Supporting Information

Alkali Metal and Stoichiometric Effects in Intermolecular Hydroamination Catalysed by Lithium, Sodium and Potassium Magnesiates

Laia Davin, Alberto Hernán-Gómez, Calum McLaughlin, Alan R. Kennedy, Ross McLellan and Eva Hevia*

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019
<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{54}H_{108}Mg_2N_6Na_2O_6</td>
<td>C_{32}H_{72}Mg_1N_8Na_2</td>
</tr>
<tr>
<td>Mol. Mass</td>
<td>1032.06</td>
<td>639.26</td>
</tr>
<tr>
<td>Crystal system</td>
<td>triclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>a/ Å</td>
<td>11.6474(5)</td>
<td>10.4760(14)</td>
</tr>
<tr>
<td>b/ Å</td>
<td>11.7398(7)</td>
<td>19.224(2)</td>
</tr>
<tr>
<td>c/ Å</td>
<td>23.4025(8)</td>
<td>19.864(2)</td>
</tr>
<tr>
<td>α/ °</td>
<td>100.805(4)</td>
<td>90</td>
</tr>
<tr>
<td>β/ °</td>
<td>94.008(3)</td>
<td>93.733(10)</td>
</tr>
<tr>
<td>γ/ °</td>
<td>106.319(4)</td>
<td>90</td>
</tr>
<tr>
<td>V/ Å³</td>
<td>2991.0(2)</td>
<td>3991.9(8)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>λ/ Å</td>
<td>1.5418</td>
<td>0.71073</td>
</tr>
<tr>
<td>Measured reflections</td>
<td>43397</td>
<td>19600</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>11830</td>
<td>7810</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.0316</td>
<td>0.0781</td>
</tr>
<tr>
<td>Observed rflns [I>2σ(I)]</td>
<td>9231</td>
<td>4183</td>
</tr>
<tr>
<td>GooF</td>
<td>1.020</td>
<td>1.011</td>
</tr>
<tr>
<td>R [on F, obs rflns only]</td>
<td>0.0578</td>
<td>0.0711</td>
</tr>
<tr>
<td>ωR [on F^2, all data]</td>
<td>0.1752</td>
<td>0.2205</td>
</tr>
<tr>
<td>Largest diff. Peak/hole. e/ Å³</td>
<td>0.486 / -0.363</td>
<td>0.613 / -0.381</td>
</tr>
</tbody>
</table>

Figure S1 X-ray diffraction structures of 15-18. 17 and 18 provide general connectivity information only, due to poor data quality.
Catalysis - NMR Spectra

Figure S2 Hydroamination of diphenylacetylene with piperidine, catalysed by LiMg(CH$_2$SiMe$_3$)$_3$ (1) (5 mol%) in d_8-THF.

Figure S3 Hydroamination of diphenylacetylene with piperidine, catalysed by NaMg(CH$_2$SiMe$_3$)$_3$ (2) (5 mol%) in d_8-THF.
Figure S4 Hydroamination of diphenylacetylene with piperidine, catalysed by KMg(CH₂SiMe₃)₃ (3) (5 mol%) in d₈-THF.

Figure S5 Hydroamination of diphenylacetylene with piperidine, catalysed by NaMg(CH₂SiMe₃)₃ (2) (10 mol%) in d₈-THF.
Figure S6 Hydroamination of diphenylacetylene with piperidine, catalysed by NaMg(CH$_2$SiMe$_3$)$_3$ (2) (2 mol%) in d_8-THF.

Figure S7 Hydroamination of diphenylacetylene with piperidine, catalysed by [(TMEDA)$_2$Li$_2$Mg(CH$_2$SiMe$_3$)$_4$] (5) (5 mol%) in d_8-THF.
Figure S8 Hydroamination of diphenylacetylene with piperidine, catalysed by \([\text{TMEDA}]_2\text{Na}_2\text{Mg(CH}_2\text{SiMe}_3)_4\) (6) (5 mol%) in \(d_8\)-THF.

Figure S9 Hydroamination of diphenylacetylene with piperidine, catalysed by \([\text{PMDTA}]_2\text{K}_2\text{Mg(CH}_2\text{SiMe}_3)_4\) (7) (5 mol%) in \(d_8\)-THF.
Figure S10 Hydroamination of diphenylacetylene with piperidine, catalysed by \([\text{PMDTA}]_2\text{K}_2\text{Mg(CH}_2\text{SiMe}_3)_4\] (7) (5 mol\%) and 10 mol\% of 18-crown-6 in \(d_8\)-THF.

Figure S11 Hydroamination of diphenylacetylene with pyrrolidine, catalysed by \([\text{PMDTA}]_2\text{K}_2\text{Mg(CH}_2\text{SiMe}_3)_4\] (7) (5 mol\%) in \(d_8\)-THF.
Figure S12 Hydroamination of diphenylacetylene with morpholine, catalysed by
[(PMDTA)$_2$K$_2$Mg(CH$_2$SiMe$_3$)$_4$] (7) (5 mol%) in d_8-THF.

Before catalyst addition

24 h room temp

Figure S13 Hydroamination of diphenylacetylene with dibenzylamine, catalysed by
[(PMDTA)$_2$K$_2$Mg(CH$_2$SiMe$_3$)$_4$] (7) (5 mol%) in d_8-THF.

Before catalyst addition

24 h 80 °C
Figure S14 Hydroamination of diphenylacetylene with diphenylamine, catalysed by [(PMDTA)$_2$K$_2$Mg(CH$_2$SiMe$_3$)$_4$] (7) (5 mol%) in d_8-THF.

Figure S15 Hydroamination of styrene with piperidine, catalysed by [(PMDTA)$_2$K$_2$Mg(CH$_2$SiMe$_3$)$_4$] (7) (5 mol%) in d_8-THF.
Figure S16 Hydroamination of styrene with pyrrolidine, catalysed by [(PMDTA)$_2$K$_2$Mg(CH$_2$SiMe$_3$)$_4$] (7) (5 mol%) in d_8-THF.

Figure S17 Hydroamination of styrene with morpholine, catalysed by [(PMDTA)$_2$K$_2$Mg(CH$_2$SiMe$_3$)$_4$] (7) (5 mol%) in d_8-THF.
Amide complexes 15-18 NMR Spectra

Figure S18 1H NMR spectrum of $[\text{(THF)}_2\text{NaMg(NC}_5\text{H}_{10})_3]_2$ (15) in C$_6$D$_6$.

Figure S19 13C NMR spectrum of $[\text{(THF)}_2\text{NaMg(NC}_5\text{H}_{10})_3]_2$ (15) in C$_6$D$_6$.
Figure S20 1H NMR DOSY spectrum of [(THF)$_2${NaMg(NC$_5$H$_{10}$)$_3$}]$_2$ (15) in d_8-THF.

Figure S21 1H NMR spectrum of [(THF)$_3${KMg(NC$_5$H$_{10}$)$_3$}]$_2$ (16) in C$_6$D$_6$.
Figure S22 13C NMR spectrum of [(THF)$_3$K(Mg(NC$_{5}$H$_{10}$)$_3$)$_2$ (16) in C$_6$D$_6$.

Figure S23 1H NMR DOSY spectrum of [(THF)$_3$K(Mg(NC$_{5}$H$_{10}$)$_3$)$_2$ (16) in d$_8$-THF.
Figure S24 1H NMR spectrum of [(TMEDA)$_2$Na$_2$Mg(NC$_5$H$_{10}$)$_4$] (17) in C$_6$D$_6$.

Figure S25 13C NMR spectrum of [(TMEDA)$_2$Na$_2$Mg(NC$_5$H$_{10}$)$_4$] (17) in C$_6$D$_6$.
Figure S26 1H NMR spectrum of [(PMDETA)$_2$K$_2$Mg(NC$_5$H$_{10}$)$_4$] (18) in C$_6$D$_6$.

Figure S27 13C NMR spectrum of [(PMDETA)$_2$K$_2$Mg(NC$_5$H$_{10}$)$_4$] (18) in C$_6$D$_6$.