
<tr>
<td>H</td>
<td>-1.583735</td>
<td>4.310149</td>
<td>-2.607461</td>
</tr>
<tr>
<td>H</td>
<td>0.250754</td>
<td>3.096383</td>
<td>-3.845148</td>
</tr>
<tr>
<td>H</td>
<td>2.207763</td>
<td>1.496025</td>
<td>-3.749201</td>
</tr>
<tr>
<td>H</td>
<td>4.07431</td>
<td>-0.012407</td>
<td>-3.428233</td>
</tr>
<tr>
<td>H</td>
<td>3.641269</td>
<td>-1.331796</td>
<td>-2.308503</td>
</tr>
<tr>
<td>H</td>
<td>5.781074</td>
<td>-0.154271</td>
<td>-1.57951</td>
</tr>
<tr>
<td>H</td>
<td>4.871971</td>
<td>1.355401</td>
<td>-1.524344</td>
</tr>
<tr>
<td>H</td>
<td>5.780514</td>
<td>1.437367</td>
<td>0.62534</td>
</tr>
<tr>
<td>H</td>
<td>4.873605</td>
<td>0.634405</td>
<td>1.905951</td>
</tr>
<tr>
<td>H</td>
<td>4.074676</td>
<td>2.96637</td>
<td>1.673075</td>
</tr>
<tr>
<td>H</td>
<td>3.637554</td>
<td>2.654841</td>
<td>-0.028249</td>
</tr>
<tr>
<td>H</td>
<td>2.217552</td>
<td>2.480918</td>
<td>3.14995</td>
</tr>
<tr>
<td>H</td>
<td>0.267315</td>
<td>1.758411</td>
<td>4.590851</td>
</tr>
<tr>
<td>H</td>
<td>-1.563399</td>
<td>0.076973</td>
<td>5.026821</td>
</tr>
<tr>
<td>C</td>
<td>-2.309284</td>
<td>-1.944784</td>
<td>3.481438</td>
</tr>
<tr>
<td>H</td>
<td>-0.57707</td>
<td>-1.740138</td>
<td>1.267385</td>
</tr>
<tr>
<td>H</td>
<td>5.781718</td>
<td>1.268705</td>
<td>0.901471</td>
</tr>
<tr>
<td>H</td>
<td>4.876169</td>
<td>-1.975486</td>
<td>-0.43492</td>
</tr>
<tr>
<td>H</td>
<td>4.075769</td>
<td>-2.946799</td>
<td>1.694172</td>
</tr>
<tr>
<td>H</td>
<td>3.642852</td>
<td>-1.320496</td>
<td>2.285049</td>
</tr>
<tr>
<td>H</td>
<td>2.2127</td>
<td>-3.97465</td>
<td>0.545677</td>
</tr>
<tr>
<td>H</td>
<td>0.243797</td>
<td>-4.856533</td>
<td>-0.769435</td>
</tr>
<tr>
<td>H</td>
<td>-1.608752</td>
<td>-4.393525</td>
<td>-2.419552</td>
</tr>
<tr>
<td>C</td>
<td>-2.358886</td>
<td>-2.048322</td>
<td>-3.398411</td>
</tr>
<tr>
<td>H</td>
<td>-0.596953</td>
<td>-0.232552</td>
<td>-2.153489</td>
</tr>
<tr>
<td>O</td>
<td>-2.682431</td>
<td>-2.089061</td>
<td>4.647818</td>
</tr>
<tr>
<td>O</td>
<td>-2.704287</td>
<td>5.065203</td>
<td>-0.544487</td>
</tr>
<tr>
<td>O</td>
<td>-2.735281</td>
<td>-2.987323</td>
<td>4.103703</td>
</tr>
<tr>
<td>C</td>
<td>-3.924062</td>
<td>-3.56076</td>
<td>2.468728</td>
</tr>
<tr>
<td>C</td>
<td>-3.910919</td>
<td>3.936699</td>
<td>1.847291</td>
</tr>
<tr>
<td>C</td>
<td>-4.002832</td>
<td>-0.381299</td>
<td>-4.265715</td>
</tr>
<tr>
<td>N</td>
<td>-2.784321</td>
<td>3.416693</td>
<td>1.051061</td>
</tr>
<tr>
<td>H</td>
<td>-2.608751</td>
<td>2.422187</td>
<td>1.175199</td>
</tr>
<tr>
<td>N</td>
<td>-2.790222</td>
<td>-2.620148</td>
<td>2.41695</td>
</tr>
<tr>
<td>H</td>
<td>-2.618851</td>
<td>-2.221688</td>
<td>1.496412</td>
</tr>
<tr>
<td>N</td>
<td>-2.851631</td>
<td>-0.793113</td>
<td>-3.44139</td>
</tr>
<tr>
<td>H</td>
<td>-2.666935</td>
<td>-0.188555</td>
<td>-2.643972</td>
</tr>
<tr>
<td>C</td>
<td>-5.199122</td>
<td>3.866274</td>
<td>1.019284</td>
</tr>
<tr>
<td>H</td>
<td>-6.05266</td>
<td>4.211236</td>
<td>1.613843</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H</td>
<td>-5.117196</td>
<td>4.497173</td>
<td>0.129673</td>
</tr>
<tr>
<td>H</td>
<td>-5.392706</td>
<td>2.835194</td>
<td>0.70194</td>
</tr>
<tr>
<td>C</td>
<td>-4.030849</td>
<td>3.03557</td>
<td>3.078555</td>
</tr>
<tr>
<td>H</td>
<td>-4.270819</td>
<td>2.005207</td>
<td>2.798804</td>
</tr>
<tr>
<td>H</td>
<td>-3.094979</td>
<td>3.028814</td>
<td>3.650103</td>
</tr>
<tr>
<td>H</td>
<td>-4.827222</td>
<td>3.408775</td>
<td>3.730458</td>
</tr>
<tr>
<td>C</td>
<td>-3.62416</td>
<td>5.370359</td>
<td>2.299836</td>
</tr>
<tr>
<td>H</td>
<td>-4.440002</td>
<td>5.719697</td>
<td>2.942137</td>
</tr>
<tr>
<td>H</td>
<td>-2.693165</td>
<td>5.409775</td>
<td>2.876835</td>
</tr>
<tr>
<td>H</td>
<td>-3.53536</td>
<td>6.04419</td>
<td>1.445842</td>
</tr>
<tr>
<td>C</td>
<td>-4.066729</td>
<td>-4.154072</td>
<td>1.065122</td>
</tr>
<tr>
<td>H</td>
<td>-3.137414</td>
<td>-4.645245</td>
<td>0.752464</td>
</tr>
<tr>
<td>H</td>
<td>-4.86652</td>
<td>-4.901635</td>
<td>1.062647</td>
</tr>
<tr>
<td>H</td>
<td>-4.313811</td>
<td>-3.384015</td>
<td>0.327876</td>
</tr>
<tr>
<td>C</td>
<td>-5.20091</td>
<td>-2.802151</td>
<td>2.848394</td>
</tr>
<tr>
<td>H</td>
<td>-6.061396</td>
<td>-3.480728</td>
<td>2.84673</td>
</tr>
<tr>
<td>H</td>
<td>-5.103973</td>
<td>-2.364894</td>
<td>3.846174</td>
</tr>
<tr>
<td>H</td>
<td>-5.393093</td>
<td>-1.997561</td>
<td>2.129301</td>
</tr>
<tr>
<td>C</td>
<td>-3.634389</td>
<td>-4.687194</td>
<td>3.463421</td>
</tr>
<tr>
<td>H</td>
<td>-2.714159</td>
<td>-5.214194</td>
<td>3.18643</td>
</tr>
<tr>
<td>H</td>
<td>-3.524525</td>
<td>-4.300087</td>
<td>4.477982</td>
</tr>
<tr>
<td>H</td>
<td>-4.459426</td>
<td>-5.407797</td>
<td>3.447677</td>
</tr>
<tr>
<td>C</td>
<td>-5.261339</td>
<td>-1.119389</td>
<td>-3.794678</td>
</tr>
<tr>
<td>H</td>
<td>-6.132991</td>
<td>-0.789663</td>
<td>-4.371326</td>
</tr>
<tr>
<td>H</td>
<td>-5.144658</td>
<td>-2.198794</td>
<td>-3.925839</td>
</tr>
<tr>
<td>H</td>
<td>-5.449718</td>
<td>-0.912201</td>
<td>-2.734934</td>
</tr>
<tr>
<td>C</td>
<td>-3.720607</td>
<td>-0.658335</td>
<td>-5.744311</td>
</tr>
<tr>
<td>H</td>
<td>-3.589031</td>
<td>-1.726213</td>
<td>-5.928105</td>
</tr>
<tr>
<td>H</td>
<td>-4.558765</td>
<td>-0.296548</td>
<td>-6.349977</td>
</tr>
<tr>
<td>H</td>
<td>-2.814229</td>
<td>-0.13192</td>
<td>-6.064677</td>
</tr>
<tr>
<td>C</td>
<td>-4.176157</td>
<td>1.125177</td>
<td>-4.059946</td>
</tr>
<tr>
<td>H</td>
<td>-4.421857</td>
<td>1.361397</td>
<td>-3.020133</td>
</tr>
<tr>
<td>H</td>
<td>-3.260133</td>
<td>1.664608</td>
<td>-4.329123</td>
</tr>
<tr>
<td>H</td>
<td>-4.988098</td>
<td>1.490495</td>
<td>-4.696923</td>
</tr>
<tr>
<td>Cl</td>
<td>-3.49556</td>
<td>0.01025</td>
<td>0.024308</td>
</tr>
<tr>
<td>O</td>
<td>-2.923014</td>
<td>-1.462952</td>
<td>-0.260012</td>
</tr>
<tr>
<td>O</td>
<td>-2.928428</td>
<td>0.9908</td>
<td>-1.113506</td>
</tr>
<tr>
<td>O</td>
<td>-2.925145</td>
<td>0.507357</td>
<td>1.44009</td>
</tr>
<tr>
<td>O</td>
<td>-5.082882</td>
<td>0.005351</td>
<td>0.026493</td>
</tr>
<tr>
<td>Cl</td>
<td>8.383323</td>
<td>-0.015509</td>
<td>-0.002705</td>
</tr>
<tr>
<td>O</td>
<td>7.840107</td>
<td>-1.224493</td>
<td>-0.898255</td>
</tr>
<tr>
<td>O</td>
<td>9.977397</td>
<td>-0.029705</td>
<td>0.002623</td>
</tr>
<tr>
<td>atom</td>
<td>(x)</td>
<td>(y)</td>
<td>(z)</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>O</td>
<td>7.861255</td>
<td>1.369399</td>
<td>-0.60895</td>
</tr>
<tr>
<td>O</td>
<td>7.841529</td>
<td>-0.177396</td>
<td>1.493802</td>
</tr>
</tbody>
</table>

Table S19. Coordinates for the APFD (Co-N\text{bridge} constrained) structure [CoL\text{5-ONHtBu}\text{Cl}2].

<table>
<thead>
<tr>
<th>atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>2.260001</td>
<td>0.00911</td>
<td>-0.007207</td>
</tr>
<tr>
<td>N</td>
<td>0.927251</td>
<td>-0.926853</td>
<td>-1.544096</td>
</tr>
<tr>
<td>N</td>
<td>2.979227</td>
<td>-2.004355</td>
<td>-0.262487</td>
</tr>
<tr>
<td>N</td>
<td>4.833992</td>
<td>0.01469</td>
<td>-0.003761</td>
</tr>
<tr>
<td>N</td>
<td>2.976086</td>
<td>1.22069</td>
<td>-1.638168</td>
</tr>
<tr>
<td>N</td>
<td>0.931352</td>
<td>1.809945</td>
<td>-0.058976</td>
</tr>
<tr>
<td>N</td>
<td>2.971491</td>
<td>0.816537</td>
<td>1.859663</td>
</tr>
<tr>
<td>N</td>
<td>0.948403</td>
<td>-0.863914</td>
<td>1.579295</td>
</tr>
<tr>
<td>C</td>
<td>-0.110078</td>
<td>-0.366753</td>
<td>-2.147488</td>
</tr>
<tr>
<td>C</td>
<td>-0.927292</td>
<td>-1.058876</td>
<td>-3.048963</td>
</tr>
<tr>
<td>C</td>
<td>-0.627931</td>
<td>-2.390971</td>
<td>-3.316058</td>
</tr>
<tr>
<td>C</td>
<td>0.444956</td>
<td>-2.992369</td>
<td>-2.661963</td>
</tr>
<tr>
<td>C</td>
<td>1.201892</td>
<td>-2.22279</td>
<td>-1.783119</td>
</tr>
<tr>
<td>C</td>
<td>2.36898</td>
<td>-2.761959</td>
<td>-1.07818</td>
</tr>
<tr>
<td>C</td>
<td>4.226028</td>
<td>-2.342694</td>
<td>0.363435</td>
</tr>
<tr>
<td>C</td>
<td>5.260141</td>
<td>-1.371813</td>
<td>-0.207437</td>
</tr>
<tr>
<td>C</td>
<td>5.255384</td>
<td>0.885005</td>
<td>-1.103862</td>
</tr>
<tr>
<td>C</td>
<td>4.228274</td>
<td>0.853766</td>
<td>-2.235934</td>
</tr>
<tr>
<td>C</td>
<td>2.361539</td>
<td>2.30076</td>
<td>-1.89697</td>
</tr>
<tr>
<td>C</td>
<td>1.197072</td>
<td>2.648503</td>
<td>-1.077875</td>
</tr>
<tr>
<td>C</td>
<td>0.436742</td>
<td>3.788925</td>
<td>-1.319355</td>
</tr>
<tr>
<td>C</td>
<td>-0.62822</td>
<td>4.068882</td>
<td>-0.466578</td>
</tr>
<tr>
<td>C</td>
<td>-0.916524</td>
<td>3.190545</td>
<td>0.573316</td>
</tr>
<tr>
<td>C</td>
<td>-0.098272</td>
<td>2.065559</td>
<td>0.733946</td>
</tr>
<tr>
<td>C</td>
<td>5.252125</td>
<td>0.53487</td>
<td>1.299966</td>
</tr>
<tr>
<td>C</td>
<td>4.219295</td>
<td>1.525215</td>
<td>1.839625</td>
</tr>
<tr>
<td>C</td>
<td>2.358585</td>
<td>0.498125</td>
<td>2.924884</td>
</tr>
<tr>
<td>C</td>
<td>1.204152</td>
<td>-0.398962</td>
<td>2.81614</td>
</tr>
<tr>
<td>C</td>
<td>0.448434</td>
<td>-0.777653</td>
<td>3.92203</td>
</tr>
<tr>
<td>C</td>
<td>-0.599647</td>
<td>-1.675818</td>
<td>3.733511</td>
</tr>
<tr>
<td>C</td>
<td>-0.876448</td>
<td>-2.139636</td>
<td>2.451548</td>
</tr>
<tr>
<td>C</td>
<td>-0.064187</td>
<td>-1.698066</td>
<td>1.400415</td>
</tr>
<tr>
<td>H</td>
<td>-0.290888</td>
<td>0.676943</td>
<td>-1.925341</td>
</tr>
<tr>
<td>C</td>
<td>-2.064414</td>
<td>-0.392225</td>
<td>-3.769889</td>
</tr>
<tr>
<td>H</td>
<td>-1.234929</td>
<td>-2.940524</td>
<td>-4.029261</td>
</tr>
<tr>
<td>H</td>
<td>0.698266</td>
<td>-4.03421</td>
<td>-2.832816</td>
</tr>
<tr>
<td>H</td>
<td>2.690581</td>
<td>-3.785046</td>
<td>-1.292301</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>H</td>
<td>4.526435</td>
<td>-3.382309</td>
<td>0.180014</td>
</tr>
<tr>
<td>H</td>
<td>4.11043</td>
<td>-2.196388</td>
<td>1.443935</td>
</tr>
<tr>
<td>H</td>
<td>6.259541</td>
<td>-1.542765</td>
<td>0.21313</td>
</tr>
<tr>
<td>H</td>
<td>5.332489</td>
<td>-1.555946</td>
<td>-1.284305</td>
</tr>
<tr>
<td>H</td>
<td>6.261306</td>
<td>0.619196</td>
<td>-1.454357</td>
</tr>
<tr>
<td>H</td>
<td>5.308876</td>
<td>1.912887</td>
<td>-0.730322</td>
</tr>
<tr>
<td>H</td>
<td>4.525776</td>
<td>1.527662</td>
<td>-3.049555</td>
</tr>
<tr>
<td>H</td>
<td>4.125111</td>
<td>-0.160136</td>
<td>-2.640162</td>
</tr>
<tr>
<td>H</td>
<td>2.680342</td>
<td>2.991959</td>
<td>-2.682168</td>
</tr>
<tr>
<td>H</td>
<td>0.682632</td>
<td>4.4437</td>
<td>-2.149759</td>
</tr>
<tr>
<td>H</td>
<td>-1.236669</td>
<td>4.959025</td>
<td>-0.595162</td>
</tr>
<tr>
<td>C</td>
<td>-2.039574</td>
<td>3.50797</td>
<td>1.519741</td>
</tr>
<tr>
<td>H</td>
<td>-0.269355</td>
<td>1.365325</td>
<td>1.541618</td>
</tr>
<tr>
<td>H</td>
<td>6.255275</td>
<td>0.977637</td>
<td>1.245189</td>
</tr>
<tr>
<td>H</td>
<td>5.310727</td>
<td>-0.302417</td>
<td>2.003132</td>
</tr>
<tr>
<td>H</td>
<td>4.515356</td>
<td>1.894554</td>
<td>2.829891</td>
</tr>
<tr>
<td>H</td>
<td>4.110514</td>
<td>2.381241</td>
<td>1.16355</td>
</tr>
<tr>
<td>H</td>
<td>2.674373</td>
<td>0.838143</td>
<td>3.915264</td>
</tr>
<tr>
<td>H</td>
<td>0.685382</td>
<td>-0.385413</td>
<td>4.906231</td>
</tr>
<tr>
<td>H</td>
<td>-1.203029</td>
<td>2.022283</td>
<td>4.567213</td>
</tr>
<tr>
<td>C</td>
<td>-1.981405</td>
<td>-3.13578</td>
<td>2.242282</td>
</tr>
<tr>
<td>H</td>
<td>-0.224269</td>
<td>-2.049661</td>
<td>0.389214</td>
</tr>
<tr>
<td>O</td>
<td>-2.334701</td>
<td>4.685178</td>
<td>1.7399</td>
</tr>
<tr>
<td>O</td>
<td>-2.368185</td>
<td>0.765679</td>
<td>-4.905341</td>
</tr>
<tr>
<td>O</td>
<td>-2.256742</td>
<td>-3.937848</td>
<td>3.137663</td>
</tr>
<tr>
<td>C</td>
<td>-3.760546</td>
<td>2.445226</td>
<td>2.992902</td>
</tr>
<tr>
<td>C</td>
<td>-3.803146</td>
<td>1.39007</td>
<td>-3.520917</td>
</tr>
<tr>
<td>C</td>
<td>-3.702667</td>
<td>-3.870757</td>
<td>0.580231</td>
</tr>
<tr>
<td>N</td>
<td>-2.642529</td>
<td>0.607075</td>
<td>-3.073651</td>
</tr>
<tr>
<td>H</td>
<td>-2.509957</td>
<td>0.574257</td>
<td>-2.05744</td>
</tr>
<tr>
<td>N</td>
<td>-2.61562</td>
<td>2.421548</td>
<td>2.071024</td>
</tr>
<tr>
<td>H</td>
<td>-2.489265</td>
<td>1.542829</td>
<td>1.558132</td>
</tr>
<tr>
<td>N</td>
<td>-2.564674</td>
<td>-3.055999</td>
<td>1.029325</td>
</tr>
<tr>
<td>H</td>
<td>-2.461948</td>
<td>-2.155463</td>
<td>0.549795</td>
</tr>
<tr>
<td>C</td>
<td>-5.027364</td>
<td>0.476682</td>
<td>-3.649766</td>
</tr>
<tr>
<td>H</td>
<td>-5.906795</td>
<td>1.05599</td>
<td>-3.952991</td>
</tr>
<tr>
<td>H</td>
<td>-4.846791</td>
<td>-0.3012</td>
<td>-4.39713</td>
</tr>
<tr>
<td>H</td>
<td>-5.24529</td>
<td>-0.004479</td>
<td>-2.689251</td>
</tr>
<tr>
<td>C</td>
<td>-4.04571</td>
<td>2.446818</td>
<td>-2.440404</td>
</tr>
<tr>
<td>H</td>
<td>-4.255824</td>
<td>1.980905</td>
<td>-1.47096</td>
</tr>
<tr>
<td>H</td>
<td>-3.167892</td>
<td>3.093797</td>
<td>-2.325316</td>
</tr>
<tr>
<td>H</td>
<td>-4.900769</td>
<td>3.07242</td>
<td>-2.715931</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>C</td>
<td>-3.492854</td>
<td>2.078766</td>
<td>-4.851678</td>
</tr>
<tr>
<td>H</td>
<td>-4.341438</td>
<td>2.704686</td>
<td>-5.149047</td>
</tr>
<tr>
<td>H</td>
<td>-2.610138</td>
<td>2.720799</td>
<td>-4.752792</td>
</tr>
<tr>
<td>H</td>
<td>-3.304928</td>
<td>1.344922</td>
<td>-5.638522</td>
</tr>
<tr>
<td>C</td>
<td>-4.00838</td>
<td>0.991219</td>
<td>3.401279</td>
</tr>
<tr>
<td>H</td>
<td>-3.126835</td>
<td>0.571318</td>
<td>3.900263</td>
</tr>
<tr>
<td>H</td>
<td>-4.854135</td>
<td>0.93759</td>
<td>4.094284</td>
</tr>
<tr>
<td>H</td>
<td>-4.235472</td>
<td>0.368258</td>
<td>2.528783</td>
</tr>
<tr>
<td>C</td>
<td>-4.993104</td>
<td>3.009916</td>
<td>2.277575</td>
</tr>
<tr>
<td>H</td>
<td>-5.860582</td>
<td>3.001622</td>
<td>2.947215</td>
</tr>
<tr>
<td>H</td>
<td>-4.809628</td>
<td>4.039078</td>
<td>1.956154</td>
</tr>
<tr>
<td>H</td>
<td>-5.232816</td>
<td>2.404982</td>
<td>1.395478</td>
</tr>
<tr>
<td>C</td>
<td>-3.421236</td>
<td>3.275929</td>
<td>4.232294</td>
</tr>
<tr>
<td>H</td>
<td>-2.533599</td>
<td>2.871355</td>
<td>4.731784</td>
</tr>
<tr>
<td>H</td>
<td>-3.228386</td>
<td>4.31726</td>
<td>3.965393</td>
</tr>
<tr>
<td>H</td>
<td>-4.258271</td>
<td>3.242353</td>
<td>4.938369</td>
</tr>
<tr>
<td>C</td>
<td>-4.93734</td>
<td>-3.555854</td>
<td>1.432193</td>
</tr>
<tr>
<td>H</td>
<td>-5.799577</td>
<td>-4.13576</td>
<td>1.084024</td>
</tr>
<tr>
<td>H</td>
<td>-4.750711</td>
<td>-3.802945</td>
<td>2.481112</td>
</tr>
<tr>
<td>H</td>
<td>-5.187092</td>
<td>-2.490875</td>
<td>1.362173</td>
</tr>
<tr>
<td>C</td>
<td>-3.350173</td>
<td>-5.357694</td>
<td>0.659291</td>
</tr>
<tr>
<td>H</td>
<td>-3.155876</td>
<td>-5.660024</td>
<td>1.690684</td>
</tr>
<tr>
<td>H</td>
<td>-4.181818</td>
<td>-5.954044</td>
<td>0.267989</td>
</tr>
<tr>
<td>H</td>
<td>-2.460195</td>
<td>-5.572195</td>
<td>0.056718</td>
</tr>
<tr>
<td>C</td>
<td>-3.955486</td>
<td>-3.480615</td>
<td>-0.878147</td>
</tr>
<tr>
<td>H</td>
<td>-4.19946</td>
<td>-2.415909</td>
<td>-0.967583</td>
</tr>
<tr>
<td>H</td>
<td>-3.070326</td>
<td>-3.681017</td>
<td>-1.493479</td>
</tr>
<tr>
<td>H</td>
<td>-4.792369</td>
<td>-4.06097</td>
<td>-1.279773</td>
</tr>
<tr>
<td>Cl</td>
<td>8.620225</td>
<td>0.022225</td>
<td>-0.002403</td>
</tr>
<tr>
<td>Cl</td>
<td>-2.576905</td>
<td>-0.031887</td>
<td>0.043963</td>
</tr>
</tbody>
</table>

Table S20. Coordinates for the APFD (Co-Nbridge constrained) structure [CoL⁵-OHBu]Br₂.
<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1.093873</td>
<td>-3.222398</td>
<td>0.847034</td>
</tr>
<tr>
<td>C</td>
<td>-0.809024</td>
<td>-3.542267</td>
<td>2.171164</td>
</tr>
<tr>
<td>C</td>
<td>0.207189</td>
<td>-2.859914</td>
<td>2.835421</td>
</tr>
<tr>
<td>C</td>
<td>0.928829</td>
<td>-1.899311</td>
<td>2.132556</td>
</tr>
<tr>
<td>C</td>
<td>2.071697</td>
<td>-1.192501</td>
<td>2.719448</td>
</tr>
<tr>
<td>C</td>
<td>3.915576</td>
<td>0.285305</td>
<td>2.372068</td>
</tr>
<tr>
<td>C</td>
<td>4.957385</td>
<td>-0.238854</td>
<td>1.381769</td>
</tr>
<tr>
<td>C</td>
<td>4.952933</td>
<td>-1.038007</td>
<td>-0.917524</td>
</tr>
<tr>
<td>C</td>
<td>3.907354</td>
<td>-2.153852</td>
<td>-0.962592</td>
</tr>
<tr>
<td>C</td>
<td>2.060004</td>
<td>-1.70385</td>
<td>-2.410768</td>
</tr>
<tr>
<td>C</td>
<td>0.910166</td>
<td>-0.844583</td>
<td>-2.71361</td>
</tr>
<tr>
<td>C</td>
<td>-0.850307</td>
<td>-0.053151</td>
<td>-4.128713</td>
</tr>
<tr>
<td>C</td>
<td>-1.137832</td>
<td>0.914644</td>
<td>-3.171286</td>
</tr>
<tr>
<td>C</td>
<td>-0.360371</td>
<td>0.941506</td>
<td>-2.008154</td>
</tr>
<tr>
<td>C</td>
<td>4.953305</td>
<td>1.351295</td>
<td>-0.45807</td>
</tr>
<tr>
<td>C</td>
<td>3.904035</td>
<td>1.951121</td>
<td>-1.395867</td>
</tr>
<tr>
<td>C</td>
<td>2.055241</td>
<td>2.972747</td>
<td>-0.280628</td>
</tr>
<tr>
<td>C</td>
<td>0.89879</td>
<td>2.805361</td>
<td>0.60575</td>
</tr>
<tr>
<td>C</td>
<td>0.14942</td>
<td>3.885609</td>
<td>1.06316</td>
</tr>
<tr>
<td>C</td>
<td>-0.897544</td>
<td>3.639168</td>
<td>1.948077</td>
</tr>
<tr>
<td>C</td>
<td>-1.182452</td>
<td>2.328601</td>
<td>2.320002</td>
</tr>
<tr>
<td>C</td>
<td>-0.384024</td>
<td>1.305997</td>
<td>1.794455</td>
</tr>
<tr>
<td>H</td>
<td>-0.497695</td>
<td>-1.948819</td>
<td>-0.802779</td>
</tr>
<tr>
<td>C</td>
<td>-2.141085</td>
<td>-4.005009</td>
<td>0.107339</td>
</tr>
<tr>
<td>H</td>
<td>-1.378191</td>
<td>-4.325568</td>
<td>2.662518</td>
</tr>
<tr>
<td>H</td>
<td>0.451481</td>
<td>-3.078842</td>
<td>3.870356</td>
</tr>
<tr>
<td>H</td>
<td>2.389504</td>
<td>-1.449249</td>
<td>3.733779</td>
</tr>
<tr>
<td>H</td>
<td>4.215013</td>
<td>0.061168</td>
<td>3.403883</td>
</tr>
<tr>
<td>H</td>
<td>3.793996</td>
<td>1.370062</td>
<td>2.269141</td>
</tr>
<tr>
<td>H</td>
<td>5.950935</td>
<td>0.182224</td>
<td>1.585688</td>
</tr>
<tr>
<td>H</td>
<td>5.035345</td>
<td>-1.322218</td>
<td>1.518936</td>
</tr>
<tr>
<td>H</td>
<td>5.94526</td>
<td>-1.429823</td>
<td>-0.656927</td>
</tr>
<tr>
<td>H</td>
<td>5.032077</td>
<td>-0.612795</td>
<td>-1.923382</td>
</tr>
<tr>
<td>H</td>
<td>4.204247</td>
<td>-2.933747</td>
<td>-1.675393</td>
</tr>
<tr>
<td>H</td>
<td>3.78482</td>
<td>-2.609797</td>
<td>0.027031</td>
</tr>
<tr>
<td>H</td>
<td>2.376102</td>
<td>-2.446485</td>
<td>-3.148549</td>
</tr>
<tr>
<td>H</td>
<td>0.424711</td>
<td>-1.735589</td>
<td>-4.613452</td>
</tr>
<tr>
<td>H</td>
<td>-1.427741</td>
<td>-0.080808</td>
<td>-5.047873</td>
</tr>
<tr>
<td>C</td>
<td>-2.20081</td>
<td>1.940615</td>
<td>-3.442222</td>
</tr>
<tr>
<td>H</td>
<td>-0.531907</td>
<td>1.687182</td>
<td>-1.24223</td>
</tr>
<tr>
<td>H</td>
<td>5.943087</td>
<td>1.320116</td>
<td>-0.933016</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>H</td>
<td>5.038602</td>
<td>2.009454</td>
<td>0.412395</td>
</tr>
<tr>
<td>H</td>
<td>4.197444</td>
<td>2.961024</td>
<td>-1.709855</td>
</tr>
<tr>
<td>H</td>
<td>3.781287</td>
<td>1.327261</td>
<td>-2.288922</td>
</tr>
<tr>
<td>H</td>
<td>2.371045</td>
<td>3.983492</td>
<td>-0.553795</td>
</tr>
<tr>
<td>H</td>
<td>0.392765</td>
<td>4.894207</td>
<td>0.743542</td>
</tr>
<tr>
<td>H</td>
<td>-1.492099</td>
<td>4.449467</td>
<td>2.35894</td>
</tr>
<tr>
<td>C</td>
<td>-2.267468</td>
<td>2.065026</td>
<td>3.325154</td>
</tr>
<tr>
<td>H</td>
<td>-0.551563</td>
<td>0.271228</td>
<td>2.066462</td>
</tr>
<tr>
<td>O</td>
<td>-2.44602</td>
<td>2.270915</td>
<td>-4.604169</td>
</tr>
<tr>
<td>O</td>
<td>-2.37238</td>
<td>-5.170474</td>
<td>0.435832</td>
</tr>
<tr>
<td>O</td>
<td>-2.541252</td>
<td>2.927317</td>
<td>4.162402</td>
</tr>
<tr>
<td>C</td>
<td>-3.853195</td>
<td>3.446532</td>
<td>-2.311261</td>
</tr>
<tr>
<td>C</td>
<td>-3.78908</td>
<td>-3.860681</td>
<td>-1.772378</td>
</tr>
<tr>
<td>C</td>
<td>-3.929725</td>
<td>0.344269</td>
<td>4.065828</td>
</tr>
<tr>
<td>N</td>
<td>-2.72296</td>
<td>-3.33672</td>
<td>-0.907318</td>
</tr>
<tr>
<td>H</td>
<td>-2.67357</td>
<td>-2.315015</td>
<td>-0.853263</td>
</tr>
<tr>
<td>N</td>
<td>-2.777703</td>
<td>2.443639</td>
<td>-2.33128</td>
</tr>
<tr>
<td>H</td>
<td>-2.717988</td>
<td>1.856864</td>
<td>-1.496947</td>
</tr>
<tr>
<td>N</td>
<td>-2.831658</td>
<td>0.844042</td>
<td>3.224736</td>
</tr>
<tr>
<td>H</td>
<td>-2.746665</td>
<td>0.388853</td>
<td>2.313905</td>
</tr>
<tr>
<td>C</td>
<td>-5.048797</td>
<td>-4.131099</td>
<td>-0.942259</td>
</tr>
<tr>
<td>H</td>
<td>-5.856515</td>
<td>-4.499119</td>
<td>-1.584937</td>
</tr>
<tr>
<td>H</td>
<td>-4.845554</td>
<td>-4.881075</td>
<td>-0.172747</td>
</tr>
<tr>
<td>H</td>
<td>-5.388335</td>
<td>-3.210645</td>
<td>-0.453859</td>
</tr>
<tr>
<td>C</td>
<td>-4.06683</td>
<td>-2.77497</td>
<td>-2.814096</td>
</tr>
<tr>
<td>H</td>
<td>-4.397867</td>
<td>-1.844695</td>
<td>-2.337816</td>
</tr>
<tr>
<td>H</td>
<td>-3.166269</td>
<td>-2.558072</td>
<td>-3.400878</td>
</tr>
<tr>
<td>H</td>
<td>-4.852185</td>
<td>-3.108743</td>
<td>-3.499816</td>
</tr>
<tr>
<td>C</td>
<td>-3.312548</td>
<td>-5.135148</td>
<td>-2.472629</td>
</tr>
<tr>
<td>H</td>
<td>-4.090928</td>
<td>-5.492104</td>
<td>-3.155914</td>
</tr>
<tr>
<td>H</td>
<td>-2.407429</td>
<td>-4.934977</td>
<td>-3.057255</td>
</tr>
<tr>
<td>H</td>
<td>-3.093745</td>
<td>-5.922276</td>
<td>-1.747698</td>
</tr>
<tr>
<td>C</td>
<td>-4.120766</td>
<td>3.751996</td>
<td>-0.835863</td>
</tr>
<tr>
<td>H</td>
<td>-3.218397</td>
<td>4.139079</td>
<td>-0.34795</td>
</tr>
<tr>
<td>H</td>
<td>-4.909711</td>
<td>4.505768</td>
<td>-0.748093</td>
</tr>
<tr>
<td>H</td>
<td>-4.442758</td>
<td>2.853172</td>
<td>-0.296983</td>
</tr>
<tr>
<td>C</td>
<td>-5.113425</td>
<td>2.875415</td>
<td>-2.969889</td>
</tr>
<tr>
<td>H</td>
<td>-5.928026</td>
<td>3.607341</td>
<td>-2.931213</td>
</tr>
<tr>
<td>H</td>
<td>-4.917319</td>
<td>2.625296</td>
<td>-4.016264</td>
</tr>
<tr>
<td>H</td>
<td>-5.438289</td>
<td>1.9687</td>
<td>-2.447127</td>
</tr>
<tr>
<td>C</td>
<td>-3.3927</td>
<td>4.719847</td>
<td>-3.024345</td>
</tr>
<tr>
<td>H</td>
<td>-2.487423</td>
<td>5.117355</td>
<td>-2.551489</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H</td>
<td>-3.180105</td>
<td>4.523994</td>
<td>-4.077672</td>
</tr>
<tr>
<td>H</td>
<td>-4.177179</td>
<td>5.481817</td>
<td>-2.959511</td>
</tr>
<tr>
<td>C</td>
<td>-5.1933</td>
<td>1.176688</td>
<td>3.822821</td>
</tr>
<tr>
<td>H</td>
<td>-6.023512</td>
<td>0.793952</td>
<td>4.427166</td>
</tr>
<tr>
<td>H</td>
<td>-5.019128</td>
<td>2.222476</td>
<td>4.091348</td>
</tr>
<tr>
<td>H</td>
<td>-5.484431</td>
<td>1.129229</td>
<td>2.767195</td>
</tr>
<tr>
<td>C</td>
<td>-3.523216</td>
<td>0.385875</td>
<td>5.540563</td>
</tr>
<tr>
<td>H</td>
<td>-3.344268</td>
<td>1.41142</td>
<td>5.870581</td>
</tr>
<tr>
<td>H</td>
<td>-4.322268</td>
<td>-0.046491</td>
<td>6.152808</td>
</tr>
<tr>
<td>H</td>
<td>-2.611163</td>
<td>-0.199822</td>
<td>5.70244</td>
</tr>
<tr>
<td>C</td>
<td>-4.163192</td>
<td>-1.10715</td>
<td>3.640698</td>
</tr>
<tr>
<td>H</td>
<td>-4.444663</td>
<td>-1.170295</td>
<td>2.583126</td>
</tr>
<tr>
<td>H</td>
<td>-3.257648</td>
<td>-1.706959</td>
<td>3.79102</td>
</tr>
<tr>
<td>H</td>
<td>-4.969095</td>
<td>-1.545032</td>
<td>4.238315</td>
</tr>
<tr>
<td>Br</td>
<td>8.533086</td>
<td>-0.003631</td>
<td>0.036328</td>
</tr>
<tr>
<td>Br</td>
<td>-3.080113</td>
<td>-0.051891</td>
<td>-0.046221</td>
</tr>
</tbody>
</table>

Table S21. Coordinates for the APFD (Co-Nbridge constrained) structure [CoL$_5$ONHBr$_2$]I$_2$.

<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>1.664263</td>
<td>-0.016963</td>
<td>0.017701</td>
</tr>
<tr>
<td>N</td>
<td>0.373656</td>
<td>-1.772349</td>
<td>0.478238</td>
</tr>
<tr>
<td>N</td>
<td>2.400569</td>
<td>-0.806712</td>
<td>1.876757</td>
</tr>
<tr>
<td>N</td>
<td>4.297239</td>
<td>-0.02788</td>
<td>0.015958</td>
</tr>
<tr>
<td>N</td>
<td>2.396033</td>
<td>-1.228455</td>
<td>-1.600903</td>
</tr>
<tr>
<td>N</td>
<td>0.377634</td>
<td>0.472469</td>
<td>-1.729676</td>
</tr>
<tr>
<td>N</td>
<td>2.408034</td>
<td>1.984364</td>
<td>-0.228609</td>
</tr>
<tr>
<td>N</td>
<td>0.375205</td>
<td>1.266054</td>
<td>1.301569</td>
</tr>
<tr>
<td>C</td>
<td>-0.600152</td>
<td>-2.261077</td>
<td>-0.275126</td>
</tr>
<tr>
<td>C</td>
<td>-1.353566</td>
<td>-3.380666</td>
<td>0.096942</td>
</tr>
<tr>
<td>C</td>
<td>-1.077692</td>
<td>-3.977156</td>
<td>1.324223</td>
</tr>
<tr>
<td>C</td>
<td>-0.076159</td>
<td>-3.445772</td>
<td>2.13298</td>
</tr>
<tr>
<td>C</td>
<td>0.642879</td>
<td>-2.350237</td>
<td>1.66299</td>
</tr>
<tr>
<td>C</td>
<td>1.786449</td>
<td>-1.791211</td>
<td>2.392397</td>
</tr>
<tr>
<td>C</td>
<td>3.637563</td>
<td>-0.280859</td>
<td>2.379768</td>
</tr>
<tr>
<td>C</td>
<td>4.692145</td>
<td>-0.579488</td>
<td>1.31103</td>
</tr>
<tr>
<td>C</td>
<td>4.690498</td>
<td>-0.875373</td>
<td>-1.108856</td>
</tr>
<tr>
<td>C</td>
<td>3.626199</td>
<td>-1.938333</td>
<td>-1.395641</td>
</tr>
<tr>
<td>C</td>
<td>1.784787</td>
<td>-1.173223</td>
<td>-2.712683</td>
</tr>
<tr>
<td>C</td>
<td>0.650876</td>
<td>-0.249832</td>
<td>-2.831044</td>
</tr>
<tr>
<td>C</td>
<td>-0.051777</td>
<td>-0.0793</td>
<td>-4.020772</td>
</tr>
<tr>
<td>C</td>
<td>-1.038918</td>
<td>0.902526</td>
<td>-4.073237</td>
</tr>
<tr>
<td>C</td>
<td>-1.318575</td>
<td>1.650742</td>
<td>-2.933204</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C</td>
<td>-0.582973</td>
<td>1.382338</td>
<td>-1.773307</td>
</tr>
<tr>
<td>C</td>
<td>4.696593</td>
<td>1.36842</td>
<td>-0.153556</td>
</tr>
<tr>
<td>C</td>
<td>3.642018</td>
<td>2.148603</td>
<td>-0.942018</td>
</tr>
<tr>
<td>C</td>
<td>1.797341</td>
<td>2.926648</td>
<td>0.364029</td>
</tr>
<tr>
<td>C</td>
<td>0.648223</td>
<td>2.580112</td>
<td>1.207694</td>
</tr>
<tr>
<td>C</td>
<td>-0.080147</td>
<td>3.539214</td>
<td>1.905958</td>
</tr>
<tr>
<td>C</td>
<td>-1.100893</td>
<td>3.110696</td>
<td>2.751326</td>
</tr>
<tr>
<td>C</td>
<td>-1.383289</td>
<td>1.750837</td>
<td>2.84653</td>
</tr>
<tr>
<td>C</td>
<td>-0.614205</td>
<td>0.86372</td>
<td>2.08454</td>
</tr>
<tr>
<td>H</td>
<td>-0.762622</td>
<td>-1.768436</td>
<td>-1.22635</td>
</tr>
<tr>
<td>C</td>
<td>-2.360233</td>
<td>-4.015094</td>
<td>-0.819887</td>
</tr>
<tr>
<td>H</td>
<td>-1.637904</td>
<td>-4.857298</td>
<td>1.624699</td>
</tr>
<tr>
<td>H</td>
<td>0.164592</td>
<td>-3.885265</td>
<td>3.096002</td>
</tr>
<tr>
<td>H</td>
<td>2.096643</td>
<td>-2.260345</td>
<td>3.330025</td>
</tr>
<tr>
<td>H</td>
<td>3.92795</td>
<td>-0.721097</td>
<td>3.342115</td>
</tr>
<tr>
<td>H</td>
<td>3.515819</td>
<td>0.800806</td>
<td>2.510819</td>
</tr>
<tr>
<td>H</td>
<td>5.679135</td>
<td>-0.210533</td>
<td>1.624457</td>
</tr>
<tr>
<td>H</td>
<td>4.773128</td>
<td>-1.666937</td>
<td>1.21504</td>
</tr>
<tr>
<td>H</td>
<td>5.669866</td>
<td>-1.344737</td>
<td>-0.939161</td>
</tr>
<tr>
<td>H</td>
<td>4.787825</td>
<td>-0.247272</td>
<td>-2.000122</td>
</tr>
<tr>
<td>H</td>
<td>3.915326</td>
<td>-2.549581</td>
<td>-2.260043</td>
</tr>
<tr>
<td>H</td>
<td>3.494762</td>
<td>-2.59593</td>
<td>-0.528447</td>
</tr>
<tr>
<td>H</td>
<td>2.092269</td>
<td>-1.749853</td>
<td>-3.589116</td>
</tr>
<tr>
<td>H</td>
<td>0.191328</td>
<td>-0.682203</td>
<td>-4.890347</td>
</tr>
<tr>
<td>H</td>
<td>-1.584051</td>
<td>1.105598</td>
<td>-4.990013</td>
</tr>
<tr>
<td>C</td>
<td>-2.305871</td>
<td>2.780112</td>
<td>-3.007221</td>
</tr>
<tr>
<td>H</td>
<td>-0.746309</td>
<td>1.947467</td>
<td>-0.86409</td>
</tr>
<tr>
<td>H</td>
<td>5.68221</td>
<td>1.452667</td>
<td>-0.632449</td>
</tr>
<tr>
<td>H</td>
<td>4.782504</td>
<td>1.82726</td>
<td>0.836578</td>
</tr>
<tr>
<td>H</td>
<td>3.937443</td>
<td>3.200164</td>
<td>-1.048119</td>
</tr>
<tr>
<td>H</td>
<td>3.510693</td>
<td>1.717166</td>
<td>-1.941334</td>
</tr>
<tr>
<td>H</td>
<td>2.109725</td>
<td>3.97222</td>
<td>0.298169</td>
</tr>
<tr>
<td>H</td>
<td>0.164842</td>
<td>4.592069</td>
<td>1.805423</td>
</tr>
<tr>
<td>H</td>
<td>-1.672569</td>
<td>3.814979</td>
<td>3.347978</td>
</tr>
<tr>
<td>C</td>
<td>-2.419578</td>
<td>1.278185</td>
<td>3.825691</td>
</tr>
<tr>
<td>H</td>
<td>-0.775721</td>
<td>-0.206117</td>
<td>2.137565</td>
</tr>
<tr>
<td>O</td>
<td>-2.479279</td>
<td>3.363031</td>
<td>-4.078712</td>
</tr>
<tr>
<td>O</td>
<td>-2.554955</td>
<td>-5.229885</td>
<td>-0.752402</td>
</tr>
<tr>
<td>O</td>
<td>-2.651147</td>
<td>1.949471</td>
<td>4.832391</td>
</tr>
<tr>
<td>C</td>
<td>-3.86214</td>
<td>4.176818</td>
<td>-1.625728</td>
</tr>
<tr>
<td>C</td>
<td>-3.941887</td>
<td>-3.548982</td>
<td>-2.704512</td>
</tr>
<tr>
<td>C</td>
<td>-4.013907</td>
<td>-0.591174</td>
<td>4.317146</td>
</tr>
<tr>
<td>N</td>
<td>-2.94259</td>
<td>-3.166909</td>
<td>-1.693545</td>
</tr>
<tr>
<td>Element</td>
<td>X-coordinate</td>
<td>Y-coordinate</td>
<td>Z-coordinate</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>H</td>
<td>-2.9374</td>
<td>-2.179542</td>
<td>-1.434757</td>
</tr>
<tr>
<td>N</td>
<td>-2.893279</td>
<td>3.089145</td>
<td>-1.831755</td>
</tr>
<tr>
<td>H</td>
<td>-2.905214</td>
<td>2.351396</td>
<td>-1.12711</td>
</tr>
<tr>
<td>N</td>
<td>-2.986403</td>
<td>0.092774</td>
<td>3.515599</td>
</tr>
<tr>
<td>H</td>
<td>-2.947174</td>
<td>-0.179218</td>
<td>2.533352</td>
</tr>
<tr>
<td>C</td>
<td>-5.217042</td>
<td>-4.050997</td>
<td>-2.01933</td>
</tr>
<tr>
<td>H</td>
<td>-5.970549</td>
<td>-4.31768</td>
<td>-2.769008</td>
</tr>
<tr>
<td>H</td>
<td>-5.002186</td>
<td>-4.933641</td>
<td>-1.410679</td>
</tr>
<tr>
<td>H</td>
<td>-5.635895</td>
<td>-3.271464</td>
<td>-1.372374</td>
</tr>
<tr>
<td>C</td>
<td>-4.239529</td>
<td>-2.283513</td>
<td>-3.511026</td>
</tr>
<tr>
<td>H</td>
<td>-4.651213</td>
<td>-1.492935</td>
<td>-2.872399</td>
</tr>
<tr>
<td>H</td>
<td>-3.329564</td>
<td>-1.90108</td>
<td>-3.988625</td>
</tr>
<tr>
<td>H</td>
<td>-4.971251</td>
<td>-2.505476</td>
<td>-4.294417</td>
</tr>
<tr>
<td>C</td>
<td>-3.361689</td>
<td>-4.619974</td>
<td>-3.631555</td>
</tr>
<tr>
<td>H</td>
<td>-4.085808</td>
<td>-4.852199</td>
<td>-4.419995</td>
</tr>
<tr>
<td>H</td>
<td>-2.4421</td>
<td>-4.257861</td>
<td>-4.104985</td>
</tr>
<tr>
<td>H</td>
<td>-3.135758</td>
<td>-5.536392</td>
<td>-3.082159</td>
</tr>
<tr>
<td>C</td>
<td>-4.174035</td>
<td>4.19193</td>
<td>-0.128156</td>
</tr>
<tr>
<td>H</td>
<td>-3.263836</td>
<td>4.36138</td>
<td>0.459532</td>
</tr>
<tr>
<td>H</td>
<td>-4.882612</td>
<td>4.995485</td>
<td>0.096485</td>
</tr>
<tr>
<td>H</td>
<td>-4.620072</td>
<td>3.243271</td>
<td>0.193982</td>
</tr>
<tr>
<td>C</td>
<td>-5.138204</td>
<td>3.904925</td>
<td>-2.428945</td>
</tr>
<tr>
<td>H</td>
<td>-5.872413</td>
<td>4.699671</td>
<td>-2.255768</td>
</tr>
<tr>
<td>H</td>
<td>-4.914984</td>
<td>3.862011</td>
<td>-3.498448</td>
</tr>
<tr>
<td>H</td>
<td>-5.584216</td>
<td>2.951065</td>
<td>-2.12442</td>
</tr>
<tr>
<td>C</td>
<td>-3.234963</td>
<td>5.512813</td>
<td>-2.031914</td>
</tr>
<tr>
<td>H</td>
<td>-2.318265</td>
<td>5.694786</td>
<td>-1.459511</td>
</tr>
<tr>
<td>H</td>
<td>-2.991227</td>
<td>5.524482</td>
<td>-3.096601</td>
</tr>
<tr>
<td>H</td>
<td>-3.937618</td>
<td>6.326996</td>
<td>-1.823639</td>
</tr>
<tr>
<td>C</td>
<td>-5.294243</td>
<td>0.24951</td>
<td>4.358097</td>
</tr>
<tr>
<td>H</td>
<td>-6.068136</td>
<td>-0.265555</td>
<td>4.93816</td>
</tr>
<tr>
<td>H</td>
<td>-5.09897</td>
<td>1.22085</td>
<td>4.820731</td>
</tr>
<tr>
<td>H</td>
<td>-5.676108</td>
<td>0.413483</td>
<td>3.343853</td>
</tr>
<tr>
<td>C</td>
<td>-3.48486</td>
<td>-0.848206</td>
<td>5.730215</td>
</tr>
<tr>
<td>H</td>
<td>-3.281538</td>
<td>0.090784</td>
<td>6.249809</td>
</tr>
<tr>
<td>H</td>
<td>-4.228334</td>
<td>-1.413097</td>
<td>6.30303</td>
</tr>
<tr>
<td>H</td>
<td>-2.560708</td>
<td>-1.435901</td>
<td>5.692445</td>
</tr>
<tr>
<td>C</td>
<td>-4.280564</td>
<td>-1.925595</td>
<td>3.618306</td>
</tr>
<tr>
<td>H</td>
<td>-4.650048</td>
<td>-1.77133</td>
<td>2.59726</td>
</tr>
<tr>
<td>H</td>
<td>-3.366721</td>
<td>-2.529424</td>
<td>3.56607</td>
</tr>
<tr>
<td>H</td>
<td>-5.035635</td>
<td>-2.49176</td>
<td>4.172846</td>
</tr>
<tr>
<td>I</td>
<td>8.605253</td>
<td>0.000432</td>
<td>0.021684</td>
</tr>
<tr>
<td>I</td>
<td>-3.533118</td>
<td>0.001098</td>
<td>-0.066937</td>
</tr>
</tbody>
</table>
Table S22. Coordinates for the APFD (Co-Nbridge constrained) [Co\(^{5-}\text{ONH} \text{Bu}\)(ClO\(_4\))]\(_2\).

<table>
<thead>
<tr>
<th>atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>1.796423</td>
<td>0.007111</td>
<td>0.001524</td>
</tr>
<tr>
<td>N</td>
<td>0.532136</td>
<td>0.852508</td>
<td>-1.622316</td>
</tr>
<tr>
<td>N</td>
<td>2.570924</td>
<td>-0.844883</td>
<td>-1.806896</td>
</tr>
<tr>
<td>N</td>
<td>4.502416</td>
<td>0.009892</td>
<td>-0.003612</td>
</tr>
<tr>
<td>N</td>
<td>2.571637</td>
<td>1.998142</td>
<td>0.167831</td>
</tr>
<tr>
<td>N</td>
<td>0.532881</td>
<td>0.986988</td>
<td>1.545526</td>
</tr>
<tr>
<td>N</td>
<td>2.578685</td>
<td>-1.127807</td>
<td>1.64221</td>
</tr>
<tr>
<td>N</td>
<td>0.535727</td>
<td>-1.824708</td>
<td>0.084408</td>
</tr>
<tr>
<td>C</td>
<td>-0.453531</td>
<td>1.72965</td>
<td>-1.503572</td>
</tr>
<tr>
<td>C</td>
<td>-1.210086</td>
<td>2.167592</td>
<td>-2.596839</td>
</tr>
<tr>
<td>C</td>
<td>-0.902558</td>
<td>1.64941</td>
<td>-3.8514</td>
</tr>
<tr>
<td>C</td>
<td>0.125114</td>
<td>0.720075</td>
<td>-3.978551</td>
</tr>
<tr>
<td>C</td>
<td>0.828094</td>
<td>0.351154</td>
<td>-2.836522</td>
</tr>
<tr>
<td>C</td>
<td>1.968991</td>
<td>-0.568118</td>
<td>-2.889666</td>
</tr>
<tr>
<td>C</td>
<td>3.794123</td>
<td>-1.592113</td>
<td>-1.738746</td>
</tr>
<tr>
<td>C</td>
<td>4.878895</td>
<td>-0.619846</td>
<td>-1.266994</td>
</tr>
<tr>
<td>C</td>
<td>4.880248</td>
<td>1.41843</td>
<td>0.0815</td>
</tr>
<tr>
<td>C</td>
<td>3.792239</td>
<td>2.31371</td>
<td>-0.517453</td>
</tr>
<tr>
<td>C</td>
<td>1.969567</td>
<td>2.796153</td>
<td>0.950321</td>
</tr>
<tr>
<td>C</td>
<td>0.827129</td>
<td>2.289978</td>
<td>1.717508</td>
</tr>
<tr>
<td>C</td>
<td>0.117198</td>
<td>3.096172</td>
<td>2.600847</td>
</tr>
<tr>
<td>C</td>
<td>-0.91654</td>
<td>2.522495</td>
<td>3.33464</td>
</tr>
<tr>
<td>C</td>
<td>-1.221892</td>
<td>1.176233</td>
<td>3.157665</td>
</tr>
<tr>
<td>C</td>
<td>-0.458149</td>
<td>0.446808</td>
<td>2.238833</td>
</tr>
<tr>
<td>C</td>
<td>4.883794</td>
<td>-0.767766</td>
<td>1.172907</td>
</tr>
<tr>
<td>C</td>
<td>3.80134</td>
<td>-0.690424</td>
<td>2.252789</td>
</tr>
<tr>
<td>C</td>
<td>1.985003</td>
<td>-2.209266</td>
<td>1.940684</td>
</tr>
<tr>
<td>C</td>
<td>0.842948</td>
<td>-2.626407</td>
<td>1.122217</td>
</tr>
<tr>
<td>C</td>
<td>0.146433</td>
<td>-3.802397</td>
<td>1.377938</td>
</tr>
<tr>
<td>C</td>
<td>-0.887171</td>
<td>-4.159039</td>
<td>0.517627</td>
</tr>
<tr>
<td>C</td>
<td>-1.206337</td>
<td>-3.331878</td>
<td>-0.555236</td>
</tr>
<tr>
<td>C</td>
<td>-0.455988</td>
<td>-2.162083</td>
<td>-0.726617</td>
</tr>
<tr>
<td>H</td>
<td>-0.640851</td>
<td>2.097375</td>
<td>-0.501342</td>
</tr>
<tr>
<td>C</td>
<td>-2.326809</td>
<td>3.170356</td>
<td>-2.505989</td>
</tr>
<tr>
<td>H</td>
<td>-1.472943</td>
<td>1.984344</td>
<td>-4.711986</td>
</tr>
<tr>
<td>H</td>
<td>0.386834</td>
<td>0.295793</td>
<td>-4.943013</td>
</tr>
<tr>
<td>H</td>
<td>2.284514</td>
<td>-0.960129</td>
<td>-3.86061</td>
</tr>
<tr>
<td>H</td>
<td>4.070413</td>
<td>-2.03993</td>
<td>-2.702153</td>
</tr>
<tr>
<td>H</td>
<td>3.654165</td>
<td>-2.39494</td>
<td>-1.00496</td>
</tr>
<tr>
<td>H</td>
<td>5.846956</td>
<td>-1.130758</td>
<td>-1.193782</td>
</tr>
<tr>
<td>H</td>
<td>4.987213</td>
<td>0.161886</td>
<td>-2.025636</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H</td>
<td>5.844623</td>
<td>1.610749</td>
<td>-0.404829</td>
</tr>
<tr>
<td>H</td>
<td>4.997558</td>
<td>1.683783</td>
<td>1.136957</td>
</tr>
<tr>
<td>H</td>
<td>4.068466</td>
<td>3.37207</td>
<td>-0.424811</td>
</tr>
<tr>
<td>H</td>
<td>3.648126</td>
<td>2.079512</td>
<td>-1.578995</td>
</tr>
<tr>
<td>H</td>
<td>2.28442</td>
<td>3.832911</td>
<td>1.097906</td>
</tr>
<tr>
<td>H</td>
<td>0.376544</td>
<td>4.144342</td>
<td>2.714428</td>
</tr>
<tr>
<td>H</td>
<td>-1.494123</td>
<td>3.101482</td>
<td>4.048177</td>
</tr>
<tr>
<td>C</td>
<td>-2.348173</td>
<td>0.601695</td>
<td>3.971921</td>
</tr>
<tr>
<td>H</td>
<td>-0.644545</td>
<td>-0.605198</td>
<td>2.056439</td>
</tr>
<tr>
<td>H</td>
<td>5.851887</td>
<td>-0.446319</td>
<td>1.575884</td>
</tr>
<tr>
<td>H</td>
<td>4.993462</td>
<td>-1.815618</td>
<td>0.876477</td>
</tr>
<tr>
<td>H</td>
<td>4.080479</td>
<td>-1.2977</td>
<td>3.123657</td>
</tr>
<tr>
<td>H</td>
<td>3.659112</td>
<td>0.346887</td>
<td>2.578383</td>
</tr>
<tr>
<td>H</td>
<td>2.307736</td>
<td>-2.856072</td>
<td>2.761169</td>
</tr>
<tr>
<td>H</td>
<td>0.416489</td>
<td>-4.42571</td>
<td>2.224927</td>
</tr>
<tr>
<td>H</td>
<td>-1.453993</td>
<td>-5.073443</td>
<td>0.660911</td>
</tr>
<tr>
<td>C</td>
<td>-2.331105</td>
<td>-3.761012</td>
<td>-1.457118</td>
</tr>
<tr>
<td>H</td>
<td>-0.65343</td>
<td>-1.474676</td>
<td>-1.541181</td>
</tr>
<tr>
<td>O</td>
<td>-2.704541</td>
<td>1.194535</td>
<td>4.993002</td>
</tr>
<tr>
<td>O</td>
<td>-2.661805</td>
<td>3.781574</td>
<td>-3.523653</td>
</tr>
<tr>
<td>O</td>
<td>-2.679345</td>
<td>-4.944292</td>
<td>-1.448934</td>
</tr>
<tr>
<td>C</td>
<td>-4.068267</td>
<td>-1.203153</td>
<td>4.096366</td>
</tr>
<tr>
<td>C</td>
<td>-4.054275</td>
<td>4.171398</td>
<td>-1.007088</td>
</tr>
<tr>
<td>C</td>
<td>-4.058709</td>
<td>-2.988265</td>
<td>-3.08377</td>
</tr>
<tr>
<td>N</td>
<td>-2.879468</td>
<td>3.325312</td>
<td>-1.286146</td>
</tr>
<tr>
<td>H</td>
<td>-2.692721</td>
<td>2.610378</td>
<td>-0.586705</td>
</tr>
<tr>
<td>N</td>
<td>-2.884674</td>
<td>-0.546582</td>
<td>3.510811</td>
</tr>
<tr>
<td>H</td>
<td>-2.69022</td>
<td>-0.80682</td>
<td>2.54677</td>
</tr>
<tr>
<td>N</td>
<td>-2.875709</td>
<td>-2.795419</td>
<td>-2.224559</td>
</tr>
<tr>
<td>H</td>
<td>-2.684995</td>
<td>-1.827556</td>
<td>-1.975927</td>
</tr>
<tr>
<td>C</td>
<td>-5.266668</td>
<td>3.635848</td>
<td>-1.777411</td>
</tr>
<tr>
<td>H</td>
<td>-6.157702</td>
<td>4.228157</td>
<td>-1.540416</td>
</tr>
<tr>
<td>H</td>
<td>-5.091121</td>
<td>3.685919</td>
<td>-2.855393</td>
</tr>
<tr>
<td>H</td>
<td>-5.459827</td>
<td>2.5932</td>
<td>-1.499929</td>
</tr>
<tr>
<td>C</td>
<td>-4.318182</td>
<td>4.080543</td>
<td>0.497203</td>
</tr>
<tr>
<td>H</td>
<td>-4.579263</td>
<td>3.060963</td>
<td>0.796035</td>
</tr>
<tr>
<td>H</td>
<td>-3.436738</td>
<td>4.392497</td>
<td>1.070218</td>
</tr>
<tr>
<td>H</td>
<td>-5.149621</td>
<td>4.74118</td>
<td>0.76281</td>
</tr>
<tr>
<td>C</td>
<td>-3.757263</td>
<td>5.624897</td>
<td>-1.383363</td>
</tr>
<tr>
<td>H</td>
<td>-4.619794</td>
<td>6.252329</td>
<td>-1.133053</td>
</tr>
<tr>
<td>H</td>
<td>-2.890439</td>
<td>5.994245</td>
<td>-0.823604</td>
</tr>
<tr>
<td>H</td>
<td>-3.551584</td>
<td>5.720315</td>
<td>-2.451255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-4.299481</td>
<td>-2.490247</td>
<td>3.301603</td>
</tr>
<tr>
<td>H</td>
<td>-3.412464</td>
<td>-3.134467</td>
<td>3.330644</td>
</tr>
<tr>
<td>H</td>
<td>-5.137594</td>
<td>-3.042829</td>
<td>3.738104</td>
</tr>
<tr>
<td>H</td>
<td>-4.535605</td>
<td>-2.277418</td>
<td>2.254642</td>
</tr>
<tr>
<td>C</td>
<td>-5.286387</td>
<td>-0.282969</td>
<td>3.956745</td>
</tr>
<tr>
<td>H</td>
<td>-6.183629</td>
<td>-0.781797</td>
<td>4.340203</td>
</tr>
<tr>
<td>H</td>
<td>-5.135397</td>
<td>0.643223</td>
<td>4.517974</td>
</tr>
<tr>
<td>H</td>
<td>-5.453369</td>
<td>-0.032962</td>
<td>2.902763</td>
</tr>
<tr>
<td>C</td>
<td>-3.807602</td>
<td>-1.555866</td>
<td>5.562823</td>
</tr>
<tr>
<td>H</td>
<td>-2.930778</td>
<td>-2.207773</td>
<td>5.649</td>
</tr>
<tr>
<td>H</td>
<td>-3.637079</td>
<td>-0.658569</td>
<td>6.160628</td>
</tr>
<tr>
<td>H</td>
<td>-4.673158</td>
<td>-2.090813</td>
<td>5.969011</td>
</tr>
<tr>
<td>C</td>
<td>-5.270448</td>
<td>-3.344717</td>
<td>-2.215047</td>
</tr>
<tr>
<td>H</td>
<td>-6.165851</td>
<td>-3.448176</td>
<td>-2.838324</td>
</tr>
<tr>
<td>H</td>
<td>-5.101761</td>
<td>-4.287548</td>
<td>-1.687714</td>
</tr>
<tr>
<td>H</td>
<td>-5.452005</td>
<td>-2.555629</td>
<td>-1.476259</td>
</tr>
<tr>
<td>C</td>
<td>-3.784499</td>
<td>-4.077039</td>
<td>-4.124265</td>
</tr>
<tr>
<td>H</td>
<td>-3.592492</td>
<td>-5.039778</td>
<td>-3.646814</td>
</tr>
<tr>
<td>H</td>
<td>-4.652431</td>
<td>-4.178001</td>
<td>-4.785192</td>
</tr>
<tr>
<td>H</td>
<td>-2.916442</td>
<td>-3.808941</td>
<td>-4.737259</td>
</tr>
<tr>
<td>C</td>
<td>-4.308957</td>
<td>-1.658462</td>
<td>-3.797972</td>
</tr>
<tr>
<td>H</td>
<td>-4.553394</td>
<td>-0.86297</td>
<td>-3.087717</td>
</tr>
<tr>
<td>H</td>
<td>-3.427306</td>
<td>-1.349071</td>
<td>-4.371949</td>
</tr>
<tr>
<td>H</td>
<td>-5.147537</td>
<td>-1.768944</td>
<td>-4.492877</td>
</tr>
<tr>
<td>Cl</td>
<td>-3.438398</td>
<td>-0.005859</td>
<td>-0.017423</td>
</tr>
<tr>
<td>O</td>
<td>-2.884712</td>
<td>-1.339739</td>
<td>0.684455</td>
</tr>
<tr>
<td>O</td>
<td>-2.86527</td>
<td>0.044691</td>
<td>-1.516817</td>
</tr>
<tr>
<td>O</td>
<td>-2.853715</td>
<td>1.256753</td>
<td>0.784326</td>
</tr>
<tr>
<td>O</td>
<td>-5.02594</td>
<td>0.014095</td>
<td>-0.019242</td>
</tr>
<tr>
<td>Cl</td>
<td>8.443658</td>
<td>-0.015679</td>
<td>0.006815</td>
</tr>
<tr>
<td>O</td>
<td>7.896326</td>
<td>-1.517767</td>
<td>0.054721</td>
</tr>
<tr>
<td>O</td>
<td>10.038444</td>
<td>-0.031786</td>
<td>0.011966</td>
</tr>
<tr>
<td>O</td>
<td>7.922055</td>
<td>0.700124</td>
<td>-1.324637</td>
</tr>
<tr>
<td>O</td>
<td>7.915539</td>
<td>0.786548</td>
<td>1.285669</td>
</tr>
</tbody>
</table>

Table S23. Atomic coordinates for the APFD Co(NH\(_3\)_6\)*NH\(_3\) \(\phi = 0^\circ \) model.
<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1.41500000</td>
<td>-0.81700000</td>
<td>-1.39700000</td>
</tr>
<tr>
<td>H</td>
<td>2.35423266</td>
<td>-0.42721854</td>
<td>-1.31265300</td>
</tr>
<tr>
<td>H</td>
<td>1.54707312</td>
<td>-1.82538539</td>
<td>-1.31271128</td>
</tr>
<tr>
<td>H</td>
<td>1.16400000</td>
<td>-0.67200000</td>
<td>-2.37500000</td>
</tr>
<tr>
<td>N</td>
<td>0.00000000</td>
<td>1.63400000</td>
<td>-1.39700000</td>
</tr>
<tr>
<td>H</td>
<td>-0.80714254</td>
<td>2.25253613</td>
<td>-1.31272080</td>
</tr>
<tr>
<td>H</td>
<td>0.80714254</td>
<td>2.25253613</td>
<td>-1.31272080</td>
</tr>
<tr>
<td>H</td>
<td>0.00000000</td>
<td>1.34400000</td>
<td>-2.37500000</td>
</tr>
<tr>
<td>N</td>
<td>0.00000000</td>
<td>1.76081910</td>
<td>1.23293881</td>
</tr>
<tr>
<td>H</td>
<td>0.00000000</td>
<td>2.63540158</td>
<td>0.70794882</td>
</tr>
<tr>
<td>H</td>
<td>0.00000000</td>
<td>1.34400000</td>
<td>1.85269609</td>
</tr>
<tr>
<td>H</td>
<td>0.80726573</td>
<td>1.83426950</td>
<td>1.85334196</td>
</tr>
<tr>
<td>N</td>
<td>1.52473063</td>
<td>-0.88072721</td>
<td>1.23293881</td>
</tr>
<tr>
<td>H</td>
<td>1.18361456</td>
<td>-1.61629762</td>
<td>1.85291462</td>
</tr>
<tr>
<td>H</td>
<td>2.28205016</td>
<td>-1.31817622</td>
<td>0.70794882</td>
</tr>
<tr>
<td>H</td>
<td>1.99158604</td>
<td>-0.21815875</td>
<td>1.85291063</td>
</tr>
<tr>
<td>N</td>
<td>-1.52484684</td>
<td>-0.88015897</td>
<td>1.23281032</td>
</tr>
<tr>
<td>H</td>
<td>-2.28234232</td>
<td>-1.31738932</td>
<td>0.70785652</td>
</tr>
<tr>
<td>H</td>
<td>-1.18486612</td>
<td>-1.61595542</td>
<td>1.85313096</td>
</tr>
<tr>
<td>H</td>
<td>-1.99193691</td>
<td>-0.21773149</td>
<td>1.85313096</td>
</tr>
<tr>
<td>N</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>2.30000000</td>
</tr>
<tr>
<td>H</td>
<td>0.00000000</td>
<td>0.91354546</td>
<td>2.70673664</td>
</tr>
<tr>
<td>H</td>
<td>0.79105840</td>
<td>-0.45693754</td>
<td>2.70673664</td>
</tr>
<tr>
<td>H</td>
<td>-0.79120115</td>
<td>-0.45669032</td>
<td>2.70673664</td>
</tr>
</tbody>
</table>

Table S24. Atomic coordinates for the APFD Co(NH$_3$)$_6$•NH$_3$ $\phi = 15^\circ$ model.
<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.59528557</td>
<td>-1.30621259</td>
<td>1.78760360</td>
</tr>
<tr>
<td>H</td>
<td>2.54553138</td>
<td>-0.68235727</td>
<td>0.70794882</td>
</tr>
<tr>
<td>H</td>
<td>2.03475126</td>
<td>0.33266259</td>
<td>1.78785036</td>
</tr>
<tr>
<td>N</td>
<td>-1.24495737</td>
<td>-1.24495737</td>
<td>1.23281032</td>
</tr>
<tr>
<td>H</td>
<td>-1.86340604</td>
<td>-1.86340604</td>
<td>0.70785652</td>
</tr>
<tr>
<td>H</td>
<td>-0.72928655</td>
<td>-1.92828655</td>
<td>1.78862129</td>
</tr>
<tr>
<td>H</td>
<td>-1.92828655</td>
<td>-0.72928655</td>
<td>1.78862129</td>
</tr>
<tr>
<td>H</td>
<td>0.71333341</td>
<td>0.71333341</td>
<td>2.65666635</td>
</tr>
<tr>
<td>H</td>
<td>-0.97443163</td>
<td>0.26109790</td>
<td>2.65666635</td>
</tr>
<tr>
<td>H</td>
<td>0.26109823</td>
<td>-0.97443136</td>
<td>2.65666686</td>
</tr>
<tr>
<td>N</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>2.30000000</td>
</tr>
</tbody>
</table>

Table S25. Atomic coordinates for the APFD Co(NH$_3$)$_6$·NH$_3$ φ = 30° model.

<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>N</td>
<td>-1.53210331</td>
<td>-0.88461372</td>
<td>-1.23877024</td>
</tr>
<tr>
<td>H</td>
<td>-2.05870571</td>
<td>-0.20938262</td>
<td>-1.79387552</td>
</tr>
<tr>
<td>H</td>
<td>-1.21059789</td>
<td>-1.67832035</td>
<td>-1.79362702</td>
</tr>
<tr>
<td>H</td>
<td>-2.28947265</td>
<td>-1.32190753</td>
<td>-1.78862129</td>
</tr>
<tr>
<td>N</td>
<td>1.52500670</td>
<td>-0.88051624</td>
<td>-1.23303233</td>
</tr>
<tr>
<td>H</td>
<td>1.20350128</td>
<td>-1.67422287</td>
<td>-1.78788911</td>
</tr>
<tr>
<td>H</td>
<td>2.05160910</td>
<td>-0.20528514</td>
<td>-1.78813761</td>
</tr>
<tr>
<td>H</td>
<td>2.28237604</td>
<td>-1.31781005</td>
<td>-0.71372186</td>
</tr>
<tr>
<td>N</td>
<td>0.00000000</td>
<td>1.76099877</td>
<td>-1.23306461</td>
</tr>
<tr>
<td>H</td>
<td>0.84800000</td>
<td>1.87944755</td>
<td>-1.78807352</td>
</tr>
<tr>
<td>H</td>
<td>-0.84800000</td>
<td>1.87944755</td>
<td>-1.78807352</td>
</tr>
<tr>
<td>H</td>
<td>0.00000000</td>
<td>2.63550312</td>
<td>-0.70787309</td>
</tr>
<tr>
<td>N</td>
<td>-0.81700000</td>
<td>1.41500000</td>
<td>1.39700000</td>
</tr>
<tr>
<td>H</td>
<td>-0.67200000</td>
<td>1.16400000</td>
<td>2.37500000</td>
</tr>
<tr>
<td>H</td>
<td>-0.36600000</td>
<td>2.33000000</td>
<td>1.37300000</td>
</tr>
<tr>
<td>H</td>
<td>-1.83500000</td>
<td>1.48200000</td>
<td>1.37300000</td>
</tr>
<tr>
<td>N</td>
<td>1.63400000</td>
<td>0.00000000</td>
<td>1.39700000</td>
</tr>
<tr>
<td>H</td>
<td>2.20100000</td>
<td>0.84800000</td>
<td>1.37300000</td>
</tr>
<tr>
<td>H</td>
<td>1.34400000</td>
<td>0.00000000</td>
<td>2.37500000</td>
</tr>
<tr>
<td>H</td>
<td>2.20100000</td>
<td>-0.84800000</td>
<td>1.37300000</td>
</tr>
<tr>
<td>N</td>
<td>-0.81700000</td>
<td>-1.41500000</td>
<td>1.39700000</td>
</tr>
<tr>
<td>H</td>
<td>-0.67200000</td>
<td>-1.16400000</td>
<td>2.37500000</td>
</tr>
<tr>
<td>H</td>
<td>-1.83500000</td>
<td>-1.48200000</td>
<td>1.37300000</td>
</tr>
<tr>
<td>H</td>
<td>-0.36600000</td>
<td>-2.33000000</td>
<td>1.37300000</td>
</tr>
<tr>
<td>H</td>
<td>0.87363824</td>
<td>0.50442575</td>
<td>-2.65666635</td>
</tr>
<tr>
<td>H</td>
<td>0.00002614</td>
<td>-1.00880579</td>
<td>-2.65666635</td>
</tr>
<tr>
<td>H</td>
<td>-0.87366442</td>
<td>0.50438006</td>
<td>-2.65666686</td>
</tr>
<tr>
<td>N</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>-2.30000000</td>
</tr>
</tbody>
</table>

58
Table S26. Atomic coordinates for the APFD Co(NH\(_3\))\(_6\)•NH\(_3\) \(\phi = 37.5^\circ\) model.

<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>0.000000000</td>
<td>0.000000000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>N</td>
<td>-1.697000000</td>
<td>-0.223000000</td>
<td>-1.302000000</td>
</tr>
<tr>
<td>H</td>
<td>-2.143000000</td>
<td>-1.223000000</td>
<td>-1.222000000</td>
</tr>
<tr>
<td>H</td>
<td>-2.364000000</td>
<td>0.544000000</td>
<td>-1.222000000</td>
</tr>
<tr>
<td>H</td>
<td>-1.506000000</td>
<td>-0.198000000</td>
<td>-2.303000000</td>
</tr>
<tr>
<td>N</td>
<td>1.042000000</td>
<td>-1.302000000</td>
<td>-1.302000000</td>
</tr>
<tr>
<td>H</td>
<td>2.056000000</td>
<td>-1.222000000</td>
<td>-1.222000000</td>
</tr>
<tr>
<td>H</td>
<td>0.711000000</td>
<td>-2.303000000</td>
<td>-1.222000000</td>
</tr>
<tr>
<td>H</td>
<td>0.924000000</td>
<td>-1.205000000</td>
<td>-2.303000000</td>
</tr>
<tr>
<td>N</td>
<td>0.655000000</td>
<td>1.581000000</td>
<td>-1.302000000</td>
</tr>
<tr>
<td>H</td>
<td>0.087000000</td>
<td>2.425000000</td>
<td>-1.222000000</td>
</tr>
<tr>
<td>H</td>
<td>1.653000000</td>
<td>1.775000000</td>
<td>-1.222000000</td>
</tr>
<tr>
<td>H</td>
<td>0.581000000</td>
<td>1.403000000</td>
<td>-2.303000000</td>
</tr>
<tr>
<td>N</td>
<td>-0.45597008</td>
<td>1.70139627</td>
<td>1.23337100</td>
</tr>
<tr>
<td>H</td>
<td>-0.68758796</td>
<td>2.56564990</td>
<td>0.74499019</td>
</tr>
<tr>
<td>H</td>
<td>-1.29906323</td>
<td>1.57382641</td>
<td>1.79273929</td>
</tr>
<tr>
<td>H</td>
<td>0.33865756</td>
<td>2.01268782</td>
<td>1.79386487</td>
</tr>
<tr>
<td>N</td>
<td>1.70139627</td>
<td>-0.45597008</td>
<td>1.23337100</td>
</tr>
<tr>
<td>H</td>
<td>1.57350030</td>
<td>-1.29975880</td>
<td>1.79249260</td>
</tr>
<tr>
<td>H</td>
<td>2.56564980</td>
<td>-0.68758796</td>
<td>0.74499019</td>
</tr>
<tr>
<td>H</td>
<td>2.01265062</td>
<td>0.33898386</td>
<td>1.79294490</td>
</tr>
<tr>
<td>N</td>
<td>-1.24546189</td>
<td>-1.2454619</td>
<td>1.2333992</td>
</tr>
<tr>
<td>H</td>
<td>-1.87889181</td>
<td>-1.8789181</td>
<td>0.74491553</td>
</tr>
<tr>
<td>H</td>
<td>-0.71315632</td>
<td>-1.91215632</td>
<td>1.79311552</td>
</tr>
<tr>
<td>H</td>
<td>-1.71315632</td>
<td>-0.71315632</td>
<td>1.79311552</td>
</tr>
<tr>
<td>N</td>
<td>0.000000000</td>
<td>0.000000000</td>
<td>2.300000000</td>
</tr>
<tr>
<td>H</td>
<td>0.71508151</td>
<td>0.71158102</td>
<td>2.65666635</td>
</tr>
<tr>
<td>H</td>
<td>-0.97378806</td>
<td>0.26348799</td>
<td>2.65666635</td>
</tr>
<tr>
<td>H</td>
<td>0.25870656</td>
<td>-0.97506906</td>
<td>2.65666686</td>
</tr>
</tbody>
</table>

Table S27. Atomic coordinates for the APFD Co(NH\(_3\))\(_6\)•NH\(_3\) \(\phi = 45^\circ\) model.

<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>0.000000000</td>
<td>0.000000000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>N</td>
<td>-1.415000000</td>
<td>-0.817000000</td>
<td>-1.397000000</td>
</tr>
<tr>
<td>H</td>
<td>-1.482000000</td>
<td>-1.835000000</td>
<td>-1.373000000</td>
</tr>
<tr>
<td>H</td>
<td>-2.330000000</td>
<td>-0.366000000</td>
<td>-1.373000000</td>
</tr>
<tr>
<td>H</td>
<td>-1.164000000</td>
<td>-0.672000000</td>
<td>-2.375000000</td>
</tr>
<tr>
<td>N</td>
<td>1.415000000</td>
<td>-0.817000000</td>
<td>-1.397000000</td>
</tr>
<tr>
<td>H</td>
<td>2.330000000</td>
<td>-0.366000000</td>
<td>-1.373000000</td>
</tr>
<tr>
<td>H</td>
<td>1.482000000</td>
<td>-1.835000000</td>
<td>-1.373000000</td>
</tr>
<tr>
<td>H</td>
<td>1.164000000</td>
<td>-0.672000000</td>
<td>-2.375000000</td>
</tr>
<tr>
<td>N</td>
<td>0.000000000</td>
<td>1.634000000</td>
<td>-1.397000000</td>
</tr>
<tr>
<td>H</td>
<td>-0.848000000</td>
<td>2.201000000</td>
<td>-1.373000000</td>
</tr>
<tr>
<td>H</td>
<td>0.848000000</td>
<td>2.201000000</td>
<td>-1.373000000</td>
</tr>
<tr>
<td>atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>H</td>
<td>0.00000000</td>
<td>1.34400000</td>
<td>-2.37500000</td>
</tr>
<tr>
<td>N</td>
<td>-1.24495737</td>
<td>1.24495737</td>
<td>1.23281032</td>
</tr>
<tr>
<td>H</td>
<td>-1.86340604</td>
<td>1.86340604</td>
<td>0.70785652</td>
</tr>
<tr>
<td>H</td>
<td>-1.92828655</td>
<td>0.72928655</td>
<td>1.78862129</td>
</tr>
<tr>
<td>H</td>
<td>-0.72928655</td>
<td>1.92828655</td>
<td>1.78862129</td>
</tr>
<tr>
<td>N</td>
<td>1.70077316</td>
<td>0.45591068</td>
<td>1.23293881</td>
</tr>
<tr>
<td>H</td>
<td>2.03475126</td>
<td>-0.33266259</td>
<td>1.78785036</td>
</tr>
<tr>
<td>H</td>
<td>2.54553138</td>
<td>0.68235727</td>
<td>0.70794882</td>
</tr>
<tr>
<td>H</td>
<td>1.59528557</td>
<td>1.30621259</td>
<td>1.78760360</td>
</tr>
<tr>
<td>N</td>
<td>-0.45591068</td>
<td>-1.70077316</td>
<td>1.23293881</td>
</tr>
<tr>
<td>H</td>
<td>-0.68235727</td>
<td>-2.54553138</td>
<td>0.70794882</td>
</tr>
<tr>
<td>H</td>
<td>0.33266259</td>
<td>-2.03475126</td>
<td>1.78785036</td>
</tr>
<tr>
<td>H</td>
<td>-1.30621259</td>
<td>-1.59528557</td>
<td>1.78760360</td>
</tr>
<tr>
<td>H</td>
<td>0.26119965</td>
<td>0.97440436</td>
<td>2.65666635</td>
</tr>
<tr>
<td>H</td>
<td>-0.97445869</td>
<td>-0.26099690</td>
<td>2.65666635</td>
</tr>
<tr>
<td>H</td>
<td>0.71325907</td>
<td>-0.71340749</td>
<td>2.65666686</td>
</tr>
<tr>
<td>N</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>2.30000000</td>
</tr>
</tbody>
</table>

Table S28. Atomic coordinates for the APFD Co(NH₃)₆•NH₃ φ = 52.5° model.
<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>2.30000000</td>
</tr>
<tr>
<td>H</td>
<td>0.71414198</td>
<td>0.71252393</td>
<td>2.65666635</td>
</tr>
<tr>
<td>H</td>
<td>-0.97413488</td>
<td>0.26220288</td>
<td>2.65666635</td>
</tr>
<tr>
<td>H</td>
<td>0.25999291</td>
<td>-0.97472685</td>
<td>2.65666686</td>
</tr>
</tbody>
</table>

Table S29. Atomic coordinates for the APFD Co(NH$_3$)$_6$•NH$_3$ $\phi = 60^\circ$ model.

<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>N</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>2.15000000</td>
</tr>
<tr>
<td>N</td>
<td>2.15000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>N</td>
<td>-2.15000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>N</td>
<td>0.00000000</td>
<td>-2.15000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>N</td>
<td>0.00000000</td>
<td>2.15000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>N</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>-2.15000000</td>
</tr>
<tr>
<td>H</td>
<td>-0.89900000</td>
<td>-0.24100000</td>
<td>2.56900000</td>
</tr>
<tr>
<td>H</td>
<td>0.65800000</td>
<td>-0.65800000</td>
<td>2.56900000</td>
</tr>
<tr>
<td>H</td>
<td>0.24100000</td>
<td>0.89900000</td>
<td>2.56900000</td>
</tr>
<tr>
<td>H</td>
<td>2.56900000</td>
<td>0.89900000</td>
<td>0.24100000</td>
</tr>
<tr>
<td>H</td>
<td>2.56900000</td>
<td>-0.65800000</td>
<td>0.65800000</td>
</tr>
<tr>
<td>H</td>
<td>2.56900000</td>
<td>-0.24100000</td>
<td>-0.89900000</td>
</tr>
<tr>
<td>H</td>
<td>-2.56900000</td>
<td>-0.65813448</td>
<td>0.65813448</td>
</tr>
<tr>
<td>H</td>
<td>-2.56900000</td>
<td>0.89881630</td>
<td>0.24095075</td>
</tr>
<tr>
<td>H</td>
<td>-2.56900000</td>
<td>-0.24068181</td>
<td>-0.89908524</td>
</tr>
<tr>
<td>H</td>
<td>0.24100000</td>
<td>-2.56900000</td>
<td>-0.89900000</td>
</tr>
<tr>
<td>H</td>
<td>0.65800000</td>
<td>-2.56900000</td>
<td>0.65800000</td>
</tr>
<tr>
<td>H</td>
<td>-0.89900000</td>
<td>-2.56900000</td>
<td>0.24100000</td>
</tr>
<tr>
<td>H</td>
<td>0.24068181</td>
<td>2.56900000</td>
<td>-0.89908524</td>
</tr>
<tr>
<td>H</td>
<td>-0.89881630</td>
<td>2.56900000</td>
<td>0.24095075</td>
</tr>
<tr>
<td>H</td>
<td>0.65813448</td>
<td>2.56900000</td>
<td>0.65813448</td>
</tr>
<tr>
<td>H</td>
<td>-0.89908524</td>
<td>-0.24068181</td>
<td>-2.56900000</td>
</tr>
<tr>
<td>H</td>
<td>0.24095075</td>
<td>0.89881630</td>
<td>-2.56900000</td>
</tr>
<tr>
<td>H</td>
<td>0.65813448</td>
<td>-0.65813448</td>
<td>-2.56900000</td>
</tr>
<tr>
<td>H</td>
<td>-1.18011318</td>
<td>2.37729341</td>
<td>-1.18011300</td>
</tr>
<tr>
<td>H</td>
<td>-1.18011318</td>
<td>1.18011300</td>
<td>-2.37729341</td>
</tr>
<tr>
<td>H</td>
<td>-2.37729341</td>
<td>1.18011309</td>
<td>-1.18011309</td>
</tr>
<tr>
<td>N</td>
<td>-1.32790562</td>
<td>1.32790562</td>
<td>-1.32790562</td>
</tr>
</tbody>
</table>
References