Electronic Supporting Information File

The effect of the orientation of the Jahn-Teller distortion on the magnetic interactions of trinuclear mixed-valence Mn(II)/Mn(III) complexes

Rahman Bikas,a Elaheh Shahmoradi,b Santiago Reinoso,c Marzieh Emami,b Luis Lezama,d Joaquín Sanchiz,e and Nader Noshiranzadeh

a Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818 Qazvin, Iran
b Department of Chemistry, Faculty of Science, University of Zanjan, 45371-38791 Zanjan, Iran
c Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, Edificio Jerónimo de Ayanz, Campus de Arrosadia, 31006 Pamplona, Spain
d Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain
e Department of Chemistry, Faculty of Science, Instituto de Materiales y Nanotecnología, University of La Laguna, 38206 Tenerife, Spain

Fig. S1. FT-IR spectrum of the ligand H_4L^1 recorded as KBr disk.
Fig. S2. FT-IR spectrum of the ligand H₄L² recorded as KBr disk.

Fig. S3. FT-IR spectrum of complex 1 recorded as KBr disk.
Fig. S4. FT-IR spectrum of complex 2 recorded as KBr disk.

Fig. S5. Comparison of the electronic spectra of H₄L¹ and complex 1 in methanol.
Fig. S6. Comparison of the electronic spectra of H₄L² and complex 2 in methanol.

Fig. S7. Two-fold rotation axis in the crystal structure of complex 1.
Scheme 2. Model for the magnetic exchange within a trinuclear complex adapted to complexes 1 and 2 ($J = J_{12} = J_{23}, J_{13} = 0$).

Fig S8. Surface plot of the d$_{z^2}$ centered molecular orbital of Mn1 for complex 2. The z axis is defined by the line N1T-Mn1-O2.
Fig. S9. Surface plot of the d_{z^2} centered molecular orbital of Mn3 for complex 2
Table S1. Selected bond angles (°) for complexes 1 and 2

<table>
<thead>
<tr>
<th>Complex 1</th>
<th>100 K</th>
<th>Complex 2</th>
<th>100 K</th>
<th>293 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1B—Mn1—O1</td>
<td>98.52(7)</td>
<td>O1B—Mn1—O1</td>
<td>93.81(6)</td>
<td>93.71(9)</td>
</tr>
<tr>
<td>O1B—Mn1—N1</td>
<td>171.04(7)</td>
<td>O1B—Mn1—N1</td>
<td>172.73(6)</td>
<td>172.59(9)</td>
</tr>
<tr>
<td>O1B—Mn1—N2</td>
<td>91.36(7)</td>
<td>O1B—Mn1—N2</td>
<td>91.97(6)</td>
<td>92.27(9)</td>
</tr>
<tr>
<td>O1B—Mn1—O2</td>
<td>83.94(6)</td>
<td>O1B—Mn1—O2</td>
<td>82.59(5)</td>
<td>81.86(7)</td>
</tr>
<tr>
<td>O1B—Mn1—N1T</td>
<td>93.32(8)</td>
<td>O1B—Mn1—N1T</td>
<td>93.77(7)</td>
<td>93.99(10)</td>
</tr>
<tr>
<td>O1—Mn1—N1</td>
<td>89.40(7)</td>
<td>O1—Mn1—N1</td>
<td>91.77(7)</td>
<td>91.57(10)</td>
</tr>
<tr>
<td>O1—Mn1—N2</td>
<td>168.26(7)</td>
<td>O1—Mn1—N2</td>
<td>174.18(6)</td>
<td>174.02(9)</td>
</tr>
<tr>
<td>O1—Mn1—O2</td>
<td>90.05(6)</td>
<td>O1—Mn1—O2</td>
<td>95.73(6)</td>
<td>95.50(9)</td>
</tr>
<tr>
<td>O1—Mn1—N1T</td>
<td>97.13(8)</td>
<td>O1—Mn1—N1T</td>
<td>91.74(7)</td>
<td>92.11(11)</td>
</tr>
<tr>
<td>N1—Mn1—N2</td>
<td>80.32(7)</td>
<td>N1—Mn1—N2</td>
<td>82.51(7)</td>
<td>82.48(10)</td>
</tr>
<tr>
<td>N1—Mn1—O2</td>
<td>91.91(7)</td>
<td>N1—Mn1—O2</td>
<td>92.23(6)</td>
<td>92.46(8)</td>
</tr>
<tr>
<td>N1—Mn1—N1T</td>
<td>89.82(8)</td>
<td>N1—Mn1—N1T</td>
<td>90.71(7)</td>
<td>91.01(11)</td>
</tr>
<tr>
<td>N2—Mn1—O2</td>
<td>84.68(6)</td>
<td>N2—Mn1—O2</td>
<td>85.61(5)</td>
<td>85.37(8)</td>
</tr>
<tr>
<td>N2—Mn1—N1T</td>
<td>88.56(8)</td>
<td>N2—Mn1—N1T</td>
<td>87.27(7)</td>
<td>87.44(11)</td>
</tr>
<tr>
<td>O2—Mn1—N1T</td>
<td>172.64(7)</td>
<td>O2—Mn1—N1T</td>
<td>171.88(6)</td>
<td>171.54(10)</td>
</tr>
<tr>
<td>O1B—Mn2—O1B</td>
<td>96.68(9)</td>
<td>O1B—Mn2—O2B</td>
<td>105.55(5)</td>
<td>106.42(8)</td>
</tr>
<tr>
<td>O1B—Mn2—O2</td>
<td>76.04(6)</td>
<td>O1B—Mn2—O2</td>
<td>79.00(5)</td>
<td>78.71(7)</td>
</tr>
<tr>
<td>O1B—Mn2—O2i</td>
<td>96.39(6)</td>
<td>O1B—Mn2—O3</td>
<td>91.81(5)</td>
<td>92.74(7)</td>
</tr>
<tr>
<td>O1B—Mn2—N3</td>
<td>92.29(6)</td>
<td>O1B—Mn2—N3</td>
<td>86.62(5)</td>
<td>86.39(8)</td>
</tr>
<tr>
<td>O1B—Mn2—N3i</td>
<td>170.87(7)</td>
<td>O1B—Mn2—N4</td>
<td>163.54(6)</td>
<td>163.05(8)</td>
</tr>
<tr>
<td>O1B—Mn2—O2</td>
<td>96.39(6)</td>
<td>O2B—Mn2—O2</td>
<td>97.44(5)</td>
<td>97.86(7)</td>
</tr>
<tr>
<td>O1B—Mn2—O2i</td>
<td>76.04(6)</td>
<td>O2B—Mn2—O3</td>
<td>77.27(5)</td>
<td>76.80(7)</td>
</tr>
<tr>
<td>O1B—Mn2—N3i</td>
<td>92.29(6)</td>
<td>O2B—Mn2—N4</td>
<td>89.23(5)</td>
<td>89.17(8)</td>
</tr>
<tr>
<td>O1B—Mn2—N3</td>
<td>170.87(7)</td>
<td>O2B—Mn2—N3</td>
<td>167.83(5)</td>
<td>167.17(8)</td>
</tr>
<tr>
<td>O2—Mn2—O2i</td>
<td>168.79(8)</td>
<td>O2—Mn2—O3</td>
<td>167.88(5)</td>
<td>168.34(7)</td>
</tr>
<tr>
<td>O2—Mn2—N3i</td>
<td>104.70(6)</td>
<td>O2—Mn2—N4</td>
<td>106.69(5)</td>
<td>106.22(7)</td>
</tr>
<tr>
<td>O2—Mn2—N3</td>
<td>84.10(6)</td>
<td>O2—Mn2—N3</td>
<td>84.32(5)</td>
<td>83.73(8)</td>
</tr>
<tr>
<td>O2—Mn2—N3i</td>
<td>84.10(6)</td>
<td>O3—Mn2—N4</td>
<td>84.31(5)</td>
<td>84.24(7)</td>
</tr>
<tr>
<td>O2—Mn2—N3</td>
<td>104.70(6)</td>
<td>O3—Mn2—N3</td>
<td>103.18(5)</td>
<td>103.81(8)</td>
</tr>
<tr>
<td>N3—Mn2—N3i</td>
<td>78.80(9)</td>
<td>N3—Mn2—N4</td>
<td>78.75(5)</td>
<td>78.20(8)</td>
</tr>
<tr>
<td>N2—Mn3—O4</td>
<td>94.45(6)</td>
<td>O2B—Mn3—O4</td>
<td>94.59(8)</td>
<td></td>
</tr>
<tr>
<td>N2—Mn3—N6</td>
<td>174.76(6)</td>
<td>O2B—Mn3—N6</td>
<td>174.92(9)</td>
<td></td>
</tr>
<tr>
<td>N2—Mn3—O3</td>
<td>82.59(5)</td>
<td>O2B—Mn3—O3</td>
<td>82.44(8)</td>
<td></td>
</tr>
<tr>
<td>O2B—Mn3—N5</td>
<td>92.79(6)</td>
<td>O2B—Mn3—N5</td>
<td>93.05(8)</td>
<td></td>
</tr>
<tr>
<td>O2B—Mn3—N4T</td>
<td>93.83(6)</td>
<td>O2B—Mn3—N4T</td>
<td>94.34(9)</td>
<td></td>
</tr>
<tr>
<td>O4—Mn3—N6</td>
<td>90.78(6)</td>
<td>O4—Mn3—N6</td>
<td>90.48(9)</td>
<td></td>
</tr>
<tr>
<td>O4—Mn3—O3</td>
<td>94.80(6)</td>
<td>O4—Mn3—O3</td>
<td>95.12(9)</td>
<td></td>
</tr>
<tr>
<td>O4—Mn3—N5</td>
<td>172.62(6)</td>
<td>O4—Mn3—N5</td>
<td>172.20(9)</td>
<td></td>
</tr>
<tr>
<td>N6—Mn3—O3</td>
<td>96.75(6)</td>
<td>N6—Mn3—O3</td>
<td>96.78(9)</td>
<td></td>
</tr>
<tr>
<td>N6—Mn3—N5</td>
<td>81.97(6)</td>
<td>N6—Mn3—N5</td>
<td>81.87(9)</td>
<td></td>
</tr>
<tr>
<td>N6—Mn3—N4T</td>
<td>86.05(6)</td>
<td>N6—Mn3—N4T</td>
<td>85.64(10)</td>
<td></td>
</tr>
<tr>
<td>O3—Mn3—N5</td>
<td>84.76(5)</td>
<td>O3—Mn3—N5</td>
<td>84.34(8)</td>
<td></td>
</tr>
<tr>
<td>O3—Mn3—N4T</td>
<td>170.81(6)</td>
<td>O3—Mn3—N4T</td>
<td>170.62(9)</td>
<td></td>
</tr>
<tr>
<td>N5—Mn3—N4T</td>
<td>86.98(6)</td>
<td>N5—Mn3—N4T</td>
<td>87.05(10)</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry code: i) $-x+2, y, -z+1/2$.

7
Table S2. Bond Valence Sum calculations for the Mn ions in crystal structure of complex 1

<table>
<thead>
<tr>
<th>Bond</th>
<th>Experimental Bond Distances</th>
<th>Bond Valence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn2-O1B</td>
<td>2.1259</td>
<td>0.3770395</td>
</tr>
<tr>
<td>Mn2-O1B(\text{i})</td>
<td>2.1259</td>
<td>0.3770395</td>
</tr>
<tr>
<td>Mn2-O2</td>
<td>2.1361</td>
<td>0.3667874</td>
</tr>
<tr>
<td>Mn-O2(\text{i})</td>
<td>2.1361</td>
<td>0.3667874</td>
</tr>
<tr>
<td>Mn2-N3</td>
<td>2.3419</td>
<td>0.263906</td>
</tr>
<tr>
<td>Mn2-N3(\text{i})</td>
<td>2.3419</td>
<td>0.263906</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0154657 Bond Valence Sum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Experimental Bond Distances</th>
<th>Bond Valence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn1-O1B</td>
<td>1.8748</td>
<td>0.6798073</td>
</tr>
<tr>
<td>Mn1-O1</td>
<td>2.0322</td>
<td>0.4442573</td>
</tr>
<tr>
<td>Mn1-O2</td>
<td>2.046</td>
<td>0.4279929</td>
</tr>
<tr>
<td>Mn1-N1</td>
<td>2.0067</td>
<td>0.6321373</td>
</tr>
<tr>
<td>Mn1-N1T</td>
<td>2.043</td>
<td>0.5730646</td>
</tr>
<tr>
<td>Mn1-N2</td>
<td>2.3156</td>
<td>0.2743053</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0315648 Bond Valence Sum</td>
</tr>
</tbody>
</table>

Table S3. Bond Valence Sum calculations for the Mn ions in crystal structure of complex 2

<table>
<thead>
<tr>
<th>Bond</th>
<th>Experimental Bond Distances</th>
<th>Bond Valence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn1—O1B</td>
<td>1.8695</td>
<td>0.6896151</td>
</tr>
<tr>
<td>Mn1—O1</td>
<td>1.8952</td>
<td>0.6433405</td>
</tr>
<tr>
<td>Mn1—N1</td>
<td>1.9829</td>
<td>0.6741354</td>
</tr>
<tr>
<td>Mn1—N2</td>
<td>2.1642</td>
<td>0.4129931</td>
</tr>
<tr>
<td>Mn1—O2</td>
<td>2.2118</td>
<td>0.2734171</td>
</tr>
<tr>
<td>Mn1—N1T</td>
<td>2.2286</td>
<td>0.3470181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0405194 Bond Valence Sum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Experimental Bond Distances</th>
<th>Bond Valence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn2—O1B</td>
<td>2.1021</td>
<td>0.4020893</td>
</tr>
<tr>
<td>Mn2—O2B</td>
<td>2.1174</td>
<td>0.3858014</td>
</tr>
<tr>
<td>Mn2—O2</td>
<td>2.1512</td>
<td>0.3521198</td>
</tr>
<tr>
<td>Mn2—O3</td>
<td>2.1527</td>
<td>0.3506952</td>
</tr>
<tr>
<td>Mn2—N4</td>
<td>2.3247</td>
<td>0.2764637</td>
</tr>
<tr>
<td>Mn2—N3</td>
<td>2.3429</td>
<td>0.2631937</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0303632 Bond Valence Sum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Experimental Bond Distances</th>
<th>Bond Valence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn3—O2B</td>
<td>1.8762</td>
<td>0.6772399</td>
</tr>
<tr>
<td>Mn3—O4</td>
<td>1.8998</td>
<td>0.6353918</td>
</tr>
<tr>
<td>Mn3—N6</td>
<td>1.9968</td>
<td>0.6492796</td>
</tr>
<tr>
<td>Mn3—O3</td>
<td>2.1519</td>
<td>0.3214656</td>
</tr>
<tr>
<td>Mn3—N5</td>
<td>2.1966</td>
<td>0.3783665</td>
</tr>
<tr>
<td>Mn3—N4T</td>
<td>2.2363</td>
<td>0.339871</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0016143 Bond Valence Sum</td>
</tr>
</tbody>
</table>
Table S4. Parameters of Equations 1 and 2 for Mn$^{\text{III}}$–Mn$^{\text{II}}$–Mn$^{\text{III}}$ trinuclear complexes.

<table>
<thead>
<tr>
<th>i</th>
<th>S^*</th>
<th>S_T</th>
<th>a_i</th>
<th>b_i</th>
<th>E_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>13/2</td>
<td>682.5</td>
<td>14</td>
<td>-20J</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>11/2</td>
<td>429</td>
<td>12</td>
<td>-7J</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>9/2</td>
<td>247.5</td>
<td>10</td>
<td>4J</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7/2</td>
<td>126</td>
<td>8</td>
<td>13J</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5/2</td>
<td>52.5</td>
<td>6</td>
<td>20J</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>3/2</td>
<td>15</td>
<td>4</td>
<td>25J</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>11/2</td>
<td>429</td>
<td>12</td>
<td>-15J</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>9/2</td>
<td>247.5</td>
<td>10</td>
<td>-4J</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>7/2</td>
<td>126</td>
<td>8</td>
<td>5J</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>5/2</td>
<td>52.5</td>
<td>6</td>
<td>12J</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>3/2</td>
<td>15</td>
<td>4</td>
<td>17J</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1/2</td>
<td>1.5</td>
<td>2</td>
<td>20J</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>9/2</td>
<td>247.5</td>
<td>10</td>
<td>-10J</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>7/2</td>
<td>126</td>
<td>8</td>
<td>-1J</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>5/2</td>
<td>52.5</td>
<td>6</td>
<td>6J</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>3/2</td>
<td>15.0</td>
<td>4</td>
<td>11J</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>1/2</td>
<td>1.5</td>
<td>2</td>
<td>14J</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>7/2</td>
<td>126</td>
<td>8</td>
<td>-5J</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>5/2</td>
<td>52.5</td>
<td>6</td>
<td>2J</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>3/2</td>
<td>15</td>
<td>4</td>
<td>7J</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>5/2</td>
<td>52.5</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>