Electronic Supplementary Information:

The two new derivatives of scandium borohydride, MSc(BH₄)₄, M = Rb, Cs, prepared via a one-pot solvent-mediated method

A. Starobrat,¹ᵃᵇ* T. Jarońᵇ* and W. Grochalaᵇ

¹ College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences (MISMaP), University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
ᵇ Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland

Contents:

1. Figure S1. Rietveld plot of CsSc(BH₄)₄.
2. Figure S2. Rietveld plot of RbSc(BH₄)₄.
3. Figure S3. FTIR spectra of CsSc(BH₄)₄ samples.
4. Figure S4. FTIR spectra of RbSc(BH₄)₄ samples.
5. Figure S5. Sc-Rb zigzag lines in RbSc(BH₄)₄.
6. Figure S6. Mass spectrum of gaseous decomposition products of RbSc(BH₄)₄ obtained mechanochemically.
7. Figure S7. Mass spectrum of gaseous decomposition products of RbSc(BH₄)₄ obtained via DMS-mediated synthesis.
8. Figure S8. Mass spectrum of gaseous decomposition products of CsSc(BH₄)₄ obtained mechanochemically.
9. Figure S9. Mass spectrum of gaseous decomposition products of CsSc(BH₄)₄ obtained via DMS-mediated synthesis.
10. Figure S10. Crystal structure of M₃ScCl₆, M=Rb, Cs - the elpasolite-type structure.
11. Figure S11. PXRD patterns of CsSc(BH₄)₄ samples obtained via solvent-mediated and mechanochemical synthesis and by-products of solvent-mediated synthesis.
12. Figure S12. Rietveld plot of Cs₃ScCl₆.
13. Figure S13. Rietveld plot of Rb₃ScCl₆.
14. Figure S14. PXRD patterns of Rb-Y samples prepared via solvent-mediated method.
15. Figure S15. FTIR spectra of Rb-Y samples prepared via solvent-mediated method.
16. The structures of MSc(BH₄)₄ optimized computationally
17. Table S1. Comparison of the selected parameters for the experimental and computed structures.
18. Figure S16. An overlay of the experimental and computationally optimized structures of RbSc(BH₄)₄.
19. Figure S17. An overlay of the experimental and computationally optimized structures of CsSc(BH₄)₄.
Figure S1. Rietveld refinement of PXRD (Cu Kα) data collected for CsSc(BH₄)₄ at room temperature, wRp = 1.17%, R(obs)= 4.72%.

Figure S2. Rietveld refinement of PXRD (Cu Kα) data collected for RbSc(BH₄)₄ at room temperature, wRp = 1.23%, R(obs)= 2.29%.
Figure S3. FTIR spectra of CsSc(BH₄)₄ obtained via mechanochemical (top) and solvent-mediated (middle) synthesis as well as of by-products of solvent-mediated synthesis (down, site B), * - background compensation error.

Figure S4. FTIR spectra of RbSc(BH₄)₄ obtained via mechanochemical (top) and solvent-mediated (middle) synthesis as well as of by-products of solvent-mediated synthesis (down, site B), * - background compensation errors.
Figure S5. Sc-Rb zigzag lines along the c-axis in RbSc(BH$_4$)$_4$. Rb atoms in blue, Sc in red, Sc-Rb distance $4.487(5)$ Å.

Figure S6. Mass spectrum of gaseous decomposition products of RbSc(BH$_4$)$_4$ obtained mechanochemically (inset: spectrum with logarithmic Ion current scale). Heating rate 5 °C/min, $t = 0$ corresponds to temperature 15 °C.
Figure S7. Mass spectrum of gaseous decomposition products of RbSc(BH₄)₄ obtained via DMS-mediated synthesis (inset: spectrum with logarithmic Ion current scale). Heating rate 5 °C/min, t = 0 corresponds to temperature 20 °C.

Figure S8. Mass spectrum of gaseous decomposition products of CsSc(BH₄)₄ obtained mechanochemically (inset: spectrum with logarithmic Ion current scale). Heating rate 5 °C/min, t = 0 corresponds to temperature 15 °C.
Figure S9. Mass spectrum of gaseous decomposition products of CsSc(BH₄)₄ obtained via DMS-mediated synthesis (inset: spectrum with logarithmic ion current scale). Heating rate 5 °C/min, t = 0 corresponds to temperature 20 °C.

Figure S10. Crystal structure of M₃ScCl₆, M=Rb, Cs - the elpasolite-type structure. M atoms in orange, Sc - purple, Cl - green.
Figure S11. PXRD patterns of CsSc(BH$_4$)$_4$ samples obtained via the solvent-mediated (a) and the mechanochemical (c) synthesis and by-products of solvent-mediated synthesis (b), * - LiCl , ^ - CsBH$_4$, unmarked - CsSc(BH$_4$)$_4$ or Cs$_3$ScCl$_6$, respectively.

Figure S12. Rietveld refinement of PXRD (Cu K$_\alpha$) data collected for Cs$_3$ScCl$_6$ sample at room temperature, wRp = 1.20%, R(\text{obs})_{\text{CsBH}_4} = 3.66\%, R(\text{obs})_{\text{Cs}_3\text{ScCl}_6} = 3.20\%.
Figure S13. Rietveld refinement of PXRD (Cu \(K_a\)) data collected for \(\text{Rb}_3\text{ScCl}_6\) sample at room temperature, wRp = 1.48%, \(R(\text{obs})_{\text{RbBH}_4} = 2.57\%\), \(R(\text{obs})_{\text{Rb}_3\text{ScCl}_6} = 5.24\%\).

Figure S14. PXRD patterns of Rb-Y samples prepared via solvent-mediated method, site A - \(\text{Y(BH}_4)_3\)-DMS (top), and site B - \(\text{RbBH}_4\) (marked with *), and hRb\(_3\)YCl\(_6\) (bottom).
Figure S15. FTIR spectra of Rb-Y samples prepared via solvent-mediated method, site A - Y(BH$_4$)$_3$:DMS (top), and site B - RbBH$_4$ and ht-Rb$_3$YCl$_6$ (bottom), * - background compensation errors.
The structures of MSc(BH₄)₄ optimized computationally

RbSc(BH₄)₄

```plaintext
data_RbScCORRECTED_Geom800eV_6cores_NoCell
_audit_creation_date          2019-06-26
_audit_creation_method        'Materials Studio'
_symmetry_space_group_name_H-M 'PBCM'
_symmetry_Int_Tables_number   57
_symmetry_cell_setting        orthorhombic
loop
_symmetry_equiv_pos_as_xyz
  x, y, z
  -x, -y, z+1/2
  -x, y+1/2, -z+1/2
  x, -y+1/2, -z
  x, y, -z+1/2
  x, -y+1/2, z+1/2
  -x, y+1/2, z
_cell_length_a                 7.6514
_cell_length_b                 11.1821
_cell_length_c                 11.2443
_cell_angle_alpha              90.0000
_cell_angle_beta               90.0000
_cell_angle_gamma              90.0000
loop
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
B1  B  0.23519  0.02670  -0.58184  0.02200  Uiso   1.00
H11 H  0.36413  0.04382  -0.64732  0.02700  Uiso   1.00
H12 H  0.27076  -0.02575  -0.49111  0.02700  Uiso   1.00
H13 H  0.17172  0.12656  -0.55910  0.02700  Uiso   1.00
H14 H  0.12514  -0.02621  -0.64381  0.02700  Uiso   1.00
H21 H  0.94449  0.21868  -0.83832  0.02700  Uiso   1.00
H32 H  0.22785  0.29877  -0.66164  0.02700  Uiso   1.00
Rb1 Rb  0.55522  0.25000  -0.50000  0.09067  Uani   1.00
Sc1 Sc  0.16021  0.13182  -0.75000  0.05967  Uani   1.00
B2  B  0.86828  0.17635  -0.75000  0.02200  Uiso   1.00
H22 H  0.71314  0.19760  -0.75000  0.02700  Uiso   1.00
H23 H  0.89853  0.06708  -0.75000  0.02700  Uiso   1.00
B3  B  0.32462  0.30552  -0.75000  0.02200  Uiso   1.00
H31 H  0.41624  0.21334  -0.75000  0.02700  Uiso   1.00
H33 H  0.41306  0.39492  -0.75000  0.02700  Uiso   1.00
```

CsSc(BH₄)₄

```plaintext
data_CsScGeom800eV_6cores_NoCell
_audit_creation_date          2019-06-26
_audit_creation_method        'Materials Studio'
```
_symmetry_space_group_name_H-M 'P21/C'
_symmetry_Int_Tables_number 14
_symmetry_cell_setting monoclinic
loop_
_symmetry_equiv_pos_as_xyz
 x,y,z
 -x,y+1/2,-z+1/2
 -x,-y,-z
 x,-y+1/2,z+1/2
_cell_length_a 9.5870
_cell_length_b 10.7270
_cell_length_c 12.2280
_cell_angle_alpha 90.0000
_cell_angle_beta 126.3510
_cell_angle_gamma 90.0000
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_occupancy
Cs22 Cs 0.82694 0.34270 0.75062 0.06900 Uiso 1.00
B1 B 0.21177 0.01695 0.27563 0.03500 Uiso 1.00
H2 H 0.23203 0.12082 0.15052 0.04200 Uiso 1.00
H3 H 0.15239 -0.05817 0.31159 0.04200 Uiso 1.00
H4 H 0.11686 0.12082 0.31159 0.04200 Uiso 1.00
H5 H 0.35660 -0.01335 0.30707 0.04200 Uiso 1.00
B6 B 0.59468 0.22457 0.38529 0.03500 Uiso 1.00
H7 H 0.53578 0.28562 0.27965 0.04200 Uiso 1.00
H8 H 0.74057 0.25675 0.47509 0.04200 Uiso 1.00
H9 H 0.48976 0.23768 0.41267 0.04200 Uiso 1.00
H10 H 0.58853 0.11248 0.35595 0.04200 Uiso 1.00
B11 B 0.13689 0.33158 0.11960 0.03500 Uiso 1.00
H12 H 0.20824 0.31906 0.24318 0.04200 Uiso 1.00
H13 H 0.03689 0.41819 0.07083 0.04200 Uiso 1.00
H14 H 0.25418 0.34173 0.10504 0.04200 Uiso 1.00
H15 H 0.06144 0.31337 0.06534 0.04200 Uiso 1.00
B16 B 0.33930 0.08443 0.04155 0.03500 Uiso 1.00
H17 H 0.39476 0.19319 0.07405 0.04200 Uiso 1.00
H18 H 0.35291 0.04517 -0.04403 0.04200 Uiso 1.00
H19 H 0.42198 0.02115 0.14752 0.04200 Uiso 1.00
H20 H 0.18734 0.08764 0.00469 0.04200 Uiso 1.00
Sc21 Sc 0.32111 0.16280 0.20685 0.04500 Uiso 1.00
Table S1. Comparison of the selected parameters for the experimental and computed structures.

<table>
<thead>
<tr>
<th></th>
<th>MSc(BH₄)₄</th>
<th>Rb</th>
<th>Cs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>experimental</td>
<td>DFT</td>
<td>experimental</td>
</tr>
<tr>
<td>Space group</td>
<td>Pbcm</td>
<td>P₂₁/c</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>a [Å]</td>
<td>7.6514(10)</td>
<td>7.6514</td>
<td>9.587(2)</td>
</tr>
<tr>
<td>b [Å]</td>
<td>11.1821(14)</td>
<td>11.1821</td>
<td>10.727(3)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>11.2443(14)</td>
<td>11.2443</td>
<td>12.228(3)</td>
</tr>
<tr>
<td>β [°]</td>
<td>90</td>
<td>90</td>
<td>126.351(3)</td>
</tr>
<tr>
<td>V [Å³]</td>
<td>962.1(2)</td>
<td>962.1</td>
<td>1012.8(5)</td>
</tr>
<tr>
<td>Sc–H [Å]</td>
<td>2.255(8)</td>
<td>2.129–2.177</td>
<td>2.202(7)</td>
</tr>
<tr>
<td>Sc–B [Å]</td>
<td>2.360(8)</td>
<td>2.289–2.314</td>
<td>2.300(3)</td>
</tr>
</tbody>
</table>
Figure S16. An overlay of the experimental (darker colors) and computationally optimized (brighter colors) structures of RbSc(BH$_4$)$_4$. Top – the sublattice of heavy atoms; bottom – the geometry of the [Sc(BH$_4$)$_4$] complex anion.
Figure S17. An overlay of the experimental (darker colors) and computationally optimized (brighter colors) structures of CsSc(BH₄)₄. Top – the sublattice of heavy atoms; bottom – the geometry of the [Sc(BH₄)₄] complex anion.