gem-Dimethyl-substituted bis(imino)dihydroquinolines as thermally stable supports for highly active cobalt catalysts that produce linear PE waxes

Randi Zhang, a,b Yongfeng Huang, a,c Gregory A. Solan*, a,d Wenjuan Zhang, e,* Xinquan Hu, e,* Xiang Hao a and Wen-Hua Sun*, a,b

a Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: whsun@iccas.ac.cn

b CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

c College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

d Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK. E-mail: gas8@leicester.ac.uk

e Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.

Contents
1. Figures S1 - S24. GPC data for the polyethylenes obtained using Co/MAO (entries 1 - 24, Table 2).
2. Figures S25 - S47. GPC data for the polyethylenes obtained using Co/MMAO (entries 1 - 23, Table 3).
Figure S1 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 1, Table 2).
Figure S2 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 2, Table 2).
Figure S3 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 3, Table 2).
Figure S4 Cirrus GPC sample Peak Report for the polyethylene obtained using Cu1/MAO (entry 4, Table 2).
Figure S5 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 5, Table 2).
Figure S6 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 6, Table 2).
Figure S7 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 7, Table 2).
Figure S8 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 8, Table 2).
Figure S9 GPC sample text Report for the polyethylene obtained using Co1/MAO (entry 9, Table 2).
Figure S10: Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 10, Table 2).
Figure S11 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 11, Table 2).
Batch Name: Imported
Filename: E:\Ctns\Workbooks\R2018\imported-4827.ogm
Concentration: 0.10 mg/ml
Injection Volume: 200.0 ul
LIMS ID:

Workbook Details
Eluent: TCB stabilized with 0.0125% BHT
Column Set: Column Set 2: Column 1: 950 mm
Detector: RI
Temperature: 150

Analysis Using Method: 20170407
Comments: this calibration curve is from R2 2017 workbook

Results File: E:\Ctns\Workbooks\R2018\imported-4827.rst

Calibration Used: 2016/11/9 14:57:49
Calibration Type: Narrow Standard
Curve Tab Used: 1
Calibration Curve: y = 13.1281535 - 0.411255x^1

High Limit MW RT: 16.37 mins
High Limit MW: 2495172
K: 12.000
Alpha: 0.7070

Low Limit MW RT: 25.06 mins
Low Limit MW: 648
FRM Name:
Flow Marker RT: 0.00 mins
PRCF: 1.0000

MW Averages
Mw: 4799
Mn: 2896
Mw: 5031
Mn: 5462

Figure S12 GPC sample text Report for the polyethylene obtained using Co1/MAO (entry 12, Table 2).
Figure S13 Cirrus GPC sample Peak Report for the polyethylene obtained using CoI/MAO (entry 13, Table 2).
Figure S14 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 14, Table 2).
Figure S15 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 15, Table 2).
Figure S16 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 16, Table 2).
Figure S17 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 17, Table 2).
Figure S18 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 18, Table 2).
Figure S19 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 19, Table 2).
Figure S20 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 20, Table 2).
Figure S21 Cirrus GPC sample Peak Report for the polyethylene obtained using CoI/MAO (entry 21, Table 2).
Figure S22 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 22, Table 2).
Figure S23 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 23, Table 2).
Figure S24 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MAO (entry 24, Table 2).
Figure S25 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 1, Table 3).
Figure S26 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 2, Table 3).
Figure S27 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 3, Table 3).
Figure S28 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 4, Table 3).
Figure S29 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 5, Table 3).
Figure S30 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 6, Table 3).
Figure S31 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 7, Table 3).
Figure S32 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 8, Table 3).
Figure S33 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 9, Table 3).
Figure S34 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 10, Table 3).
Figure S35 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 11, Table 3).
Figure S36 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 12, Table 3).
Figure S37 Cirrus GPC sample Peak Report for the polyethylenes obtained using CoI/MMAO (entry 13, Table 3).
Figure S38 Cirrus GPC sample Peak Report for the polyethylene obtained using CoI/MMAO (entry 14, Table 3).
Figure S39 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 15, Table 3).
Figure S40 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 16, Table 3).
Figure S41 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 17, Table 3).
Figure S42 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 18, Table 3).
Figure S43 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 19, Table 3).
Figure S44 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 20, Table 3).
Figure S45 Cirrus GPC sample Peak Report for the polyethylene obtained using CoI/MMAO (entry 21, Table 3).
Figure S46 Cirrus GPC sample Peak Report for the polyethylene obtained using CoI/MMAO (entry 22, Table 3).
Figure S47 Cirrus GPC sample Peak Report for the polyethylene obtained using Co1/MMAO (entry 23, Table 3).