Immoblization of phosphotungstate through doping in polypyrrole

for supercapacitors

Zhihan Chang, Xiaoguang Sang*, Yu Song, Xiaoqi Sun, Xiao-Xia Liu*

Redox reactions of PW₁₂:

$$[PW_{12}O_{40}]^{3-} + e^{-} \Leftrightarrow [PW_{12}O_{40}]^{4-}$$
 R. S1

$$[PW_{12}O_{40}]^{4-} + e^{-} \leftrightarrows [PW_{12}O_{40}]^{5-}$$
 R. S2

$$[PW_{12}O_{40}]^{5-} + 2e^{-} + H^{+} \Leftrightarrow [HPW_{12}O_{40}]^{6-}$$
 R. S3

$$[PW_{12}O_{40}]^{5-} + e^{-} \Leftrightarrow [PW_{12}O_{40}]^{6-}$$
 R. S4

$$[PW_{12}O_{40}]^{6-} + e^{-} \Leftrightarrow [PW_{12}O_{40}]^{7-}$$
 R. S5

Calculations

1. Calculation for single electrode:

The areal (C_a) and specific (C_m) capacitance of a single electrode can be calculated from galvanostatic charge/discharge profile by the following equations:

$$C_{\rm a} = \frac{I \times \Delta t}{S \times \Delta U}$$
 equ. S1

Where C_a is the areal capacitance (mF cm⁻²), I (mA cm⁻²) is the galvanostatic charge/discharge current, Δt (s) is the discharge time, S (cm²) is the geometrical area of the electrode, ΔU (V) is the charge/discharge potential window.

$$C_{\rm m} = \frac{I \times \Delta t}{m \times \Delta U}$$
 equ. S2

Where $C_{\rm m}$ is the specific capacitance (F g⁻¹), *m* (g) is the mass of active material on the electrode.

2. Charge balance for ASC device:

The charge stored in cathode (Q^+) and anode (Q^-) should be balanced to maximize the performance of the assembled supercapacitor device by the relationship $Q^+ = Q^-$. The charge stored in each electrode depends on the areal capacitance (C_a) , the potential window (ΔU) and the geometrical area of each electrode (S) by the following equation:

$$Q = C_a \times \Delta U \times S$$
 equ. S3

Then the following equation can be deduced:

$$C_a^+ \times \Delta U^+ \times S^+ = C_a^- \times \Delta U^- \times S^-$$
 equ. S4

3. Calculations for ASC device:

The volumetric capacitance of an ASC device can also be calculated from galvanostatic charge/discharge profile by the following equation:

$$C_v = \frac{I \times \Delta t}{V \times U}$$
 equ. S5

Where C_v is the volumetric capacitance (F cm⁻³), *I* is the galvanostatic charge/discharge current, Δt (s) is the discharge time, V (cm³) is the volume of the whole ASC device and *U* is the operating voltage.

The volumetric capacitance of an ASC device can be calculated from cyclic voltammetry profile by the following equation:

$$C_v^{mv} = \frac{\int i(U)dU}{v \times V \times U} \qquad \text{equ. S6}$$

Where C_v^{mv} is the volumetric capacitance (F cm⁻³), V (cm³) is the volume of the whole ASC device, v is the scan rate, U is the potential window in the CV curves, and i(U) is the voltammetry current on the profile.

The energy density (E, mWh cm⁻³) and power density (P, mW cm⁻³) of an ASC device can be calculated by the following equations:

$$E = \frac{1000}{2 \times 3600} C_v U^2 \qquad \text{equ. S7}$$
$$P = \frac{3600 \times E}{t} \qquad \text{equ. S8}$$

Where C_v is the volumetric capacitance (F cm⁻³), U (V) is the operating voltage and Δt (s) is the discharge time.

Figures

Fig. S1. CV profiles of PW_{12} anions in neutral solution (a) and acidic solution (b), together with that of ECNT-PPy/5PW₁₂ in neutral solution (c) at a scan rate of 5 mV s⁻¹.

Fig. S2. TEM and elemental mapping images of ECNT-PPy/5PW₁₂.

Fig. S3. N 1s XPS core level spectra of UCNT-PPy.

Fig. S4. CV profiles of ECNT-PPy/5PW₁₂ in the potential window of -1.2 to 0.8 V vs. SCE at a scan rate of 5 mV s⁻¹.

Fig. S5. Galvanostatic discharge profile of ECNT-PPy/5PW₁₂ at a current density of 1 mA cm^{-2} .

Fig. S6. CV profiles at 5 mV s⁻¹ of ECNT-PPy/5PW₁₂, UCNT-PPy/5PW₁₂ and ECNT/PPy

Fig. S7. Galvanostatic charge/discharge curves of ECNT-PPy/5PW₁₂ and UCNT-PPy/5PW₁₂ at different current densities.

Table. S1. Capacitive performances of recently reported PW ₁₂ based composite materials an	d			
electrochemically fabricated composites of PPy and CNT film				

Materials	Capacitance	Rate capability
Cu-MOF/PPy/PW ₁₂ ¹	$1.09 \text{ F cm}^{-2} (0.5 \text{ mA cm}^{-2})$	$68.8\% (0.5-2.5 \text{ mA cm}^{-2})$
biochar carbon/PW ₁₂ ²	$1.19 \text{ F cm}^{-2} (10 \text{ mV s}^{-1})$	70% (10 -200 mV s ⁻¹)
PW ₁₂ /PPy/rGO ³	295 F g^{-1} (1 A g^{-1})	$55\% (1-20 \text{ Ag}^{-1})$
Polypyrrole nano-pipes/PW ₁₂ ⁴	$434 \text{ mF cm}^{-2} (2 \text{ mA cm}^{-2})$	$63\% (2-20 \text{ mA cm}^{-2})$
CNT/PPy ⁵	$637 \text{ mF cm}^{-2} (1 \text{ mA cm}^{-2})$	$75\% (1-40 \text{ mA cm}^{-2})$
CNT/PPy ⁶	$280 \text{ mF cm}^{-2} (1.4 \text{ mA cm}^{-2})$	$43\% (1.4 - 14 \text{ mA cm}^{-2})$
This work	$1300.0 \text{ mF cm}^{-2} (1 \text{ mA cm}^{-2})$	$78.6\% (1-40 \text{ mA cm}^{-2})$

Fig. S8. Galvanostatic charge/discharge curves of ECNT-PPy/2.5PW₁₂ (a) and ECNT-PPy/10PW₁₂ (b) at different current densities and areal capacitance of ECNT-PPy/2.5PW₁₂, ECNT-PPy/10PW₁₂ and ECNT-PPy/10PW₁₂ at various current densities ranging from 1 to 40 mA cm⁻² (c).

Fig. S9. SEM images of CNT-MnO₂ (a), Mn 3s (b) and Mn 2p (c) XPS core level spectra of CNT-MnO₂ and XRD patterns of CNT and CNT-MnO₂ (d).

Fig. S10. (a) CV profiles of CNT-MnO₂ at 30 mV s⁻¹; (b) Galvanostatic charge/discharge curves of CNT/MnO₂ at different current density; (c) Areal capacitance of CNT-MnO₂ at various current densities ranging from 1 to 20 mA cm⁻².

From SEM images of CNT-MnO₂ shown in Fig. S9a, it could be seen that MnO₂ existed in assembled nanosheets. This could facilitate the penetration of electrode in the active materials for fast faradic reactions. The oxidation state of manganese could be estimated from the spin-energy separation (DE) of Mn 3s signal in XPS spectrum. CNT-MnO₂ displayed a DE of 4.78 eV in its

Mn 3s XPS core level spectrum (Fig. S9b), indicating that the manganese exists in its +4 oxidation state,^{7,8} In the Mn 2p XPS core level spectrum of CNT-MnO₂, Mn 2p_{3/2} and Mn 2p_{1/2} signals appeared at 642.3 and 654.0 eV, respectively with a DE of 11.7 eV (Fig. S9c). This was in accordance with previously reported MnO_2 .^{9, 10} The crystal structure of MnO_2 was characterized by XRD. The characteristic diffractions in the XRD pattern (Fig. S9d) could be indexed to (021) and (061) planes of the birnessite-type MnO_2 (JCPDS 14-0644)¹¹, respectively.

To investigate the electrochemical performances of CNT-MnO₂, electrochemical measures were conducted in a three-electrode system containing 5 M LiCl electrolyte (Fig. S10). Galvanostatic charge/discharge profiles at different current densities are shown in Fig. S10b. The charge profiles were quite symmetric to the discharge ones, demonstrating a good rate capability for CNT-MnO₂. The areal capacitances could be calculated through equ. S1-2, based on the galvanostatic charge/discharge experiments. CNT-MnO₂ displayed an areal capacitance of 1380 mF cm⁻² at a current density of 1 mA cm⁻², and a specific capacitance of 336.58 F g⁻¹ at 0.24 A g⁻¹, 60% of its capacitance can be retained when the current density increases 20 times to 20 mA cm⁻² (Fig. S10c).

References

- 1. H.-N. Wang, M. Zhang, A. -M. Zhang, F.-C. Shen, X.-K. Wang, S.-N. Sun, Y.-J. Chen and Y.-Q. Lan, ACS Applied Materials & Interfaces, 2018, **10**, 32265-32270.
- 2. M. Genovese and K. Lian, *Journal of Materials Chemistry A*, 2017, **5**, 3939-3947.
- 3. Y. Chen, M. Han, Y. Tang, J. Bao, S. Li, Y. Lan and Z. Dai, *Chemical Communications*, 2015, **51**, 12377-12380.
- 4. D. P. Dubal, B. Ballesteros, A. A. Mohite and P. Gómez-Romero, *ChemSusChem*, 2016, **10**, 731-737.
- 5. Q. Tang, M. Chen, C. Yang, W. Wang, H. Bao and G. Wang, *ACS Applied Materials & Interfaces*, 2015, **7**, 15303-15313.
- 6. Y. Chen, L. Du, P. Yang, P. Sun, X. Yu and W. Mai, *Journal of Power Sources*, 2015, 287, 68-74.
- 7. L. Bao and X. Li, *Advanced Materials*, 2012, **24**, 3246-3252.
- 8. L. Du, P. Yang, X. Yu, P. Liu, J. Song and W. Mai, *Journal of Materials Chemistry A*, 2014, **2**, 17561-17567.
- 9. B. Wei, L. Wang, Q. Miao, Y. Yuan, P. Dong, R. Vajtai and W. Fei, *Carbon*, 2015, **85**, 249-260.
- 10. Z. Lei, J. Zhang and X. -S. Zhao, *Journal of Materials Chemistry*, 2012, **22**, 153-160.
- 11. S. Chou, F. Cheng and J. Chen, *Journal of Power Sources*, 2006, **162**, 727-734.