Heteropleptic ruthenium bis-terpyridine complexes bearing a 4-(dimethylamino)phenyl donor and free coordination sites for hydrogen photo-evolution

Thomas Auvray, a Rakesh Sahoo, a Denis Deschênes, a Garry S. Hanana*

^a Département de Chimie, Université de Montréal, Montréal, Canada, H3T-1J4 E-mail: garry.hanan@umontreal.ca

Supporting Information

Synthesis

Preparation of 2-acetyl-4-*tert*-butylpyridine (work-up modified from previous report¹):

In a 250 mL round-bottomed flask, 4-tert-butylpyridine (5 g), AgNO₃ (0.5 g) and pyruvic acid (9 g) were combined, followed by dichloromethane (50 mL) and water (10 mL). This mixture is cooled to 0 °C using an ice-water bath. Separately, (NH₄)₂S₂O₈ (12.5 g) was dissolved in water (40 mL) and concentrated H₂SO₄ (3 mL). This aqueous solution is then added dropwise over a period of about 15 minutes in the cooled round-bottomed flask, under stirring. Once the addition is complete, the biphasic mixture is slowly warmed-up to room temperature then refluxed for 4 hours. Once cooled down, the reaction mixture is poured onto ice (100 mL). Carefully, NaOH (10 M) is added until the pH is basic (9-10). The mixture is then filtered to remove the grey Ag₂O that formed upon addition of base. The two phases are then separated. The aqueous phase is washed with dichloromethane (50 mL). The two dichloromethane fractions are then combined and dried on Na₂SO₄. The Na₂SO₄ is washed with diethyl ether (50 mL) and the filtrate is added to the dichloromethane solution. The solvents are then removed under reduced pressure, until only about 20-30 mL of solution is left. It is then diluted with diethyl ether (75 mL), and this organic phase is washed three times with an aqueous citric acid solution (0.75M, 25 mL) [to remove the remaining 4-tertbutylpyridine which can be recycled using the workup described below]. The organic phase is then washed three times with hydrochloric acid (1 M, 25 mL). [The organic phase only contains the bis-acetyl by-product at this point.] The acidic aqueous phase is poured onto ice (50 ml) and neutralize with caution with NaOH (10 M) till pH 9-10. It is then extracted twice with diethyl ether (50 ml). The ether solution is filtered over a 1 cm bed of silica gel, the silica being washed with diethyl ether (30 mL). The diethyl ether is then removed under reduced pressure without heat, affording 2-acetyl-4-tert-butylpyridine as a light orange oil whose ¹H NMR spectra matched the literature. The yield varies between 25-30 % of 2-acetyl-4-tertbutylpyridine.

The reaction and purification can be followed by TLC on SiO_2 with 7/3 Hexane/Diethyl ether.

1. B. Laramée-Milette, T. Auvray, S. Nguyen, S. Tremblay, C. Lachance-Brais, M. Donguy, V. Taylor, D. Deschênes and G. S. Hanan, *Synthesis*, 2015, **47**, 3849-3858.

Figure S1 ¹H NMR spectra of complex **C1** in CD₃CN

Figure S2 ¹H NMR spectra of complex **C2** in CD₃CN

Figure S3 ¹H NMR spectra of complex C3 in CD₃CN

Figure S4 ¹³C NMR spectra of complex **C1** in CD₃CN

Figure S5 ¹³C NMR spectra of complex C2 in CD₃CN

Figure S6 ^{13}C NMR spectra of complex C3 in CD_3CN

ESI-MS (MeCN)

Figure S7 Complete chromatograms obtained by ESI-MS (CH₃CN, positive mode) for complexes C1-C3.

Figure S8 Experimental (top) and calculated (bottom) isotopic pattern for complex C1²⁺

Figure S9 Experimental (top) and calculated (bottom) isotopic pattern for complex C2²⁺

Figure S10 Experimental (top) and calculated (bottom) isotopic pattern for complex C3²⁺

Electrochemical studies

Figure S11 Cyclic voltammogram for **C1** in CH₃CN/TBAP 0.1 M with ferrocene at various scan rates.

Figure S12 Cyclic voltammogram for C2 in CH₃CN/TBAP 0.1 M with ferrocene at various scan rates.

Figure S13 Cyclic voltammogram for C3 in CH₃CN/TBAP 0.1 M with ferrocene at various scan rates.

Figure S14 Cyclic voltammogram for C1 in CH_3CN /TBAP 0.1 M at 100mV/s with ferrocene as internal standard.

Figure S15 Cyclic voltammogram for C2 in CH₃CN /TBAP 0.1 M at 100mV/s with ferrocene as internal standard.

Figure S16 Cyclic voltammogram for C3 in CH₃CN /TBAP 0.1 M at 100mV/s with ferrocene as internal standard.

Theoretical study

Table S1 Kohn-Sham representation of the first three unoccupied orbitals of C1²⁺, C2²⁺ and C3²⁺.

Table S2 Kohn-Sham representation of the first three occupied orbitals of C1²⁺, C2²⁺ and C3²⁺.

MO	eV	DMAPh	tbu ₂ tpy	Ru	4-py	tpy
L+2	-2.6	0	9	1	0	90
L+1	-2.61	7	85	7	0	1
LUMO	-2.84	0	2	9	11	79
номо	-5.69	82	9	8	0	1
H-1	-6.39	0	18	67	0	15
H-2	-6.51	0	9	67	4	20

Table S3 Contributions of each unit to selected frontiers orbitals of C1²⁺

Table S4 Contributions of each unit to selected frontiers orbitals of C2²⁺

MO	eV	DMAPh	tbu ₂ tpy	Ru	4-ру	pzpypz
L+2	-2.73	7	86	6	0	1
L+1	-2.95	0	2	3	0	95
LUMO	-3.26	0	2	9	4	85
номо	-5.75	85	9	5	0	1
H-1	-6.75	0	21	64	0	15
H-2	-6.79	0	9	65	4	22

Table S5 Contributions of each unit to selected frontiers orbitals of C3²⁺

MO	eV	DMAP	tbu ₂ tpy	Ru	4'(4BrPh)	tpy	4 and 4" py
L+2	-2.62	7	85	6	0	1	0
L+1	-2.7	0	5	2	0	85	8
LUMO	-2.95	0	1	8	4	76	11
НОМО	-5.7	82	9	8	0	1	0
H-1	-6.39	0	17	65	0	15	3
H-2	-6.48	0	8	63	9	19	1

Figure S17 Overlap of the experimental absorption spectra and calculated transitions for C1²⁺

Figure S19 Overlap of the experimental absorption spectra and calculated transitions for C3²⁺

Table S6 Calculated transitions and contributions of each unit for C1²⁺.

S₀ → Sx	Wavelength (nm)	Osc. Strength	Major contribs	DMAP	tbu2tpy	Ru	4-ру	tpy
1	551.60	0.0	H-3->LUMO (25%), HOMO->LUMO (73%)	64>0 (- 64)	11>2 (-9)	22>9 (- 13)	0>11 (11)	3>78 (75)
2	516.58	0.0135	H-1->LUMO (97%)	0>0 (0)	18>2 (-16)	67>9 (- 58)	0>11 (11)	15>78 (63)
3	489.53	0.7149	H-2->LUMO (10%), HOMO->L+1 (84%)	69>6 (- 63)	9>77 (68)	17>7 (- 10)	0>1 (1)	3>9 (6)
4	480.32	0.0071	HOMO->L+2 (69%), HOMO->L+3 (22%)	76>0 (- 76)	10>28 (18)	13>1 (- 12)	0>0 (0)	2>70 (68)
5	468.48	0.0013	H-1->L+1 (35%), HOMO->L+3 (50%)	48>3 (- 45)	13>80 (67)	33>4 (- 29)	0>0 (0)	7>14 (7)
6	464.22	0.0279	H-1->L+1 (61%), HOMO->L+2 (12%), HOMO->L+3 (22%)	29>4 (- 25)	15>75 (60)	46>5 (- 41)	0>0 (0)	10>16 (6)
7	450.10	0.0044	H-2->LUMO (51%), H-1->L+2 (32%)	5>1 (-4)	13>17 (4)	64>5 (- 59)	2>6 (4)	17>71 (54)
8	449.36	0.0	H-2->L+1 (90%)	4>6 (2)	9>78 (69)	64>7 (- 57)	3>1 (-2)	19>8 (-11)
9	433.28	0.0	H-3->LUMO (68%), HOMO->LUMO (23%)	28>1 (- 27)	15>8 (-7)	49>9 (- 40)	0>10 (10)	7>73 (66)
10	421.89	0.0499	H-2->L+2 (92%)	0>0 (0)	9>13 (4)	66>1 (- 65)	4>1 (-3)	21>85 (64)
11	415.30	0.21	H-2->LUMO (14%), H-1->L+2 (60%), H-1->L+3 (24%)	1>0 (-1)	16>28 (12)	66>2 (- 64)	1>2 (1)	16>67 (51)
12	404.20	0.0009	H-3->L+1 (51%), H-1->L+3 (29%)	14>4 (- 10)	16>78 (62)	59>5 (- 54)	0>1 (1)	10>12 (2)
13	396.17	0.0004	H-2->L+3 (92%)	0>1 (1)	9>84 (75)	67>3 (- 64)	4>0 (-4)	20>13 (-7)
14	386.11	0.0051	H-3->L+2 (86%), HOMO->L+2 (11%)	22>0 (- 22)	16>10 (-6)	55>1 (- 54)	0>0 (0)	7>89 (82)
15	377.95	0.0508	H-3->L+3 (91%)	17>1 (- 16)	17>88 (71)	58>3 (- 55)	0>0 (0)	7>8 (1)
16	363.50	0.0013	H-3->L+1 (37%), H-2->LUMO (10%), H-1->L+3 (36%)	6>3 (-3)	17>72 (55)	63>5 (- 58)	1>2 (1)	13>18 (5)
17	358.07	0.0	HOMO->L+4 (87%)	76>0 (- 76)	10>0 (-10)	13>0 (- 13)	0>32 (32)	2>67 (65)
$S_0 \rightarrow T_x$								
1	630.55	0.0	H-2->LUMO (57%), HOMO->L+1 (28%)	26>3 (- 23)	10>34 (24)	46>7 (- 39)	4>7 (3)	14>48 (34)
2	616.53	0.0	H-2->LUMO (36%), HOMO->L+1 (45%)	42>5 (- 37)	11>52 (41)	34>7 (- 27)	2>4 (2)	10>32 (22)
3	572.41	0.0	H-3->LUMO (34%), HOMO->LUMO (64%)	57>0 (- 57)	12>2 (-10)	27>9 (- 18)	0>11 (11)	3>78 (75)
4	568.81	0.0	H-1->LUMO (94%)	0>0 (0)	18>2 (-16)	65>8 (- 57)	0>11 (11)	16>78 (62)
5	517.38	0.0	H-1->L+1 (43%), HOMO->L+3 (43%)	42>4 (- 38)	15>82 (67)	36>4 (- 32)	0>0 (0)	8>10 (2)
6	508.09	0.0	H-1->L+1 (49%), HOMO->L+2 (13%), HOMO->L+3 (32%)	38>4 (- 34)	15>76 (61)	38>4 (- 34)	0>0 (0)	8>16 (8)
7	494.89	0.0	H-1->L+2 (48%), H-1->L+3 (24%)	2>0 (-2)	18>32 (14)	54>2 (- 52)	5>2 (-3)	21>64 (43)
8	476.22	0.0	H-3->L+2 (12%), HOMO->L+2 (66%), HOMO->L+3 (15%)	69>0 (- 69)	11>25 (14)	18>1 (- 17)	0>0 (0)	2>73 (71)
9	471.515	0.0	H-4->L+3 (11%), H-3->L+1 (15%), H-1->L+2 (13%), H-1->L+3 (35%)	17>3 (- 14)	28>74 (46)	44>3 (- 41)	1>0 (-1)	11>19 (8)
10	465.13	0.0	H-2->L+1 (95%)	2>7 (5)	9>83 (74)	66>7 (- 59)	4>0 (-4)	20>4 (-16)

Table S7 Calculated transitions and contributions of each unit for C2 ²	Ited transitions and contributions of each unit for C2 ²⁺	
--	--	--

S₀ → Sx	λ(nm)	Osc. Strength	Major contribs	DMAP	tbu2tpy	Ru	4-ру	pzpypz
1	635.36	0.0	H-3->LUMO (16%), HOMO->LUMO (83%)	73>0 (-73)	11>2 (-9)	15>9 (-6)	0>4 (4)	2>84 (82)
2	534.44	0.0235	H-1->LUMO (97%)	0>0 (0)	21>2 (-19)	64>9 (-55)	0>4 (4)	15>84 (69)
3	529.96	0.0001	HOMO->L+1 (92%)	79>0 (-79)	10>2 (-8)	10>3 (-7)	0>0 (0)	1>95 (94)
4	496.14	0.6709	H-2->LUMO (26%), HOMO->L+2 (69%)	60>5 (-55)	9>63 (54)	23>6 (-17)	1>1 (0)	7>24 (17)
5	484.37	0.0	H-3->LUMO (81%), HOMO->LUMO (16%)	23>0 (-23)	17>2 (-15)	53>9 (-44)	0>4 (4)	8>84 (76)
6	473.31	0.0034	HOMO->L+3 (97%)	83>1 (-82)	10>95 (85)	7>2 (-5)	0>0 (0)	1>2 (1)
7	473.22	0.0419	H-2->LUMO (48%), H-1->L+1 (22%), HOMO->L+2 (25%)	21>2 (-19)	12>25 (13)	50>7 (-43)	2>2 (0)	14>65 (51)
8	437.24	0.0656	H-2->L+1 (94%)	0>0 (0)	9>3 (-6)	64>3 (-61)	4>1 (-3)	22>93 (71)
9	424.04	0.0198	H-1->L+2 (86%)	4>6 (2)	20>76 (56)	62>5 (-57)	0>0 (0)	14>13 (-1)
10	417.41	0.0	H-2->L+2 (97%)	0>7 (7)	9>85 (76)	65>6 (-59)	5>0 (-5)	21>2 (-19)
11	413.93	0.0018	H-3->L+1 (62%), H-1->L+2 (12%), HOMO->L+5 (12%)	23>1 (-22)	16>15 (-1)	52>4 (-48)	0>0 (0)	9>81 (72)
12	410.94	0.0004	HOMO->L+4 (93%)	81>0 (-81)	10>0 (-10)	8>0 (-8)	0>18 (18)	1>81 (80)
13	409.85	0.0968	H-2->LUMO (15%), H-1->L+1 (69%)	4>1 (-3)	18>13 (-5)	62>4 (-58)	1>1 (0)	15>81 (66)
14	398.74	0.0001	H-3->L+1 (16%), HOMO->L+5 (80%)	71>0 (-71)	11>4 (-7)	16>2 (-14)	0>0 (0)	2>93 (91)
15	381.70	0.0206	H-3->L+2 (58%), H-1->L+3 (36%)	7>5 (-2)	19>88 (69)	62>4 (-58)	0>0 (0)	11>4 (-7)
16	371.33	0.0004	H-2->L+3 (95%)	0>1 (1)	9>93 (84)	65>3 (-62)	5>0 (-5)	22>4 (-18)
17	360.73	0.0548	H-3->L+3 (92%)	13>1 (-12)	18>93 (75)	60>2 (-58)	0>0 (0)	9>4 (-5)
18	352.87	0.1326	H-3->L+2 (20%), H-2->L+4 (17%), H-1->L+3 (46%), H-1->L+5 (11%)	3>2 (-1)	19>65 (46)	63>3 (-60)	1>3 (2)	15>27 (12)
S₀ → Tx								
1	665.94	0.0	H-2->LUMO (93%)	1>0 (-1)	9>3 (-6)	62>9 (-53)	5>5 (0)	23>83 (60)
2	657.22	0.0	H-3->LUMO (25%), HOMO->LUMO (74%)	65>0 (-65)	11>2 (-9)	20>9 (-11)	0>4 (4)	3>84 (81)
3	614.85	0.0	HOMO->L+2 (80%)	76>8 (-68)	11>85 (74)	11>5 (-6)	0>0 (0)	2>2 (0)
4	604.86	0.0	H-1->LUMO (94%)	0>0 (0)	21>2 (-19)	62>9 (-53)	0>5 (5)	16>84 (68)
5	537.01	0.0	HOMO->L+1 (86%)	77>0 (-77)	10>5 (-5)	11>3 (-8)	0>0 (0)	2>91 (89)
6	518.61	0.0	H-1->L+1 (69%)	1>0 (-1)	19>7 (-12)	52>3 (-49)	3>2 (-1)	25>88 (63)
7	511.59	0.0	HOMO->L+3 (88%)	79>1 (-78)	10>92 (82)	9>2 (-7)	0>0 (0)	2>5 (3)
8	499.78	0.0	H-3->LUMO (71%), HOMO->LUMO (26%)	30>0 (-30)	16>2 (-14)	47>9 (-38)	0>4 (4)	8>84 (76)
9	475.07	0.0	H-2->L+1 (92%)	0>0 (0)	9>5 (-4)	63>3 (-60)	5>0 (-5)	23>92 (69)
10	465.79	0.0	H-1->L+2 (87%)	3>7 (4)	25>86 (61)	57>5 (-52)	0>0 (0)	14>2 (-12)

Table S8 Calculated transitions and contributions of each unit for C3²⁺.

S₀ → Sx	λ (nm)	Osc. Strength	Major contributions	DMAP	tpyd	Ru	4'(4BrPh)	tpy	4 and 4'' py
1	569.7 3	0.0	H-3->LUMO (21%), HOMO->LUMO (77%)	67>0 (- 67)	11>2 (-9)	20>8 (- 12)	0>4 (4)	2>75 (73)	0>11 (11)
2	526.4 9	0.0703	H-1->LUMO (96%)	0>0 (0)	17>2 (- 15)	65>8 (- 57)	0>4 (4)	15>75 (60)	3>11 (8)
3	494.2 6	0.058	H-3->L+1 (10%), HOMO->L+1 (82%)	73>0 (- 73)	10>10 (0)	14>2 (- 12)	0>0 (0)	2>79 (77)	0>7 (7)
4	492.5 1	0.7051	H-2->LUMO (17%), HOMO->L+2 (72%)	64>5 (- 59)	9>66 (57)	21>6 (- 15)	2>1 (-1)	5>19 (14)	0>2 (2)
5	471.8 4	0.0039	HOMO->L+3 (91%)	76>1 (- 75)	10>91 (81)	12>3 (-9)	0>0 (0)	2>5 (3)	0>1 (1)
6	466.0 4	0.0059	H-2->LUMO (48%), H-1->L+1 (32%), HOMO->L+2 (12%)	10>1 (-9)	12>18 (6)	56>5 (- 51)	5>2 (-3)	15>65 (50)	1>8 (7)
7	464.2 7	0.0285	H-1->L+2 (94%)	3>7 (4)	17>83 (66)	63>6 (- 57)	0>0 (0)	14>3 (- 11)	3>0 (-3)
8	453.4 4	0.0001	H-3->LUMO (26%), H-2->L+2 (60%), HOMO->LUMO (11%)	12>4 (-8)	11>53 (42)	56>7 (- 49)	7>2 (-5)	14>30 (16)	0>4 (4)
9	444.0 7	0.0001	H-3->LUMO (49%), H-2->L+2 (36%), HOMO->LUMO (12%)	17>3 (- 14)	13>32 (19)	55>7 (- 48)	4>3 (-1)	11>48 (37)	0>7 (7)
10	436.9 5	0.105	H-2->L+1 (93%)	0>0 (0)	8>7 (-1)	62>2 (- 60)	9>1 (-8)	19>82 (63)	1>8 (7)
11	422.2 1	0.1452	H-2->LUMO (17%), H-1->L+1 (60%), H-1->L+3 (15%)	3>0 (-3)	15>21 (6)	62>3 (- 59)	2>1 (-1)	15>66 (51)	2>7 (5)
12	404.9 1	0.0223	H-3->L+2 (44%), H-1->L+3 (44%)	12>4 (-8)	17>85 (68)	59>5 (- 54)	0>0 (0)	11>5 (-6)	1>1 (0)
13	399.0 5	0.0	HOMO->L+5 (86%)	74>0 (- 74)	10>4 (-6)	14>1 (- 13)	0>0 (0)	2>65 (63)	0>30 (30)
14	398.0 0	0.0013	H-2->L+3 (93%)	0>1 (1)	8>89 (81)	62>3 (- 59)	10>0 (- 10)	19>6 (- 13)	1>1 (0)
15	397.6 4	0.0	HOMO->L+4 (91%)	77>0 (- 77)	10>1 (-9)	12>1 (- 11)	0>11 (11)	1>62 (61)	0>25 (25)
16	396.4 4	0.0008	H-3->L+1 (80%), HOMO->L+1 (10%)	25>0 (- 25)	16>6 (- 10)	52>2 (- 50)	0>0 (0)	7>82 (75)	0>9 (9)
17	377.0 7	0.0548	H-3->L+3 (92%)	16>1 (- 15)	17>91 (74)	59>3 (- 56)	0>0 (0)	7>5 (-2)	0>1 (1)
18	370.5 4	0.0242	H-3->L+2 (35%), H-1->L+3 (25%), H-1->L+5 (26%)	5>3 (-2)	17>57 (40)	63>4 (- 59)	1>1 (0)	13>25 (12)	2>10 (8)
19	358.6 1	0.3067	H-1->L+4 (91%)	0>0 (0)	17>1 (- 16)	64>1 (- 63)	0>11 (11)	16>62 (46)	3>25 (22)
20	354.0 8	0.0262	H-2->L+4 (52%), H-1->L+5 (39%)	0>0 (0)	12>5 (-7)	63>1 (- 62)	5>6 (1)	18>61 (43)	2>26 (24)
21	351.9 3	0.0072	H-2->L+5 (93%)	0>0 (0)	8>3 (-5)	62>1 (- 61)	9>1 (-8)	19>64 (45)	1>31 (30)
S₀ → Tx									
1	632.7 0	0.0	H-2->LUMO (66%), HOMO->L+2 (18%)	16>2 (- 14)	9>22 (13)	50>7 (- 43)	8>4 (-4)	16>56 (40)	1>9 (8)
2	617.2 4	0.0	H-3->L+2 (11%), H-2->LUMO (21%), HOMO->L+2 (56%)	53>6 (- 47)	11>63 (52)	26>6 (- 20)	2>2 (0)	7>20 (13)	1>3 (2)
3	589.9 8	0.0	H-1->LUMO (87%)	4>0 (-4)	17>2 (- 15)	60>7 (- 53)	0>4 (4)	15>75 (60)	4>12 (8)
4	588.8 9	0.0	H-3->LUMO (28%), HOMO->LUMO (64%)	57>0 (- 57)	12>2 (- 10)	27>8 (- 19)	0>4 (4)	4>75 (71)	0>11 (11)
5	520.7 5	0.0	H-1->L+1 (64%), H-1->L+3 (11%)	1>0 (-1)	16>16 (0)	53>2 (- 51)	1>1 (0)	21>71 (50)	8>10 (2)
6	516.5 6	0.0	H-1->L+2 (29%), HOMO->L+3 (57%)	54>3 (- 51)	13>84 (71)	27>4 (- 23)	0>0 (0)	6>8 (2)	1>1 (0)
7	509.0 9	0.0	H-1->L+2 (52%), HOMO->L+1 (26%), HOMO->L+3 (13%)	34>4 (- 30)	15>62 (47)	40>4 (- 36)	0>0 (0)	9>27 (18)	2>3 (1)
8	493.8 4	0.0	H-3->L+1 (11%), H-1->L+2 (11%), HOMO->L+1 (52%), HOMO- >L+3 (21%)	62>1 (- 61)	12>36 (24)	22>3 (- 19)	0>0 (0)	4>55 (51)	0>5 (5)
9	470.9 9	0.0	H-5->L+3 (12%), H-3->L+2 (13%), H-1->L+3 (43%)	17>3 (- 14)	29>83 (54)	42>4 (- 38)	0>0 (0)	10>9 (-1)	2>1 (-1)
10	468.1 5	0.0	H-2->L+1 (81%)	1>1 (0)	8>16 (8)	61>3 (- 58)	9>0 (-9)	20>73 (53)	1>7 (6)

Table S9 Atomic coordinates of C1²⁺ after optimization

Center	Atomic	Coord	linates (Angst	roms)	Center	Atomic	Coord	linates (Angst	roms)
Number	number	х	Y	Z	Number	number	Х	Y	Z
1	6	3.934175	0.000089	0.000057	56	7	-1.237261	0.008663	2.039348
2	7	1.143358	0.000023	0.000216	57	6	-2.066182	0.020984	4.712428
3	6	3.200113	-1.211804	0.004842	58	6	0.327652	0.014761	3.041171
4	6	3.200015	1.211923	0.004874	59	6	-2.581745	0.008613	2.349418
5	6	1.805961	1.188470	0.000176	60	6	-3.011533	0.014451	3.680530
6	6	1.806058	-1.188462	0.000137	61	6	0.702850	0.021189	4.386793
7	1	3.722064	-2.159821	0.037364	62	1	0.715067	0.014361	2.749363
8	1	3,721899	2,159981	0.037260	63	1	-4.069689	0.013812	3,912344
9	6	0.895459	2.348799	0.006929	64	1	0.061228	0.025995	5.154839
10	6	0.956081	4.390234	0.018781	65	1	-2.387815	0.025726	5.747681
11	7	0 445061	2 038622	0.008008	66	6	-7 086148	0.000042	0.000702
12	6	1.329723	3.678182	0.011113	67	7	-9.922954	0.000150	0.001075
13	6	0.410622	4 740138	0.017622	68	6	-7 818490	0.648932	1 014196
14	6	-1 342002	3 052836	0.013638	69	6	-7 818708	0.649071	-1 012599
15	1	2 392717	3 880184	0.009058	70	6	-9 217719	0.624130	0.972451
16	1	-2 388725	2 775241	0.014012	70	6	-9 217510	0.623883	0.974416
17	1	-1 731173	5 148055	0.023389	72	1	-7 322115	-1 189970	1 812516
18	6	0.895646	-2 3/8861	0.025565	72	1	-7 322503	1.100073	-1 811050
10	6	0.055040	-// 390/132	0.000407	73	1	-9 797516	1 123923	-1 7/185/
20	6	1 330009	-3 678213	0.017308	74	1	-9.797510	-1 123523	1 7/2072
20	7	0.444895	-2.038782	0.010370	75	7	9.657062	0.000325	0.000708
21	6	0.444895	2.052061	0.007018	70	6	10 202222	1 1 4 7 6 5 4	0.526745
22	6	-1.341704	4 740226	0.015047	70	1	10.392322	2 069424	0.320743
23	0	0.410984	2 990126	0.010008	78	1	10.155438	-2.008434	0.023232
24	1	2.595019	-3.860130	0.008249	79	1	10.172006	1 217225	0.430031
25	1	-2.388505	-2.775555	0.013502	80	1 6	10.172906	-1.31/225	-1.589727
20	1	-1.750782	-5.146511	0.022302	82	0	10.392078	1.140471	0.526127
27	6	5.404792	0.000151	0.000223	82	1	10.172099	1.318394	1.590931
28	6	8.280993	1.002582	0.000540	83	1	10.155518	2.069087	0.022298
29	6	6.145440	1.092565	0.507902	04		11.405550	6.200626	0.432094
30	6	0.145040	-1.092217	0.507309	85	6	0.835589	-0.209636	0.022052
31	6	7.537274	-1.100217	0.515055	00	6	0.835122	6.209566	0.023330
32	6	7.537073	1.100700	0.516539	87	0	0.205932	6.891137	-1.291218
33	1	5.630869	1.94/3/6	0.938278	88	1	0.827999	6.841010	-1.326876
34	1	5.631228	-1.947044	0.937806	89	1	0.661112	6.422060	-2.200107
35	1	8.050181	-1.958523	0.933651	90	6	2.364537	6.375134	0.021290
36	1	8.049822	1.959068	0.934604	91	1	2.822521	5.934294	0.872624
37	44	0.849396	0.000096	0.000114	92	1	2.610374	7.442815	0.025643
38	/	-1.237808	0.008881	-2.039471	93	1	2.825770	5.926282	0.909529
39	6	-2.067392	0.021225	-4./12338	94	1	0.553734	7.948984	-1.298087
40	6	-2.582368	0.008811	-2.349203	95	6	0.261253	6.902576	1.236203
41	6	0.328445	0.015019	-3.041515	96	1	0.653270	6.441916	2.150748
42	6	0.703978	0.021458	-4.387044	97	1	0.832788	6.852516	1.268413
43	6	-3.012489	0.014660	-3.680208	98	1	0.548805	7.960514	1.234441
44	1	0./14342	0.014645	-2.749951	99	6	0.266487	-6.891519	1.289806
45	1	0.059908	0.026293	-5.155280	100	1	0.6616/1	-6.422616	2.198/83
46	1	-4.070703	0.014006	-3.911758	101	1	0.554354	-7.949350	1.296434
47	1	-2.389282	0.025972	-5.747512	102	1	0.827446	-6.841466	1.325514
48	7	-2.830762	0.000108	0.000138	103	6	0.261729	-6.902418	-1.237617
49	6	-5.604615	0.000014	0.000507	104	1	0.832317	-6.852439	-1.269776
50	6	-3.490482	0.001357	1.191545	105	1	0.549365	-7.960333	-1.236094
51	6	-3.490802	0.001525	-1.191093	106	1	0.653676	-6.441528	-2.152076
52	6	-4.886968	0.001920	-1.213396	107	6	2.365015	-6.375096	0.019920
53	6	-4.886644	0.001846	1.214218	108	1	2.826246	-5.926405	0.908242
54	1	-5.416357	0.026783	-2.158086	109	1	2.822938	-5.934027	0.873912
55	1	-5.415782	0.026750	2.159047	110	1	2.610929	-7.442760	0.024030

Table S10 Atomic coordinates of **C2²⁺** after optimization.

Center	Atomic	Coord	linates (Angst	roms)	Center	Atomic	Coord	linates (Angst	roms)
Number	number	x	γ	7	Number	number	X	γ	7
1	6	3 937218	0.00006	0.000015	55	7	-1 234519	0.007055	2 027363
2	7	1 147051	0.000005	0.000103	56	7	-2 093625	0.015939	4 698760
3	6	3 202251	-1 212005	0.004609	57	6	0 344937	0.012170	3 045456
4	6	3 202231	1 212003	0.004521	58	6	-2 579578	0.006560	2 337355
5	6	1 808835	1 188035	0.000453	59	6	-2 979315	0.010585	3 680975
6	6	1 808845	-1 188039	0.000277	60	6	0 780484	0.016851	4 375136
7	1	3 723199	-2 160344	0.037060	61	1	0.707093	0.012340	2 795181
, 8	1	3 723178	2 160356	0.037016	62	1	-4 028602	0.009328	3 950360
9	6	0.898927	2 349276	0.005577	63	1	0.064885	0.0000020	5 188236
10	6	0.951668	4 391814	0.015412	64	6	-7 089534	0.000013	0.000313
11	7	0.441511	2 041189	0.006533	65	7	-9 924603	0.000021	0.000475
12	, 6	1 333872	3 677716	0.008900	66	6	-7 820884	0.653100	1 010886
13	6	0.415069	4 740408	0.014370	67	6	-7 820764	0.653130	-1 011596
14	6	-1 338704	3 05/1879	0.011156	68	6	-9 219829	0.628081	0.971/197
15	1	2 396829	3 879295	0.006924	69	6	-9 219944	0.628042	0.970627
16	1	-2 385726	2 778959	0.011/29	70	1	-7 32/1903	-1 197640	1 807054
10	1	-1 726375	5 1/198/15	0.011423	70	1	-7 324505	1.197668	-1 807706
17	6	0.898945	-2 3/9287	0.015225	71	1	-9 799629	1 130929	-1 738791
10	6	0.858545	-// 20182/	0.005758	72	1	-9.799029	-1 120887	1 737855
20	6	1 222807	-3 677724	0.013782	73	7	9.755854	0.000052	0.000344
20	7	0.441496	-2 0/1207	0.005228	74	6	10 393246	-1 157/3/	0.506891
21	,	-1 338683	-3.05/1001	0.000713	75	1	10.333240	-2.068712	0.056596
22	6	-1.338083	-3.034301	0.011407	70	1	10.132018	-2.008712	0.030390
23	1	2 206955	2 970206	0.014781	70	1	10 179115	1 242974	1 569012
24	1	2.390833	-3.879290	0.007288	78	6	10.178113	1 157/05	-1.308012
25	1	-2.565700	5 1/0960	0.011632	79	1	10.393310	1.157465	1 567209
20	6	5 406411	0.000012	0.019049	00 01	1	10.178321	2.069917	0.057120
27	6	9 292456	0.000012	0.000037	01	1	11 464210	2.000017	0.037159
20	6	6.262450	1.000037	0.000235	02		0.840024	6 200114	0.407157
29	6	6.147469	1.099980	0.491770	00	6	0.840924	-0.209114	0.019307
30	6	0.147448	-1.099954	0.491974	04 05	6	0.840883	6.209105	1.296419
31	6	7.538497	-1.108003	0.500612	65 96	0	0.271431	6.891389	-1.280418
32	0	7.556540	1.108039	0.300243	00	1	0.622341	6.422025	-1.521012
33	1	5.033849	1.960984	0.910479	87 00		0.005823	6.422930	-2.195814
25	1	9.051240	-1.900902	0.910008	00	1	2.570569	0.373301 E 021917	0.017280
35	1	8.051549 8.051424	-1.971090	0.900838	00	1	2.020414	7 440959	0.070245
27	1	0.051424	0.000011	0.900412	90	1	2.010755	7.440656	0.020850
20	44	0.651075	0.000011	2.027200	91	1	2.651100	7.040042	1 202286
38	7	-1.234271	0.007081	-2.027299	92	1	0.360405	7.949042	-1.292380
39	7	-2.093076	0.015963	-4.098/9/	93	0	0.267476	6.901011	1.241435
40	6	-2.579297	0.000576	-2.337440	94	1	0.059184	6.439284	2.155520
41	6	0.344576	0.012207	-3.045294	95	1	0.826590	0.852311	1.273692
42	6	0.779972	0.010887	-4.375023	90	1	0.556252	7.958530	1.240329
43	6	-2.978880	0.010602	-3.681112	97	6	0.271546	-6.891484	1.287045
44	1	0.707427	0.012389	-2.794907	98	1	0.665965	-6.422728	2.196376
45	1	0.064279	0.021169	-5.188040	99	1	0.560550	-7.948928	1.293107
46	1	-4.028136	0.009340	-3.950615	100	1	0.822427	-6.842750	1.322285
4/	/	-2.832960	0.000009	0.000060	101	6	0.267451	-6.901141	-1.240807
48	6	-5.608161	0.000008	0.000227	102	1	0.826615	-6.852425	-1.2/3019
49	6	-3.494747	0.000562	1.190259	103	1	0.556211	-7.958670	-1.239607
50	6	-3.494603	0.000570	-1.190460	104	1	0.659125	-6.439512	-2.154957
51	6	-4.890518	0.001538	-1.214381	105	6	2.370430	-6.373360	0.017746
52	6	-4.890664	0.001548	1.214013	106	1	2.831259	-5.925059	0.906454
53	1	-5.420059	0.026102	-2.159132	107	1	2.828396	-5.931995	0.875898
54	1	-5.420316	0.026122	2.158701	108	1	2.616782	-7.440855	0.021500

Table S11 Atomic coordinates of **C3²⁺** after optimization.

Contraction	A1	Coord	dinates (Angsti	roms)	Carlan Nambar	A1	Coord	linates (Angstr	oms)
Center Number	Atomic number	Х	Y	Z	Center Number	Atomic number	Х	Ŷ	Z
1	6	-5.061183	0.000331	0.022569	66	6	6.681791	-1.015713	0.696659
2	7	-2 270583	0.001359	0.007409	67	6	8 081518	-1 022328	0 709268
3	6	-4 320438	0.012562	-1 230392	68	6	8 089453	1.016606	0.628873
1	6	-4.333653	0.012002	1 1932/2	69	1	6 171279	1.010000	-1 177081
	6	-4.555655	0.014057	1.177214	70	1	6 1 5 6 0 0 9	1.755502	1 229411
5	6	-2.939537	0.019065	1.177314	70	1	0.156908	-1.796464	1.238411
6	6	-2.926597	0.016505	-1.199359	/1	1	8.615460	-1.805250	1.236481
7	1	-4.837204	0.005407	-2.181619	72	1	8.629637	1.798885	-1.150655
8	1	-4.860616	0.004361	2.138837	73	7	-10.783768	0.003814	0.054976
9	6	-2.035339	0.030477	2.342671	74	6	-11.512010	0.550795	-1.198321
10	6	0.195192	0.051902	4.394432	75	1	-11.271981	0.014460	-2.126315
11	7	0.693042	0.024387	2.040293	76	1	-12.584352	0.454271	-1.022355
12	6	-2.477043	0.048098	3.669438	77	1	-11.288961	-1.615655	-1.350296
13	6	-1.563859	0.059195	4.736511	78	6	-11.525825	0.541991	1.080016
14	6	0.198237	0.035167	3.059323	79	1	-11.305679	1.607036	1,234886
15	1	-3 541156	0.053773	3 865427	80	1	-11 296061	0.005621	2 010597
15	1	1 246445	0.030775	2 797420	80 91	1	12 505045	0.003021	0.901541
10	1	1.246445	0.030326	2.787430	81	1	-12.595945	0.444433	0.891541
17	1	0.575629	0.059606	5.156564	82	6	-1.929174	0.072923	-6.214972
18	6	-2.009868	0.027495	-2.354874	83	6	-1.996683	0.078405	6.203382
19	6	0.147533	0.048971	-4.386535	84	6	-1.434610	-1.179755	6.908505
20	6	-2.437097	0.043882	-3.686388	85	1	0.340540	-1.219095	6.864731
21	7	0.670982	0.022241	-2.037951	86	1	-1.829829	-2.095098	6.452198
22	6	0.231369	0.033160	-3.047230	87	6	-3.526992	0.087129	6.360203
23	6	-1.512380	0.054932	-4.743467	88	1	-3.980064	0.974826	5.902038
24	1	-3.498980	0.048521	-3.894038	89	1	-3.778827	0.101100	7.426397
25	1	1.276612	0.029187	-2.764117	90	1	-3.988117	0.807227	5.923578
26	1	0.631480	0.056903	-5 140278	91	1	-1 727997	-1 168624	7 964779
20	6	6 521676	0.000722	0.020758	02	6	1.727337	1.100024	6 879200
27	6	-0.331070	0.000733	0.030738	92	1	1 200001	2.255506	6 401195
28	0	-9.407797	0.002878	0.047115	93	1	-1.809901	2.255500	6.401185
29	6	-7.278957	0.522558	1.049759	94	1	0.329013	1.375869	6.835660
30	6	-7.265879	0.525209	-1.119650	95	1	-1.717653	1.363892	7.935165
31	6	-8.657398	0.534946	-1.135461	96	6	-1.357128	1.184336	-6.913647
32	6	-8.670588	0.530214	1.049717	97	1	-1.755660	2.100314	-6.461513
33	1	-6.769672	0.966043	1.900996	98	1	-1.638973	1.173917	-7.973065
34	1	-6.746282	0.968007	-1.964993	99	1	0.263527	1.221739	-6.857946
35	1	-9.165052	0.966121	-1.990365	100	6	-1.350889	-1.342998	-6.884717
36	1	-9.188592	0.960579	1.898793	101	1	0.257073	-1.373479	-6.828961
37	44	0 277826	0.000895	0.003325	102	1	-1 633366	-1 358534	-7 943898
38	7	0.110783	-2 03/203	0.027448	102	1	-1 744407	-2 250337	-6 /11265
20	6	0.052220	4 707407	0.027448	103	6	2 157600	0.079760	-0.41120J
39	6	0.952330	-4.727487	0.052008	104	0	-3.457088	0.078769	-0.388514
40	6	1.454246	-2.34/32/	0.030881	105	1	-3.921912	0.816210	-5.956473
41	6	0.791138	-3.042694	0.039987	106	1	-3.917388	0.965854	-5.935815
42	6	0.413183	-4.383674	0.052923	107	1	-3.697861	0.091750	-7.457404
43	6	1.884444	-3.674811	0.042726	108	6	8.772024	0.003317	0.043581
44	1	-1.836040	-2.759793	0.033030	109	35	10.723055	0.004608	0.053188
45	1	-1.186022	-5.143176	0.040709	110	6	1.396647	6.141971	0.060811
46	1	2.946098	-3.888912	0.066254	111	7	2.234484	8.850819	0.096384
47	7	1.705491	0.000207	0.011588	112	6	2.597276	6.528369	0.688192
48	6	4,483766	0.000823	0.022331	113	6	0.627893	7.153749	0.546837
49	6	2.366644	1,190118	0.001157	114	6	1.080258	8.477794	0.506221
45 E0	6	2.300044	1 100212	0.001107	114	6	2.071622	7 977220	0.500221
50	0	2.303044	-1.190212	0.027303	115	0	2.971025	7.077239	1.100005
51	0	3.701344	-1.213229	0.029897	110	1	3.22/13/	5.807510	-1.198085
52	6	3.762350	1.212103	0.007501	117	1	0.296259	6.925567	1.066276
53	1	4.289848	-2.158503	0.013850	118	1	0.503940	9.269312	0.974430
54	1	4.291422	2.157017	0.026202	119	1	3.890233	8.193949	-1.165612
55	7	0.112418	2.035683	0.015729	120	6	1.391914	-6.141432	0.059660
56	6	0.956059	4.728403	0.042278	121	7	2.228114	-8.850848	0.073894
57	6	0.788708	3.044911	0.024931	122	6	0.625168	-7.140469	0.690450
58	6	1.456110	2.347831	0.016892	123	6	2.589661	-6.540757	0.565097
59	6	1.887319	3,674975	0.030199	124	6	2,963292	-7,889491	0.534136
60	6	0.400720	1 385502	0.037219	125	6	1.076601	-8 /65225	0.674010
61	0	1,022040	4.303333	0.03/318	125	0	1.070091	-0.403333	1 200220
61	1	-1.833818	2.762/18	0.029088	120	1	0.290030	-0.901443	1.209226
62	1	2.949168	3.888445	0.010493	127	1	3.21/539	-5.830280	-1.091781
63	1	-1.182053	5.145167	0.065997	128	1	3.879620	-8.216270	-1.015200
64	6	5.964468	0.001522	0.029571	129	1	0.502009	-9.247136	1.160221
65	6	6.689665	1.011816	0.630246					

MO	eV	DMAPh	tbu2tpy	Ru	4-py	tpy
α L+2	-2.05	0	13	4	1	82
α L+1	-2.24	1	84	1	0	14
α LUMO	-2.33	6	83	9	0	2
α SOMO	-3.61	0	1	8	15	76
α H-1	-5,50	65	11	22	0	3
α H-2	-6.51	0	16	67	0	17
β L+2	-2.01	0	2	8	17	73
β L+1	-2.22	1	93	1	0	5
β LUMO	-2.32	6	82	10	0	2
β НОМО	-5.48	62	11	25	0	3
β H-1	-5.69	0	7	62	6	25
β H-2	-5.81	0	16	67	0	17

Table S12 Contributions of each unit to selected frontiers orbitals of C1⁺

Table S13	Contributions	of each	unit to	selected	frontiers	orbitals	of C2 ⁺
-----------	---------------	---------	---------	----------	-----------	----------	---------------------------

MO	eV	DMAPh	tbu ₂ tpy	Ru	4-py	pzpypz
α L+2	-2.26	1	91	4	0	5
α L+1	-2.42	6	84	8	0	1
α LUMO	-2.60	0	7	4	0	88
α SOMO	-3.96	0	2	8	4	85
α H-1	-5.58	75	9	14	0	2
α H-2	-6.11	0	16	64	0	20
β L+2	-2.32	0	69	0	0	31
β L+1	-2.38	0	2	9	9	80
β LUMO	-2.42	6	84	8	0	2
β ΗΟΜΟ	-5.57	73	10	16	0	2
β H-1	-6.01	0	7	65	4	24
β H-2	-6.11	0	16	65	0	19

Table S14 Contributions of each unit to selected frontiers orbitals of C3⁺

MO	eV	DMAPh	tbu ₂ tov	Ru	4'(4BrPh)	tov	4 and 4" pv
α L+2	-2.21	1	89	4	0	5	2
α L+1	-2.35	6	83	9	0	2	0
α LUMO	-2.47	0	9	3	0	69	18
α SOMO	-3.65	0	1	7	4	78	10
α H-1	-5.52	68	10	19	0	2	0
α H-2	-5.86	0	15	65	0	18	3
β L+2	-2.05	0	9	5	1	70	14
β L+1	-2.24	1	83	2	0	11	3
β LUMO	-2.35	4	55	8	1	24	8
β ΗΟΜΟ	-5.51	66	10	21	0	3	0
β H-1	-5.82	0	14	63	1	19	3
β H-2	-6.16	29	17	48	0	6	0

Table S15 Atomic coordinates of **C1**⁺ after optimization.

Center	Atomic	Coord	linates (Angst	roms)	Center	Atomic	Coordinates (Angstro		roms)
Number	number	Х	Y	Z	Number	number	Х	Y	Z
1	6	3.940614	0.000035	0.000066	56	7	-1.240576	0.013654	2.037235
2	7	1.149055	0.000010	0.000364	57	6	-2.064210	0.032410	4.719138
3	6	3.208431	-1.212196	0.009224	58	6	0.328806	0.021896	3.044193
4	6	3.208393	1.212241	0.009494	59	6	-2.595240	0.014185	2.349447
5	6	1.813166	1.190623	0.004628	60	6	-3.009268	0.023385	3.695447
6	6	1.813206	-1.190623	0.004066	61	6	0.692730	0.031533	4.387791
7	1	3.732910	-2.159288	0.044745	62	1	0.713192	0.020712	2.746248
8	1	3.732849	2.159351	0.044861	63	1	-4.067479	0.023405	3.930834
9	6	0.900151	2.348890	0.015115	64	1	0.074259	0.038053	5.153331
10	6	0.957500	4.387315	0.033324	65	1	-2.381050	0.039931	5.756541
11	7	0.441369	2.035888	0.014252	66	6	-7.092033	0.000010	0.000775
12	6	1.331047	3.681076	0.024696	67	7	-9.967600	0.000011	0.001248
13	6	0.409590	4.740127	0.034731	68	6	-7.852202	0.294641	1.164511
14	6	-1.340414	3.049019	0.022859	69	6	-7.852590	0.294652	-1.162717
15	1	2.393866	3.885492	0.024251	70	6	-9.247326	0.282087	-1.116505
16	1	-2.384593	2,760262	0.021300	71	6	-9.246961	0.282068	1,118752
17	1	-1 733252	5 144859	0.040214	72	1	-7 373084	0 554223	2 101755
18	6	0.900224	-2 348916	0.014498	72	1	-7 373762	0.554211	-2 100115
19	6	0.957372	-// 387393	0.032585	73	1	-9 822251	0.534211	-2.009106
20	6	1 331157	-3 681091	0.024034	75	1	-9 821581	0.512735	2.005100
20	7	0.441305	-2 035951	0.024034	75	7	9.669127	0.000237	0.000402
21	,	1 240222	2.035351	0.013034	70	6	10 /02170	1 125224	0.000402
22	0	-1.340322	-3.049107	0.022137	70	0	10.403179	2 069/20	0.333380
23	1	2 202092	2 995/76	0.034029	78	1	10.108900	-2.008439	0.023007
24	1	2.595962	-3.863470	0.025560	79	1	10.190904	1 292015	1 610222
25	1	-2.384508	-2.760377	0.020568	80		10.180804	-1.282915	-1.019233
20	1	-1.733104	-5.144958	0.039415	81	0	10.403001	1.135402	0.555025
27	6	5.414147	0.000064	0.000095	82	1	10.180921	1.282123	1.021080
28	6	8.291076	0.000150	0.000361	83	1	10.168313	2.068980	0.025526
29	6	6.154567	1.080211	0.531552	84	1	11.474609	0.954622	0.457540
30	6	6.154729	-1.080067	0.531168	85	6	0.830204	-6.211470	0.046293
31	6	7.547577	-1.088377	0.538895	86	6	0.830027	6.211440	0.047025
32	6	7.547413	1.088589	0.539567	87	6	0.258800	6.887250	-1.316889
33	1	5.638566	1.925146	0.979777	88	1	0.835018	6.833121	-1.351789
34	1	5.638859	-1.925059	0.979436	89	1	0.654712	6.415289	-2.224078
35	1	8.060367	-1.938104	0.974556	90	6	2.359052	6.381480	0.047151
36	1	8.060073	1.938276	0.975460	91	1	2.818806	5.944943	0.848001
37	44	0.831603	0.000037	0.000257	92	1	2.602558	7.449824	0.056300
38	/	-1.241238	0.013/22	-2.03/599	93	1	2.820376	5.929332	0.933/11
39	6	-2.065691	0.032465	-4.719261	94	1	0.543162	7.946164	-1.328785
40	6	-2.596015	0.014228	-2.349406	95	6	0.256415	6.909474	1.209649
41	6	0.329777	0.021981	-3.044839	96	1	0.650949	6.453841	2.125737
42	6	0.694106	0.031613	-4.388327	97	1	0.837438	6.855541	1.243653
43	6	-3.010442	0.023423	-3.695288	98	1	0.540360	7.968551	1.203234
44	1	0.712308	0.020812	-2.747194	99	6	0.258951	-6.887336	1.316116
45	1	0.072660	0.038148	-5.154091	100	1	0.654820	-6.415393	2.223333
46	1	-4.068725	0.023427	-3.930361	101	1	0.543342	-7.946243	1.327987
47	1	-2.382854	0.039983	-5.756566	102	1	0.834869	-6.833240	1.350983
48	7	-2.823841	0.000049	0.000061	103	6	0.256650	-6.909480	-1.210422
49	6	-5.627988	0.000013	0.000525	104	1	0.837202	-6.855568	-1.244458
50	6	-3.498986	0.002886	1.203993	105	1	0.540619	-7.968550	-1.204030
51	6	-3.499394	0.002925	-1.203683	106	1	0.651204	-6.453808	-2.126482
52	6	-4.887384	0.000269	-1.220478	107	6	2.359233	-6.381472	0.046468
53	6	-4.886966	0.000289	1.221268	108	1	2.820514	-5.929322	0.933049
54	1	-5.406344	0.021256	-2.171570	109	1	2.819008	-5.944913	0.848663
55	1	-5.405601	0.021322	2.172534	110	1	2.602765	-7.449810	0.055610

Table S16 Atomic coordinates of **C2**⁺ after optimization.

Center	Atomic	Coord	linates (Angst	roms)	Center	Atomic	Coordinates (Angstre		roms)
Number	number	х	Y	Z	Number	number	Х	Y	Z
1	6	3.937951	0.000003	0.000025	55	7	-1.227109	0.008062	2.018109
2	7	1.148354	0.000008	0.000060	56	7	-2.103519	0.019701	4.709496
3	6	3.205370	-1.212309	0.005598	57	6	0.343359	0.012615	3.055128
4	6	3.205366	1.212301	0.005594	58	6	-2.589128	0.008569	2.336056
5	6	1.810519	1.189883	0.000719	59	6	-2.977639	0.014174	3.690461
6	6	1.810524	-1.189897	0.000636	60	6	0.772736	0.018619	4.375513
7	1	3.729250	-2.159597	0.038376	61	1	0.710418	0.011509	2.806707
8	1	3.729246	2.159590	0.038330	62	1	-4.030149	0.014165	3.954067
9	6	0.898279	2.349894	0.007843	63	1	0.058723	0.022622	5.190236
10	6	0.955545	4.391629	0.020154	64	6	-7.089485	0.000015	0.000197
11	7	0.443105	2.040570	0.008166	65	7	-9.940974	0.000033	0.000306
12	6	1.331690	3.680562	0.013227	66	6	-7.832414	0.551616	1.067628
13	6	0.411745	4.741524	0.020140	67	6	-7.832489	0.551655	-1.067177
14	6	-1 340795	3 053839	0.013876	68	6	-9 230198	0.529052	-1 026082
15	1	2.394670	3.883438	0.011907	69	6	-9.230126	0.528995	1.026639
16	1	-2 385887	2 768978	0.013409	70	1	-7 341250	-1 019490	1 913864
17	1	-1 730093	5 150233	0.024854	70	1	-7 341384	1 019522	-1 913452
18	6	0.898288	-2 349911	0.007716	72	1	-9 808136	0.955556	-1 840352
19	6	0.955530	-4 391653	0.019909	72	1	-9 808007	0.955492	1 840954
20	6	1 331703	-3 680579	0.013030	73	7	9 664273	0.000011	0.000235
20	7	0.443097	-2 040591	0.008051	75	6	10 398703	-1 137744	0.548961
22	6	-1 3/078/	-3.053863	0.013702	76	1	10.164250	-2.068619	0.01/1802
22	6	0.411762	-4 741543	0.019884	70	1	11 470171	0.955995	0.014802
23	1	2 39/68/	-3 883/151	0.010004	78	1	10 176575	-1 289361	-1 614226
24	1	-2 385876	-2 769005	0.011700	70	6	10.170575	1 127888	0 5/102/1
25	1	-2.383870	-5 150259	0.013234	80	1	10.338033	1 289744	1 61/1/13
20	6	5 410463	0.000002	0.024557	81	1	10.170330	2.068652	0.014846
27	6	8 286949	0.000002	0.000075	82	1	11 470132	0.956088	0.014040
20	6	6 150909	1 082972	0.526431	83	6	0.835352	-6 211726	0.432784
30	6	6 150952	-1 082961	0.526431	84	6	0.835331	6 211720	0.027271
30	6	7 5/3352	-1.082301	0.520220	85	6	0.855551	6 802161	-1 205732
22	6	7.543352	1 001132	0.534578	86	1	0.203301	6 840792	-1.230732
32	1	5 635/21	1.031132	0.971020	80	1	0.620540	6 422235	-2 204273
34	1	5.635501	-1 930049	0.971020	88	6	2 364663	6 378572	0.026612
25	1	9.056127	1 042545	0.970854	80	1	2.304003	5 029575	0.020012
26	1	8.050137	1 042575	0.900301	00	1	2.623323	7 446456	0.007303
27	1	0.826245	0.000011	0.900870	90	1	2.010010	7.440430 5.029719	0.032217
20	44	1 227269	0.000011	2.019157	91	1	2.823301	7.050266	1 204002
30	7	-1.227200	0.008081	-2.018137	92		0.352401	6.006271	-1.504095
39	7 6	-2.105601	0.019710	-4.709480	95	1	0.202200	6.446002	2 146041
40	6	-2.569500	0.008581	-2.350008	94	1	0.055254	0.440905	2.140041
41	6	0.343588	0.012635	-3.055234	95	1	0.831710	0.855112	1.204395
42	6	0.775056	0.018034	-4.575591	90	1 6	0.346607	7.904087	1.226501
43	6	-2.977913	0.014182	-3.690384	97	6	0.265732	-6.892223	1.295430
44	1	0.710205	0.011535	-2.806881	98	1	0.660926	-6.422305	2.203941
45	1	0.059102	0.022637	-5.190364	99	1	0.552604	-7.950419	1.303739
46		-4.030441	0.014168	-3.953918	100	1	0.828173	-6.840888	1.330808
4/	/	-2.830/63	0.000010	0.000032	101	6	0.26213/	-6.906350	-1.231551
48	6	-5.612581	0.000006	0.000140	102	1	0.831841	-6.855062	-1.264582
49	6	-3.496282	0.000343	1.203848	103	1	0.548659	-7.964672	-1.228654
50	6	-3.496377	0.000352	-1.203730	104	1	0.655027	-6.446872	-2.146374
51	6	-4.890659	0.001749	-1.219329	105	6	2.364684	-6.378585	0.026084
52	6	-4.890565	0.001742	1.219551	106	1	2.825695	-5.928623	0.913897
53	1	-5.421092	0.022582	-2.164434	107	1	2.823228	-5.938693	0.868027
54	1	-5.420928	0.022597	2.164696	108	1	2.610035	-7.446468	0.031780

Table S17 Atomic coordinates of **C3**⁺ after optimization.

Contraction by the second	A	Coord	dinates (Angst	roms)	Carlan Nambar		Coordinates (Ang		gstroms)	
Center Number	Lenter Number Atomic number	Х	Y	Z	Center Number	Atomic number	Х	Y	Z	
1	6	-5.064006	0.009230	0.019465	66	6	6.696134	-1.056806	0.604942	
2	7	-2.272725	0.014324	0.010255	67	6	8.095861	-1.069423	0.599177	
3	6	-4.335511	0.018746	-1.194669	68	6	8.094980	1.026923	0.643186	
4	6	-4.327561	0.037443	1.228840	69	1	6.175104	1.831074	-1.137022	
5	6	-2.932571	0.044040	1.202315	70	1	6.177332	-1.859094	1.120445	
6	6	-2 940334	0.021053	-1 177300	71	1	8 632648	-1 877043	1 085304	
7	1	-4 862609	0.014991	-2 140853	72	1	8 630715	1 831888	-1 134855	
8	1	-4 848497	0.028776	2.140055	72	7	-10 791856	0.002983	0.040099	
9	6	-2.016608	0.066885	2 3 5 8 1 3 0	75	6	-11 529316	0.581548	-1 077700	
10	6	0.154561	0.000885	1 201860	74	1	-11.323310	0.077154	-2.025654	
10	7	0.134301	0.102372	4.391809	75	1	12 600250	0.077134	-2.023034	
11	7	0.076239	0.055599	2.042302	76	1	-12.600350	0.478842	0.896517	
12	0	-2.444525	0.098200	3.090747	77	1	-11.507922	-1.051199	-1.190545	
13	6	-1.520611	0.117456	4.747643	78	6	-11.522400	0.585671	1.163385	
14	6	0.225044	0.072931	3.052891	79	1	-11.302/16	1.655850	1.280645	
15	1	-3.506/91	0.108045	3.897574	80	1	-11.281950	0.081798	2.109553	
16	1	1.268961	0.062064	2.763672	81	1	-12.594499	0.480378	0.990170	
17	1	0.623114	0.115115	5.147309	82	6	-1.977609	0.163846	-6.199874	
18	6	-2.031829	0.050526	-2.338827	83	6	-1.937708	0.152500	6.219455	
19	6	0.182782	0.109930	-4.383825	84	6	-1.371896	-1.099260	6.932580	
20	6	-2.468278	0.089321	-3.668494	85	1	0.278462	-1.142150	6.876719	
21	7	0.689423	0.041351	-2.031509	86	1	-1.774329	-2.018250	6.489925	
22	6	0.205382	0.071333	-3.047525	87	6	-3.466299	0.166468	6.392669	
23	6	-1.551115	0.120181	-4.730975	88	1	-3.921961	1.050242	5.929448	
24	1	-3.531880	0.096548	-3.868509	89	1	-3.707273	0.192070	7.461299	
25	1	1.251115	0.064193	-2.764805	90	1	-3.933785	0.731099	5.969553	
26	1	0.590096	0.132627	-5.143928	91	1	-1.653389	-1.076762	7.992074	
27	6	-6.537236	0.007674	0.024547	92	6	-1.355348	1.426836	6.877146	
28	6	-9.414031	0.004562	0.035047	93	1	-1.745020	2.330706	6.393774	
29	6	-7.274475	0.567433	1.092611	94	1	0.261378	1.452517	6.820943	
30	6	-7.281012	0.553613	-1.038165	95	1	-1.637851	1.455043	7.936226	
31	6	-8.673735	0.563287	-1.041157	96	6	-1.411398	1.080777	-6.925093	
32	6	-8 667162	0 574103	1 105794	97	1	-1 807624	2 004349	-6 486368	
33	1	-6 756164	1 039120	1 923198	98	1	-1 699403	1 052088	-7 982689	
34	1	-6 767829	-1 02/19/	-1 872547	90	1	0.317484	1 119776	-6 876102	
35	1	-9.1890/6	-1.024134	-1.876684	100	6	-1 /0//01	-1 ///920	-6.852474	
35	1	-9.189040	1 022/48	1.045096	100	1	-1.404401	1,444920	-0.852474	
27	1	-9.177350	0.012026	1.945060	101	1	1 604202	-1.474201	7 000261	
37	44	0.292294	0.012926	0.003854	102	1	-1.694292	-1.479539	-7.909361	
38	1	0.090223	-2.015218	0.048044	103	1	-1.794013	-2.343923	-0.360072	
39	6	0.945449	-4.730932	0.093914	104	6	-3.507305	0.173008	-6.363408	
40	6	1.455989	-2.33/182	0.055720	105	1	-3.968656	0.729296	-5.943641	
41	6	0.807927	-3.039095	0.063377	106	1	-3.963449	-1.051759	-5.891198	
42	6	0.441043	-4.3/3433	0.082753	107	1	-3.755098	0.205099	-7.430305	
43	6	1.868985	-3.679704	0.081200	108	6	8.783733	0.023603	0.026889	
44	1	-1.854140	-2.754252	0.065700	109	35	10.738312	0.029412	0.037967	
45	1	-1.219534	-5.126247	0.117588	110	6	1.414378	6.151651	0.133106	
46	1	2.932727	-3.890188	0.063970	111	7	2.255907	8.868723	0.194598	
47	7	1.702937	0.008740	0.000317	112	6	0.613501	7.159870	0.710086	
48	6	4.487099	0.009503	0.002384	113	6	2.650846	6.554326	0.414989	
49	6	2.375695	1.200159	0.028735	114	6	3.025117	7.901138	0.362031	
50	6	2.358624	-1.204151	0.030763	115	6	1.067131	8.483334	0.719088	
51	6	3.759464	-1.216637	0.028739	116	1	0.340683	6.927057	-1.169661	
52	6	3.766112	1.218253	0.030892	117	1	3.310794	5.843964	0.900887	
53	1	4.286990	-2.163958	0.024600	118	1	3.971630	8.223800	0.784586	
54	1	4.299720	2.161304	0.025292	119	1	0.462407	9.266713	-1.165428	
55	7	0.119151	2.039787	0.044000	120	6	1.377233	-6.138787	0.105628	
56	6	0.973954	4.741479	0.102845	121	7	2.201666	-8.874289	0.120306	
57	6	0.778571	3.060710	0.073822	122	6	2.660111	-6.529988	0.556538	
58	6	1.471465	2.353677	0.047271	123	6	0.523843	-7.178545	0.331904	
59	6	1.898383	3.686129	0.074526	124	6	0.969503	-8.503702	0.308230	
60	6	0.400787	4.395937	0.105062	125	6	3.022436	-7.879290	0.544212	
61	1	-1.824773	2.779712	0.065408	126	1	3.369422	-5.803638	0.937905	
62	1	2.962174	3.892592	0.098321	127	1	0.470162	-6.968680	0.710619	
63	1	-1.173439	5.155939	0.105524	128	1	0.319782	-9.304495	0.648924	
64	6	5.965978	0.014788	0.009315	129	1	4.004485	-8.184670	0.893008	
65	6	6.694930	1.023900	0.630339	-					
	· · · · ·						E			

Photocatalytic studies

Hydrogen evolution was monitored using a Perkin Elmer Clarus-480 gas chromatograph (GC) with a thermal conductivity detector, argon as carrier and eluent gas, a 7 ft. HayeSep N 60/80 pre-column, a 9 ft. molecular sieve 13 x 45/60 column and a 2 ml injection loop. Three distinct solutions for the sacrificial electron donor and proton source, the photosensitizer and the catalyst were prepared and mixed together to obtain 5 ml of solutions in standard 20 ml headspace vials. Using DMF as a solvent, the resulting molar concentration of photocatalytic medium are: 1 M for triethanolamine (TEOA), 0.1 M for HBF4, 0.56 M for water (pHapparent= 8.9). The concentration of active species were: 0.1 mM for the photosensitizer, 1 mM of cobalt pre-catalyst $[Co(H_2O)_6](BF_4)_2$ and 6 mM of dimethylglyoxime. The vials were placed on top of a LED in an aluminum cast connected to a thermostatic bath set at 20 °C. They were sealed with a rubber septum pierced with two stainless steel tubes. The first tube carried an argon flow pre-bubbled in DMF. The flow was set between at 5 ml/min (adjusted with calibrated mass flow MCseries from Alicat) and referenced with a digital flowmeter (Perkin Elmer FlowMark). The second tube led the flow to the GC sample loop through a 2 ml overflow protection vial, then through an 8-port stream select valve (VICCI) and finally to GC sample loop. A microprocessor (Arduino Uno) coupled with a custom PC interface allowed for timed injections. For calibration testing, stock cylinders of known concentration of H₂ in argon replaced the argon flow (inserted at the pre-bubbler, to keep the same vapor matrix). The measured results, independent of flow rate (under same pressure) can be easily converted into a rate of hydrogen production following equation 1. The errors associated to the TON (TurnOver Number) and TOF (TurnOver Frequency) were estimated to be within 10 %. They are calculated using the equations below.

- (Eq. 1) H_2 rate (μ L/min) = [H_2 standard] (ppm) × Ar flow rate (mL/min)
- (Eq. 2) H_2 rate (nmol/min) = H_2 rate (μ L/min) / 24.45 × 1000
- (Eq. 3) TOF $(mmol_{H2}.mol_{PS}.min^{-1}) = H_2 \text{ rate } (nmol/min) / n_{PS} (mol) / 10^6$

The amount of hydrogen produced between two injections is calculated using the average rate over that period of time [t_i ; t_j], multiplied by the time between two injections (tj-ti).

Figure S20 Overlap of the emission spectra of the LEDs used for photocatalytic experiments with the absorption spectra of the photosensitizers in this study.

Figure S21 Photocatalytic hydrogen evolution performances obtained using fresh stock solutions of **C1**, **C2** or **C3** in DMF with 1M TEOA and 0.1M HBF4 under 450 nm irradiation (62 mW) with 1mM $[Co(H_2O)_6](BF_4)_2$ and 6mM dmgH₂ as precursors for the catalyst.

Figure S22 Photocatalytic hydrogen evolution performances obtained using fresh stock solutions of **C1**, **C2** or **C3** in DMF with 1M TEOA and 0.1M HBF4 under 525 nm irradiation (53mW) with 1mM $[Co(H_2O)_6](BF_4)_2$ and 6mM dmgH₂ as precursors for the catalyst.

Figure S23 Scale of redox potentials highlighting the variation in driving force based on the relative position of the excited state reduction potential of the different PS (determined using the emission onset) compared to the oxidation range of triethanolamine.