DO2A-Based Ligands for Gallium-68 Chelation: Synthesis, Radiochemistry and Ex Vivo Cardiac Uptake

Supporting Information

Adam J. Smith,†‡ Bradley E. Osborne,†‡ George P. Keeling,‡ Philip J. Blower,‡ Richard Southworth,*‡ Nicholas J. Long,*†

†Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, U.K.

‡Division of Imaging Sciences and Biomedical Imaging, St. Thomas’ Hospital, King’s College London, London, SE1 7EH, U.K.
Contents

NMR Spectra ...3

Bis-triphenyl(4-((4,10-bis(2-tert-butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1,7-diyl)methyl)benzyl)phosphonium dibromide (2a) ...3

Bis-triphenyl(4-((4,10-bis(2-tert-butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1,7-diyl)methyl)4-methylphenyl)phosphonium dibromide (2b) ...4

Bis-triphenyl(4-((4,10-bis(2-tert-butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1,7-diyl)methyl)3,5-dimethylphenyl)phosphonium dibromide (2c) ..5

DO2A-(xy-TPP)₂ Bistrifluoroacetate (3a) ..6

DO2A-(xy-TTP)₂ Bistrifluoroacetate (3b) ..7

DO2A-(xy-TXP)₂ Bistrifluoroacetate (3c) ..8

Di-tert-butyl 2,2′-(4,10-dibenzyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetate (5a)9

DO2A-Bn₂ (6a) ..10

DO2A-Xy₂ (6b) ..11

RadioHPLC Analysis ...12

[^68Ga]Ga₃a ..12

[^68Ga]Ga₃b ..14

[^68Ga]Ga₃c ..15

[^68Ga]Ga₆b ..15

Langendorff Isolated Heart Perfusion ...17

Triple γ-Detector System Raw Data for[^68Ga]Ga₃c ..17

Triple γ-Detector System Raw Data for[^68Ga]Ga₆b ..18

Experimental for synthesis of[^natGa]Ga₃a ..20

ES-TOF+ mass spectrum of[^natGa]Ga₃a ..20

¹H NMR spectrum of[^natGa]Ga₃a ..21

¹³C-{¹H} NMR spectrum of[^natGa]Ga₃a ..21

³¹P-{¹H} NMR spectrum of[^natGa]Ga₃a ..22

LCMS spectrum of[^natGa]Ga₃a ..22

HPLC Analysis of[^natGa]Ga₃a ..23

VT ¹H NMR spectrum of[^natGa]Ga₃a ..23

Experimental for synthesis of[^natGa]Ga₆a ..24

¹H NMR spectrum of[^natGa]Ga₆a ..24
NMR Spectra
Bis-triphenyl(4-((4,10-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1,7-diyl)methyl)benzyl)phosphonium dibromide (2a)

Figure S1: 1H NMR spectrum (CDCl$_3$, 400 MHz, 298 K)

Figure S2: 13C\{\text{1H}\} NMR spectrum (CDCl$_3$, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.
Bis-triphenyl(4-((4,10-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1,7-diy1)methyl)4-methylphenyl)phosphonium dibromide (2b)

Figure S3: 1H NMR spectrum (CDCl$_3$, 400 MHz, 298 K)

Figure S4: 13C{1H} NMR spectrum (CDCl$_3$, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.
Bis-triphenyl(4-((4,10-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1,7-diyl)methyl)3,5-dimethylphenyl)phosphonium dibromide (2c)

Figure S5: 1H NMR spectrum (CDCl$_3$, 400 MHz, 298 K)

Figure S6: 13C{1H} NMR spectrum (CDCl$_3$, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.
DO2A-(xy-TPP)$_2$ Bistrifluoroacetate (3a)

Figure S7: 1H NMR spectrum (MeOD, 400 MHz, 298 K)

Figure S8: 13C{1}H NMR spectrum (MeOD, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.
DO2A-(xy-TTP)$_2$ Bistrifluoroacetate (3b)

Figure S9: 1H NMR spectrum (MeOD, 400 MHz, 298 K)

Figure S10: 13C {1H} NMR spectrum (MeOD, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.
DO2A-(xy-TXP)₂ Bistrifluoroacetate (3e)

Figure S11: 1H NMR spectrum (MeOD, 400 MHz, 298 K)

Figure S12: 13C{1H} NMR spectrum (MeOD, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.
Di-tert-butyl 2,2′-(4,10-dibenzyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetate (5a)

Figure S13: 1H NMR spectrum (CDCl$_3$, 400 MHz, 298 K)

Figure S14: 13C\{1H\} NMR spectrum (CDCl$_3$, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.
DO2A-Bn$_2$ (6a)

Figure S15: 1H NMR spectrum (MeOD, 400 MHz, 298 K)

Figure S16: 13C{1H} NMR spectrum (MeOD, 100 MHz, 298 K). The residual solvent peak has been truncated for clarity.
DO2A-Xy₂ (6b)

Figure S17: "H NMR spectrum (MeOD, 400 MHz, 298 K)

Figure S18: "C{"H} NMR spectrum (MeOD, 100 MHz, 298 K)
RadioHPLC Analysis

$[^{68}\text{Ga}]\text{Ga3a}$

Figure S19: RadioHPLC traces of the reaction time alteration experiments on $[^{68}\text{Ga}]\text{Ga3a}$. Reaction conditions: 100 °C, 0.2 M NaOAc. Eluent gradient: 100 % A for 5 min, 0-100 % B in A for 20 min, 100 % B for 5 min; flow rate 1 mL min$^{-1}$. Traces offset for clarity.

Figure S20: RadioHPLC traces of the isolated kinetic peak experiments on $[^{68}\text{Ga}]\text{Ga3a}$. Reaction conditions: (Top) 65 min, 100°C, 0.2 M NaOAc; (Bottom) 100 min, 25°C, 0.2 M NaOAc. Eluent gradient as described for Figure S19.
Figure S21: Radio HPLC of the isolated thermodynamic peak of $[^{68}\text{Ga}]{\text{Ga}3a}$.
Reaction conditions: 65 min, 100°C, 0.2 M NaOAc. Eluent gradient as described for Figure S19.

Figure S22: RadioHPLC traces of the reaction temperature alteration experiments on $[^{68}\text{Ga}]{\text{Ga}3a}$.
Reaction conditions: 30 min, 0.2 M NaOAc. Eluent gradient as described for Figure S19. Traces offset for clarity.
Figure S23: RadioHPLC traces of the sodium acetate concentration alteration experiments on [68Ga]Ga3a. Reaction conditions: 100 °C, 30 mins. Eluent gradient as described for Figure S19. Traces offset for clarity.

[68Ga]Ga3b

Figure S24: RadioHPLC traces of the reaction time alteration experiments on [68Ga]Ga3b. Reaction conditions: 100 °C, 0.2 M NaOAc. Eluent gradient as described for Figure S19. Traces offset for clarity.
Figure S25: RadioHPLC traces of the reaction time alteration experiments on $[^{68}\text{Ga}]\text{Ga3c}$. Reaction conditions: 100 °C, 0.2 M NaOAc. Eluent gradient as described for Figure S19. Traces offset for clarity.

Figure S26: RadioHPLC traces of the reaction time alteration experiments on $[^{68}\text{Ga}]\text{Ga6b}$. Eluent gradient as described for Figure S19. Reaction conditions: 100 °C, 0.2 M NaOAc. Traces offset for clarity.
Figure S27: RadioHPLC traces of the reaction temperature alteration experiments on 68GaGa6b.
Reaction conditions: 30 min, 0.2 M NaOAc. Eluent gradient as described for Figure S19. Traces offset for clarity.
Langendorff Isolated Heart Perfusion

Tripple γ-Detector System Raw Data for [68Ga]Ga3c

Figure S28: Experiment 1. Cnt c-1 refers to arterial activity, Cnt c-2 refers to heart activity, Cnt c-3 refers to venous activity, however the detector was damaged and as such no trace could be obtained.

Figure S29: Experiment 2.
Figure S30: Experiment 3.

Triple γ-Detector System Raw Data for [68Ga]Ga6b

Figure S31 Experiment 1.
Figure S32: Experiment 2.

Figure S33: Experiment 3.
Synthesis of \[^{nat}\text{Ga}]\text{Ga-DO2A-(xy-TPP)} \text{2 Trisnitrate}

Compound 3a (0.08 g, 0.07 mmol) and Ga(NO\(_3\))\(_3\)\(\cdot\)H\(_2\)O (0.02 g, 0.07 mmol) were suspended in NH\(_4\)OAc (0.5 M, 0.15 mL), and heated at 100 °C for 30 min. The filtrate was isolated and the solvent was removed under reduced pressure, before the residue was purified by reverse-phase flash chromatography (C-18 SiO\(_2\), 0-100 % B in A) to yield the desired product (0.05 g, 0.04 mmol, 58 %). \(^1\)H-NMR (400 MHz, MeOD) \(\delta\) (ppm): 7.90 (6H, td, \(^3\)J\(_{HH}\) = 7.3, \(^4\)J\(_{HH}\) = 1.9 Hz, p-Ph), 7.77 – 7.63 (24H, m, o/m-Ph), 7.41 (4H, d, \(^3\)J\(_{HH}\) = 8.1 Hz, C\(_6\)H\(_4\)), 7.08 (4H, dd, \(^3\)J\(_{HH}\) = 8.3, \(^4\)J\(_{HP}\) = 2.6 Hz, C\(_6\)H\(_4\)), 4.99 (4H, d, \(^2\)J\(_{HP}\) = 15.3, CH\(_2\)), 4.01 (4H, s, CH\(_2\)), 3.94 (4H, s, CH\(_2\)), 3.58 – 3.34 (12H, m, macrocycle H), 3.02 – 2.90 (4H, m, macrocycle H).

\(^1^3\)C\({}^{1}\)H-NMR (100 MHz, MeOD) \(\delta\) (ppm): 173.7 (C=O), 136.5 (p-Ph), 135.4 (d, \(^3\)J\(_{CP}\) = 9.5 Hz, m-Ph), 133.3 (C\(_6\)H\(_4\)), 132.7 (d, \(^3\)J\(_{CP}\) = 5.3 Hz, C\(_6\)H\(_4\)), 132.4 (C\(_6\)H\(_4\)), 131.4 (d, \(^2\)J\(_{CP}\) = 12.7 Hz, \(\text{o-Ph}\)), 130.7 (C\(_6\)H\(_4\)), 119.0 (d, \(^1\)J\(_{CP}\) = 85.7 Hz, i-Ph), 65.6 (CH\(_2\)), 61.1 (CH\(_2\)), 58.4 (macrocycle C), 55.6 (macrocycle C), 51.9 (macrocycle C), 30.4 (d, \(^1\)J\(_{CP}\) = 48.5 Hz, CH\(_3\)P). \(^{31}\)P\({}^{1}\)H-NMR (162 MHz, MeOD) \(\delta\) (ppm): 22.9. HRMS (ES-TOF+) m/z calcd for C\(_{64}\)H\(_{66}\)N\(_4\)O\(_4\)P\(_2\)Ga ([M]+) 361.7938. found: 361.7928.

ES-TOF+ MS of \[^{nat}\text{Ga}]\text{Ga-DO2A-(xy-TPP)} \text{2 Trisnitrate}

C\(_{64}\)H\(_{66}\)N\(_4\)O\(_2\)P\(_2\)Ga +3 ION = 361.7938
FOUND MASS = 361.7928
Figure S34: 1H NMR of [natGa]Ga-DO2A-(xy-TPP)$_2$ Trisnitrate (MeOD, 400 MHz, 298 K)

Figure S35: 13C-1H NMR of [natGa]Ga-DO2A-(xy-TPP)$_2$ Trisnitrate (MeOD, 101 MHz, 298 K)
Figure S36: ^{31}P-{^1H} NMR of $[^{nat}\text{Ga}]\text{Ga-DO2A-(xy-TPP)}_2$ Trisnitrate (MeOD, 162 MHz, 298 K)

Figure S37: LCMS spectra of $[^{nat}\text{Ga}]\text{Ga-DO2A-(xy-TPP)}_2$ Trisnitrate.
Figure S38: HPLC trace of $[^{nat}]$Ga DO2A-(xy-TPP)$_2$ Trisnitrate. Eluent gradient as described for Figure S19.

Figure S39: VT 1H NMR spectra of $[^{nat}]$Ga DO2A-(xy-TPP)$_2$ Trisnitrate (MeOD, 400 MHz) at different temperatures: 1 = 298 K, 2 = 233 K, 3 = 213 K, 4 = 193 K.
Synthesis of [nat\textit{Ga}]Ga-DO2A-Bn\textsubscript{2} Nitrate

Compound 6a (0.10 g, 0.21 mmol) and Ga(NO\textsubscript{3})\textsubscript{3}·H\textsubscript{2}O (0.06 g, 0.21 mmol) were suspended in NH\textsubscript{4}OAc (0.5 M, 1.0 mL), and heated overnight at 100 °C. The filtrate was isolated and the solvent was removed under reduced pressure, before the residue was purified by reverse-phase flash chromatography (C-18 SiO\textsubscript{2}, 0-100 % B in A) to yield the desired product (0.01g, 0.02 mmol, 11 %). 1H-NMR (400 MHz, MeOD) \(\delta_H\) (ppm): 7.59 – 7.50 (4H, m, \textit{m}-Ph), 7.45 (6H, m, \textit{o/p}-Ph), 4.12 (4H, s, CH\textsubscript{2}), 4.00 (4H, s, CH\textsubscript{2}), 3.60 (4H, td, \(J_{HH} = 13.8, J_{HH} = 4.9\) Hz, macrocycle H), 3.41 (8H, m, macrocycle H), 3.02 – 2.93 (4H, m, macrocycle H). 13C-NMR (101 MHz, MeOD) \(\delta_C\) (ppm): 173.77 (C=O), 132.66 (\textit{m}-Ph), 132.15 (\textit{o}-Ph), 130.63 (\textit{p}-Ph), 129.99 (\textit{i}-Ph), 66.55, 61.11 (CH\textsubscript{2}), 58.33, 55.74 (macrocycle, C). HRMS (ES-TOF+): \textit{m}/\textit{z} calcld for C\textsubscript{26}H\textsubscript{34}N\textsubscript{4}O\textsubscript{4}Ga ([M]+) 535.1830. found: 535.1836.

Figure S40: 1H NMR of [nat\textit{Ga}]Ga-DO2A-Bn\textsubscript{2} Trisnitrate (MeOD, 400 MHz, 298 K) at different time points: 1 = 0 min, 3 = 30 min, 4 = 1 h, 5 = 2 h, 6 = 4 h.