Supporting information

Cu(II) templated formation of \([n]\)Pseudorotaxanes (\(n= 2,3,4\)) using a tris-amino ether macrocyclic wheel and multidentate axles

Somnath Bej, Mandira Nandi, Tamal Kanti Ghosh and Pradyut Ghosh*

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India. E-mail: icpg@iacs.res.in

List of contents

- X-ray crystallographic data details………………………………………………………..S3
- Calculation of Association Constants………………………………………………………..S3
- Synthesis route of \textbf{NaphMC} (Scheme 1S)……………………………………………S4
- Synthetic route of \textbf{Phen-Acid} (Scheme 2S)……………………………………………..S4
- Characterization of compound \textbf{A} (Figure 1S- Figure 3S)…………………………..S5-S6
- Characterization of \textbf{L2} (Figure 4S- Figure 6S)………………………………………..S6-S7
- Characterization of compound \textbf{B} (Figure 7S- Figure 9S)…………………………….S8-S9
- Characterization of \textbf{L3} (Figure 10S- Figure 12S)…………………………………….S9-S10
- Synthetic route of \textbf{NaphMC-Cu(II)} complex (Scheme 3S)…………………………..S11
- ESI-MS spectra of [2], [3], [4]pseudorotaxanes (Figure 13S- Figure 15S)…. S11-S12
- Equivalent plots of [2], [3], [4]pseudorotaxanes (Figure 16S- Figure 18S)…. S13-S14
- Molar ratio plots of [2], [3], [4]pseudorotaxanes (Figure 19S- Figure 21S)…S14-S15
- Characteristic UV/Vis and emission spectra of [n]Pseudorotaxanes (Figure 22S)..S16
- Nonlinear curve fitting plot for the formation of [2]pseudorotaxane (Figure 23S)..S16
- Nonlinear curve fitting plot for the formation of [3]pseudorotaxane (Figure 24S)..S17
- Crystallographic details (Table 1S and Figure 25S- Figure27S)…………………..S17-S19
- EPR spectra of [2], [3], [4]pseudorotaxanes (Figure 28S- Figure 30S)………………S20
- Synthetic route of \textbf{L4} (Scheme 4S)…………………………………………………………S21
- Characterization of compound \textbf{C} (Figure 31S- Figure 32S)…………………..S21-S22
- Characterization of \textbf{L4} (Figure 33S- Figure 35S)…………………………………S22-S23
ESI-MS spectrum of L4 axle based threaded molecule (Figure 36S).................S24
UV/Vis titration profile between L4 with NaphMC-Cu(II) (Figure 37S)..............S24
Molar ratio plot of titration between L4 with NaphMC-Cu(II) (Figure 38S).......S25
IR spectra of [2], [3] and [4] pseudorotaxanes (Figure 39S- Figure 41S)...........S25-S26
Synthetic route of NaphMC-Ni(II) complex (Scheme 5S).................................S27
ESI-MS spectrum of NaphMC-Ni(II) complex (Figure 42S)...............................S27
Synthetic route of Ni(II) based Pseudorotaxane (Scheme 6S).........................S28
ESI-MS spectra of Ni(II) based pseudorotaxane (Figure 43S- Figure 45S)..........S28-S29
UV/Vis titration of Ni(II) based pseudorotaxanes (Figure 46S- Figure 48S)......S30-S31
Molar ratio of Ni(II) based pseudorotaxanes (Figure 49S- Figure 51S).............S31-S32
Characteristic UV/Vis spectra of Ni(II) based pseudorotaxanes (Figure 52S)......S33
References..S34
X-ray crystallographic data details:

All the X-ray crystallographic details of \([\text{[CuPR]}_2]^{2+}\) were given in Table 1S. Single green block-shaped crystals of \([\text{[pseudorotaxane][CuPR]}]^{2+}\) were obtained upon slow evaporation of a solution of \([\text{[CuPR(CINO}_4)]_2\) and excess NaOTf in CH$_3$CN. A suitable crystal 0.06×0.03×0.02 mm3 was selected and mounted on a suitable support on a Bruker APEX-II CCD diffractometer using the SAINT/ SMART APEX II software.1, 2 The crystal was kept at a steady $T = 127$ K during data collection. The structure was solved with the ShelXT 2014/53 structure solution program using suitable methods and by using Olex24 as the graphical interface. The model was refined with version 2018/3 of ShelXL5 using Least Squares minimisation. SADABS6 was applied for empirical absorption corrections. PLATON7 and MERCURY 3.78 were used to generate graphical pictures of \([\text{[CuPR]}_2]^{2+}\).

Calculation of Association Constants:

The association constants were calculated from UV/Vis titration experiments by plotting the absorbance changes (ΔA) at a fixed λ value against the guest concentration by using nonlinear fitting of the curves. Equation 1 is used for 1:1 (host: guest) binding model:9

$$\Delta A = \left(\frac{A}{2+H} \right) \times \left\{ \left(G_0 + H_0 + \frac{1}{K} \right) - \sqrt{\left(G_0 + H_0 + \frac{1}{K} \right)^2 + 4G_0H_0} \right\} \ldots (1)$$

Where, $A =$ absorbance intensity value upon each addition of the guest, change in absorption intensity $\Delta A = (A - A_0)$, $[H]_0 =$ initial concentration of the host, $[G]_0 =$ initial concentration of the guest and K is the association constants.

Similarly, equations 2 is used for non-linear curve fitting of 1:2 (host: guest) binding model.10

$$\Delta A = \frac{A_{\Delta HG1}K_1[H]_0[G] + A_{\Delta HG2}K_1K_2[H]_0[G]^2}{1 + K_1[G] + K_1K_2[G]^2} \ldots \ldots \ldots \ldots \ldots \ldots . (2)$$

Where, K_1 and K_2 are the stepwise association constants.
Scheme 1S. Synthesis route of NaphMC11; (i) 1,2-dibromoethane, K\textsubscript{2}CO\textsubscript{3}, CH\textsubscript{3}CN, reflux; (ii) 1,2-dihydroxybenzene, K\textsubscript{2}CO\textsubscript{3}, CH\textsubscript{3}CN, reflux; (iii) diethylenetriamine, CH\textsubscript{2}Cl\textsubscript{2}-CH\textsubscript{3}OH, RT, 15h, NaBH\textsubscript{4}.

Scheme 2S. Synthetic route of Phen-Acid12 : (i) SeO\textsubscript{2}, dioxane, reflux; (ii) Conc. HNO\textsubscript{3}, reflux.
Figure 1S. 1H-NMR spectrum of compound A in CDCl$_3$ in 400 MHz at 298K.

Figure 2S. 13C-NMR spectrum of compound A in CDCl$_3$ in 100 MHz at 298K.
Figure 3S. ESI-MS(+) spectrum of compound A at 298K.

Figure 4S. 1H-NMR spectrum of L2 in CDCl$_3$ in 500 MHz at 298K.
Figure 5S. 13C-NMR spectrum of L2 in CDCl$_3$ in 100 MHz at 298K.

Figure 6S. ESI-MS(+ve) spectrum of L2 at 298K.
Figure 7S. 1H-NMR spectrum of compound B in CDCl$_3$ in 400 MHz at 298K.

Figure 8S. 13C-NMR spectrum of B in CDCl$_3$ in 100 MHz at 298K.
Figure 9S. ESI-MS(+) spectrum of compound B at 298K.

Figure 10S. 1H-NMR spectrum of L3 in CDCl$_3$ in 400 MHz at 298K.
Figure 11S. 13C-NMR spectrum of L3 in CDCl$_3$ in 100 MHz at 298K.

Figure 12S. ESI-MS(+ve) spectrum of L3 at 298K.
Scheme 3S. Synthetic route of NaphMC-Cu(II) complex

Figure 13S. ESI-MS(+ve) spectrum of [2]CuPR(ClO$_4$)$_2$ at 298K.
Figure 14S. ESI-MS(+ve) spectrum of [3]CuPR(ClO$_4$)$_4$ at 298K.

Figure 15S. ESI-MS(+ve) spectrum of [4]CuPR(ClO$_4$)$_6$ at 298K.
Figure 16S. Equivalence plot from UV/Vis titration experiment between L1 and NaphMC-Cu(II) complex.

Figure 17S. Equivalence plot from UV/Vis titration experiment between L2 and NaphMC-Cu(II) complex.
Figure 18S. Equivalence plot from UV/Vis titration experiment between L3 and NaphMC-Cu(II) complex.

Figure 19S. Molar ratio plot from UV/Vis titration experiment between L1 with NaphMC-Cu(II) solution.
Figure 20S. Molar ratio plot from UV/Vis titration experiment between L2 with NaphMC-Cu(II) solution.

Figure 21S. Molar ratio plot from UV/Vis titration experiment between L3 with NaphMC-Cu(II) solution.
Figure 22S. Characteristic (A) UV/Vis and (B) emission spectra of pseudorotaxanes: [2]CuPR(ClO$_4$)$_2$, [3]CuPR(ClO$_4$)$_4$ and [4]CuPR(ClO$_4$)$_6$ in CH$_3$CN at 298K.

Figure 23S. Nonlinear 1:1 curve fitting to determine binding constant from UV/Vis titration experiment between L1 with NaphMC-Cu(II) solution.

K = 3.08 x 106 M$^{-1}$
R2 > 99%
Figure 24S. Nonlinear 1:1 curve fitting to determine binding constant from UV/Vis titration experiment between L2 with NaphMC-Cu(II) solution.

Crystallographic details of ([2]CuPR)$_2^{2+}$

Figure 25S. Geometry around the Cu(II) center of ([2]CuPR)$_2^{2+}$ ($\tau = 0.638$).
Table 1S. Crystallographic data of ([2]CuPR)\(^{2+}\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>[2]pseudorotaxane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C(_{55})CuF(6)H({55})N(7)O({10})S(_2)</td>
</tr>
<tr>
<td>(D_{calc}/ \text{g cm}^{-3})</td>
<td>1.498</td>
</tr>
<tr>
<td>(\mu/\text{mm}^{-1})</td>
<td>0.570</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>1215.72</td>
</tr>
<tr>
<td>Colour</td>
<td>GREEN</td>
</tr>
<tr>
<td>Shape</td>
<td>block</td>
</tr>
<tr>
<td>Size/mm(^3)</td>
<td>0.06x0.03x0.02</td>
</tr>
<tr>
<td>(T/K)</td>
<td>127(2)</td>
</tr>
<tr>
<td>Crystal System</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Flack Parameter</td>
<td>0.474(17)</td>
</tr>
<tr>
<td>Hooft Parameter</td>
<td>0.487(9)</td>
</tr>
<tr>
<td>Space Group</td>
<td>(P2_1)</td>
</tr>
<tr>
<td>(a/\text{Å})</td>
<td>14.630(4)</td>
</tr>
<tr>
<td>(b/\text{Å})</td>
<td>15.523(4)</td>
</tr>
<tr>
<td>(c/\text{Å})</td>
<td>24.015(7)</td>
</tr>
<tr>
<td>(\alpha^\circ)</td>
<td>90</td>
</tr>
<tr>
<td>(\beta^\circ)</td>
<td>98.701(9)</td>
</tr>
<tr>
<td>(\gamma^\circ)</td>
<td>90</td>
</tr>
<tr>
<td>(V/\text{Å}^3)</td>
<td>5391(2)</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
</tr>
<tr>
<td>(Z')</td>
<td>2</td>
</tr>
<tr>
<td>Wavelength/Å</td>
<td>0.71073</td>
</tr>
<tr>
<td>Radiation type</td>
<td>MoK(_\alpha)</td>
</tr>
<tr>
<td>(\theta_{min})^\circ</td>
<td>2.192</td>
</tr>
<tr>
<td>(\theta_{max})^\circ</td>
<td>25.026</td>
</tr>
<tr>
<td>Measured Refl.</td>
<td>45000</td>
</tr>
<tr>
<td>Independent Refl.</td>
<td>18637</td>
</tr>
<tr>
<td>Reflections with I > 2(I)</td>
<td>14949</td>
</tr>
<tr>
<td>(R_{int})</td>
<td>0.0917</td>
</tr>
<tr>
<td>Parameters</td>
<td>1488</td>
</tr>
<tr>
<td>Restraints</td>
<td>285</td>
</tr>
<tr>
<td>Largest Peak</td>
<td>0.661</td>
</tr>
<tr>
<td>Deepest Hole</td>
<td>-0.462</td>
</tr>
<tr>
<td>GooF</td>
<td>1.020</td>
</tr>
<tr>
<td>(wR_2) (all data)</td>
<td>0.1909</td>
</tr>
<tr>
<td>(wR_2)</td>
<td>0.1748</td>
</tr>
<tr>
<td>(R_1) (all data)</td>
<td>0.0851</td>
</tr>
<tr>
<td>(R_1)</td>
<td>0.0688</td>
</tr>
<tr>
<td>CCDC number</td>
<td>1892956</td>
</tr>
</tbody>
</table>
Figure 26S. Single Crystal X-ray structure of ([2]CuPR)²⁺ (Ball and stick model). Hydrogen atoms are omitted for clarity.

Figure 27S. Single Crystal X-ray structure of ([2]CuPR)²⁺ (ellipsoid model using platon version).
Figure 28S: EPR spectrum of $[2]\text{CuPR(ClO}_4\text{)}_2$ in CH$_3$CN at 80K.

Figure 29S. EPR spectrum of $[3]\text{CuPR(ClO}_4\text{)}_4$ in CH$_3$CN at 80K.

Figure 30S. EPR spectrum of $[4]\text{CuPR(ClO}_4\text{)}_6$ in CH$_3$CN at 80K.
Scheme 4S: Synthetic route of axle L4; (i) 1,2-dibromoethane, K₂CO₃, DMF, RT, 20h, 86%, (ii) Phen-Acid, TBAF, THF, RT, 80%.

Figure 31S. ¹H-NMR spectrum of compound C in CDCl₃ in 400 MHz at 298K.
Figure 32S. 13C-NMR spectrum of compound C in CDCl$_3$ in 100 MHz at 298K.

Figure 33S. 1H-NMR spectrum of L4 in CDCl$_3$ in 500 MHz at 298K.
Figure 34S. 13C-NMR spectrum of L4 in CDCl$_3$ in 125 MHz at 298K.

Figure 35S. ESI-MS(+ve) spectrum of L4 at 298K.
Figure 36S. ESI-MS(+ve) spectrum of L4 axle based threaded molecule at 298K.

1699.4115

Figure 37S. UV/Vis titration profile between L4 (1x10^{-5} M) with NaphMC-Cu(II) (1x10^{-4} M) in CH$_3$CN at 298 K.
Figure 38S. Molar ratio plot from UV/Vis titration experiment between L4 with NaphMC-Cu(II) solution.

Figure 39S. FT-IR spectrum of [2]CuPR(ClO₄)₂.
Figure 40S. FT-IR spectrum of [3]CuPR(ClO₄)₄.

Figure 41S. FT-IR spectrum of [4]CuPR(ClO₄)₆.
Scheme 5S. Synthetic route of NaphMC-Ni(II) complex

Figure 42S. ESI-MS(+ve) spectrum of NaphMC-Ni(II) complex at 298K.

Figure 43S. ESI-MS(+ve) spectrum of [2]NiPR(ClO\(_4\)_2 at 298K.
Figure 44S. ESI-MS(+ve) spectrum of [3]$\text{NiPR(ClO}_4\text{)}_4$ at 298K.

Figure 45S. ESI-MS(+ve) spectrum of [4]$\text{NiPR(ClO}_4\text{)}_6$ at 298K.
Figure 46S. UV/Vis titration profile between L1 (1x10^{-5} M) with NaphMC-Ni(II) (1x10^{-4} M) in CH_3CN at 298 K.

Figure 47S. UV/Vis titration profile between L2 (1x10^{-5} M) with NaphMC-Ni(II) (2.2x10^{-4} M) in CH_3CN at 298 K.
Figure 48S. UV/Vis titration profile between L3 (1x10^{-5} M) with NaphMC-Ni(II) (3.8x10^{-4} M) in CH$_3$CN at 298 K.

Figure 49S. Molar ratio plot from UV/Vis titration experiment between L1 with NaphMC-Ni(II) solution.
Figure 50S. Molar ratio plot from UV/Vis titration experiment between L2 with NaphMC-Ni(II) solution.

Figure 51S. Molar ratio plot from UV/Vis titration experiment between L3 with NaphMC-Ni(II) solution.
Figure 52S. Characteristic UV/Vis spectra of pseudorotaxanes: [2]NiPR(ClO$_4$)$_2$, [3]NiPR(ClO$_4$)$_4$ and [4]NiPR(ClO$_4$)$_6$ at 298K.
References

1. APEX2 suite for crystallographic software, Bruker axs, Madison, WI (2009).