Electronic Supporting Information

Defective Fe$^{3+}$ self-doped spinel ZnFe$_2$O$_4$ with oxygen vacancies for highly efficient electrochemical water splitting

Jianmin Wang1, Yunan Wang1*, Xinchao Xv1, Yan Chen1, Xi Yang1, Jun Zhou1, Song Li1, Feng Cao1, Gaowu Qin1,2

1Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
2Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China

*caof@atm.neu.edu.cn
*qingw@smm.neu.edu.cn

‡ These authors contributed equally.

Experimental section

Preparation of samples

Pure ZnFe$_2$O$_4$ photoanodes were synthesized by a fast and effective spin-coating method. In a typical process, 1 mM of Zn(NO$_3$)$_2$ and 2 mM of Fe(NO$_3$)$_3$·9H$_2$O dissolved in a mixed solution containing ethanol and DI water. And then 1 g of PEG-400 was added into the solution with stirring for 30 min. To create films, the precursor solutions were spin coated onto FTO substrates with spun for 20 s at 3000 rpm. And the films were subsequently annealed in air at 600 °C for 2 h.

Fe$^{3+}$ self-doped ZnFe$_2$O$_4$ photoanodes with different doping concentrations were synthesized through constructing non-stoichiometric ZnFe$_2$O$_4$ and varying the ratio of Zn/Fe, and subsequent the same process with that of pure ZnFe$_2$O$_4$. Moreover, the samples with Zn/Fe=0.9/2.1, 0.93/2.07, 0.96/2.04 and 0.99/2.01 were successfully prepared and labeled as (Zn$_{1-x}$Fe$_x$)Fe$_2$O$_4$ (x=0.1), (Zn$_{1-x}$Fe$_x$)Fe$_2$O$_4$ (x=0.07), (Zn$_{1-x}$Fe$_x$)Fe$_2$O$_4$ (x=0.04) and (Zn$_{1-x}$Fe$_x$)Fe$_2$O$_4$ (x=0.01), respectively. Notably, (Zn$_{1-x}$Fe$_x$)Fe$_2$O$_4$ (x=0.1) was taken as an example to exhibit the advantages of self-doping treatment for photoelectrochemical performances of materials. So, (Zn$_{1-x}$Fe$_x$)Fe$_2$O$_4$ mentioned in the paper without specific x value refers to (Zn$_{1-x}$Fe$_x$)Fe$_2$O$_4$ (x=0.1).

ZnFe$_2$O$_4$ with oxygen vacancies were fabricated via subsequent hydrogen reduction treatment at 200 °C under a flow of 5% H$_2$ and 95% Ar for 30 min for initial
ZnFe$_2$O$_4$ or Fe$^{3+}$ self-doped ZnFe$_2$O$_4$, which were labeled as ZnFe$_2$O$_{4-y}$ and (Zn$_{1-x}$Fe$_x$)Fe$_2$O$_{4-y}$, respectively. Moreover, to vary the concentrations of the oxygen vacancies, the hydrogen reduction treatment was also carried out for 10 min, 60 min and 120 min, respectively. Notably, ZnFe$_2$O$_{4-y}$-30 min and (Zn$_{1-x}$Fe$_x$)Fe$_2$O$_{4-y}$-30 min were taken as examples to exhibit the advantages of oxygen vacancies for photoelectrochemical performances of materials. So, ZnFe$_2$O$_{4-y}$ and (Zn$_{1-x}$Fe$_x$)Fe$_2$O$_{4-y}$ mentioned in the paper without specific hydrogen reduction treatment durations refer to ZnFe$_2$O$_{4-y}$-30 min and (Zn$_{1-x}$Fe$_x$)Fe$_2$O$_{4}$-30 min.

Characterizations

The structures of the samples were measured by X-ray diffraction (XRD, Rigaku-D/max 2500V, Cu Kα radiation). The morphologies were observed by using field emission scanning electron microscopy (FE-SEM, JEOL JEM-7100F). The optical abilities were measured via UV visible spectrophotometer with an integrating sphere (PerkinElmer Lambda 750S) in the range of 400-800 nm. The composition and surface electronic state of elements were investigated by X-ray photoelectron spectroscopy (XPS).

PEC performance measurements

PEC properties were evaluated with a standard three electrodes system with Hg/HgO as the reference electrode, Pt mesh as counter electrode and the as-prepared photoanode as working electrode. A 1 M NaOH aqueous solution after saturated with nitrogen gas for 30 min was used as electrolytes. A 300W xenon lamp (Perfect Light, PLS-SXE300) with an AM1.5 filter was used to simulate the solar irradiation spectra, and the power was calibrated to 100 mW cm$^{-2}$. The applied voltage was swept in the range of 0.5-1.7 V vs. RHE with a scan rate of 10 mV s$^{-1}$. Mott-Schottky analysis was performed by sweeping the range of 0.4-1.0 V vs. RHE with an AC frequency of 10 kHz and an amplitude of 10 mV under dark condition. The electrochemical impedance spectroscopy (EIS) was measured at a DC potential of 1.23 V vs. RHE and in the AC potential frequency range of 100 kHz-100 mHz with an amplitude of 10 mV. O$_2$ evolution experiment was conducted at 1.23 V vs. RHE under AM1.5 illumination in 1 M NaOH. The amounts of evaluated O$_2$ were measured via Dissolved oxygen meters.
It is worthwhile to note that the electrolyte should be bubbled with highly pure N\textsubscript{2} for 30 min to remove the dissolved oxygen before the measurement, and the cell should be carefully sealed.

Fig. S1 XRD patterns of (a) obtained samples of ZnFe\textsubscript{2}O\textsubscript{4} with hydrogen reduction treatment for different durations, (b) ZnFe\textsubscript{2}O\textsubscript{4} with different Fe3+ self-doped concentrations and (c) obtained samples of ZnFe\textsubscript{2}O\textsubscript{4} with different Fe3+ self-doped concentrations and subsequent hydrogen reduction treatment for 30 min.

Fig. S2 SEM images of (a) ZnFe\textsubscript{2}O\textsubscript{4-y}–10 min, obtained samples of ZnFe\textsubscript{2}O\textsubscript{4} with hydrogen reduction treatment for 10 min, (b) (Zn\textsubscript{1-x}Fe\textsubscript{x})Fe\textsubscript{2}O\textsubscript{4}, Fe3+ self-doped ZnFe\textsubscript{2}O\textsubscript{4} through varying the ratio of Zn/Fe from 1/2 (x=0) to 0.93/2.07 (x=0.07), (c) (Zn\textsubscript{1-x}Fe\textsubscript{x})Fe\textsubscript{2}O\textsubscript{4}–30 min, obtained samples of (Zn\textsubscript{1-x}Fe\textsubscript{x})Fe\textsubscript{2}O\textsubscript{4} with hydrogen reduction treatment for 30 min.
\(x \text{Fe}_x \text{Fe}_2 \text{O}_{4-y} \) 30 min (\(x=0.07 \)) and (d) \((\text{Zn}_{1-x} \text{Fe}_x) \text{Fe}_2 \text{O}_4 \) 60 min (\(x=0.04 \)).

Fig. S3 (a) Photocurrent density-potential curves of \(\text{ZnFe}_2 \text{O}_4 \) with different oxygen vacancy concentrations through varying the hydrogen reduction treatment durations. (b) Photocurrent density of \(\text{ZnFe}_2 \text{O}_4 \) with different \(\text{Fe}^{3+} \) self-doping concentrations. (c) Photocurrent density of \(\text{ZnFe}_2 \text{O}_4 \) with different \(\text{Fe}^{3+} \) self-doping concentrations and hydrogen reduction treatment for 30 min, respectively.

Fig. S4 Mott-Schottky plots of \(\text{ZnFe}_2 \text{O}_4 \) with different \(\text{Fe}^{3+} \) self-doping concentrations obtained at the frequency of 1 kHz and amplitude of 0.01 V under dark conditions.
Figure S5 The time course of O$_2$ evolution over the as-prepared (Zn$_{1-x}$Fe$_x$)$_2$O$_{4-y}$ (x=0.1).

Figure S6 (a) A zoom of traces of (Zn$_{1-x}$Fe$_x$)$_2$O$_4$ and (Zn$_{1-x}$Fe$_x$)$_2$O$_{4-y}$ in the Mott-Schottky plots. (b) The Mott-Schottky plots of Zn$_{1-x}$Fe$_x$Fe$_2$O$_4$ measured at different frequencies.