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1. Experimental

1.1. Materials

All chemicals used were of reagent grade quality. 3-Nitrophthalonitrile, 4-nitrophthalonitrile, 4,5-dichlorophthalonitrile, 7-hydroxy-3-ethyl-
6-hexyl-4-methylcoumarin (1) and its phthalonitrile derivatives (2-5) were synthesized and purified according to the methods described
previously in literature respectively.’3 4-Hexylresorcinol, ethyl 2-ethylacetoacetate, 1,3-diphenylisobenzofuran (DPBF) and metal salts were
purchased from Sigma-Aldrich and used as received. The solvents were purified, dried and stored over 4A molecular sieves. All reactions
were carried out under high purity N, atmosphere unless otherwise noted. The Pc compounds (6a-9b) were purified successively by washing
with hot acetic acid, water, ethanol and acetonitrile in the Soxhlet apparatus. Column chromatography was performed on silica gel 60 (0.040-
0.063 mm) for a proper purification. Melting points of the Pc compounds were found to be higher than 300°C. The homogeneity of the
products was tested in each step by thin layer chromatography (TLC Silica gel 60 Fys4).

1.2. Equipment

IR spectra were recorded on a Perkin Elmer Spectrum One fourier transform infrared spectrophotometer. *H-NMR spectras were recorded
on a Bruker Avance lll 500 MHz Three channel NMR spectrometer. Elemental analyses were performed by the Instrumental Analysis
Laboratory of the TUBITAK, Marmara Research Centre. Mass spectra were recorded on the Bruker microflex LT MALDI-TOF Mass
Spectrometer equipped with a nitrogen UV-Laser operating at 337 nm using the 2,5-dihydroxybenzoicacid (DHB) and dithranol (DIT) matrix.
Optical spectra in the UV-vis region were recorded with a Shimadzu 2450 UV-vis spectrophotometer. Fluorescence lifetimes were measured
using a time correlated single photon counting setup (TCSPC) (Horiba Fluorolog 3 equipment.) Fluorescence excitation and emission spectra
were recorded on the Hitachi F-7000 spectrofluorometer using 1 cm path length cuvette at room temperature. Photo-irradiations were done
using a Osram optic halogen lamp (300W-120V). A 600 nm glass cut off filter (Schott) and a water filter were used to filter off ultraviolet and
infrared radiations respectively. An interference filter (Intor, 670 nm and 700 nm with a band width of 40 nm) was additionally placed in the
light path before the sample. Light intensities were measured with a POWER MAX PM5100 laser (Molectron detector incorporated) power
meter. Thermal properties of phthalocyanines were examined by Thermal Gravimetric Analysis (TGA) using a Perkin-Elmer
Thermogravimetric analyzer STA6000 model. TGA curves of the phthalocyanines were obtained in the 30-750°C temperature range with
heating rate of 10°C/min under air and N, atmospheres. Phase change properties and phase transitions of phthalocyanines were examined
by Pyris Diamond differential scanning calorimeter (DSC). DSC analysis was run from 0°C to 80 with 5°C/min heating and cooling rates under
N, at 25 ml/min.

1.3. Photophysical Parameters
1.3.1. Fluorescence quantum yields and lifetimes
Fluorescence quantum yields (qu) were determined by the comparative method using equation 1.4>

F X Agy X 1
¢F:
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where F and Foeq are the areas under the fluorescence emission curves of the samples (6a-9b) and the standard (Unsubstituted ZnPc),
2 2

respectively. 4 and Asta are the relative absorbance of the samples and standard at the excitation wavelength, respectively. 77" and Nstd are

the refractive indices of solvents for the sample and standard, respectively.

Unsubstituted ZnPc (in DMF) ((DF = 0.170)® was employed as the standard. Both the sample and standard were excited at the same

wavelength. The absorbance of the solutions was ranged between 0.10 and 0.12 at the excitation wavelength.

Fluorescence lifetimes *F were measured using a time correlated single photon counting setup (TCSPC). The natural radiative lifetimes (TO)
were evaluated using equation 2.7

eq.(2)

1.4. Photochemical Parameters

1.4.1. Singlet oxygen quantum yields

Singlet oxygen quantum yield (CDA) determinations were carried out using the experimental set-up described in literature.®11
Typically, a 3 mL portion of the respective unsubstituted, peripherally, non-peripherally tetra-substituted and octa-substituted Zn(ll)
Pc and In(ll1) CIPc solutions (concentration = 1x107> M) containing the singlet oxygen quencher was irradiated in the Q band region
with the photo-irradiation set-up described in the reference.?11 Py values were determined in air using the relative method with
unsubstituted ZnPc (in DMF) as references. Diphenylisobenzofurane (DPBF) was used as chemical quencher for singlet oxygen in

DMF. The Py values of the studied Pc complexes were calculated using equation 3:

d

R x ISt

b = std abs
A=

A std
R x I, eq. )

std std
where Py is the singlet oxygen quantum yield for the standard. Unsubsituted ZnPc ((ID A =0.56 in DMF)®2 was used as standard. R and

Rsta are the DPBF photobleaching rates in the presence of the respective samples (6a-9b and Unsubs. ZnPc) and standard, respectively.

std
Laps and Taps are the rates of light absorption by the samples and standards, respectively Taps was determined by using equation 4.
a xS X1
abs =
N
A eq. (4)
N

A is the Avogadro’s constant, S is the irradiated cell area, & is the irradiation time and Laps is the overlap integral of the radiation source
light intensity and the absorption of the samples (6a-9b and Unsubs. ZnPc).

To avoid chain reactions induced by DPBF in the presence of singlet oxygen, the concentration of quenchers (DPBF) was lowered to ~3x10
M.8&11 Solutions of sensitizer (concentration = 1x10-) containing DPBF were prepared in the dark and irradiated in the Q band region using

the setup described in literature.®-11 DPBF degradation at 417 nm was monitored. The light intensity used for Py determinations was found
to be 6.60x10% photons s cm™2.

1.4.2. Photodegradation quantum yields

Photodegradation quantum yield ((Dd) determinations were carried out using the experimental set-up described in literature [12].
Photodegradation quantum yields were determined using equation 5,

(Co-C) xV XN,
d= 7

abs X S Xt eq. (5)

c

where Co and ~t are the samples (Unsubs. ZnPc, 6a-9b) concentrations before and after irradiation respectively, V is the reaction volume,

Ny is the Avogadro’s constant, S is the irradiated cell area, ¢ is the irradiation time and Taps is the overlap integral of the radiation source



light intensity and the absorption of the samples (6a-9b and Unsubs. ZnPc). A light intensity of 2.15x10¢ photons s* cm2 was employed for

Pq determinations.

1.4.3. Fluorescence quenching by benzoquinone or potassium iodide (BQ or KI)

Fluorescence quenching experiments on the substituted ZnPc (6a-9a) were carried out by the addition of different concentrations of
quencher [BQ] or [KI] to a fixed concentration of the complexes, and the concentrations of quencher in the resulting mixtures were 0, 0.008,
0.016, 0.024, 0.032 and 0.040 M. The fluorescence spectra of substituted ZnPc (6a-9a) at each quencher concentration were recorded, and
the changes in fluorescence intensity related to quencher concentration by the Stern—Volmer equation?? (equation 6):

I

0 .
—= 1+ K_[Quencher concentration]
I eq. (6)
where ) and I are the fluorescence intensities of fluorophore in the absence and presence of quencher, respectively, [BQ] or [KI] is the

concentration of the quencher, and Ky is the Stern—Volmer constant, and is the product of the bimolecular quenching constant (kq) and the

. . T .
fluorescence lifetime “F, i.e.

K, = kq X Tp eq. (7)

The ratios lo/1 were calculated and plotted against [BQ] or [KI] according to equation 6, and K determined from the slope.
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Fig. S1. Photophysical and photochemical measurement process.
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Table S1.

The specific IR bands of the compounds (1-5, 6a-9b and unsubs. ZnPc, InPc)

Aromatic Aromatic Aliphatic Lactone Aromatic
The Compounds —C=N Ar—-O-Ar
-0-H —C-H —C-H -C=0 -C=C-

1 3203 3062 izﬁi - 1701 1573 -

2 - 3049 2223 2234 1696 1592 1275

3 - 3087 ;:gz 2234 1703 1569 1277

4 - 3047 izgg 2233 1703 1573 1256

5 - 3049 ;:gg 2230 1705 1574 1257

6a - 3064 ;Zgi - 1707 1569 1211

7a . 3065 ;:g‘z‘ ; 1709 1571 1215

8a . 3067 ;:gi ] 1707 1572 1257

9a . 3075 ;:gg ] 1705 1571 1257
Unsubs. ZnPc R 3069 ;zgg - 1711 1569 -

6b - 3065 ;:gg - 1709 1571 1215

7b . 3072 ;Zgg ] 1706 1569 1238

8b . 3065 ;Zgz ) 1707 1571 1256

9% - 3062 ;:gi - 1705 1572 1255
Unsubs. InPc R 3058 2926 - 1722 1548 -

2860
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Fig. S2. The IR spectra of the compounds (1-5, 6a-9a, 6b-9b).
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Table S2.

Absorption and emission spectral results of 7a in different solvents.

o A B N B S PV Ll I R B ¥
olven (log €) (log €) (log €) (log €) (nm) (cm)
Dichloromethane 697 (5.04) 330 (4.99) 629 (4.28) 745 (4.37) 696 21
Dichloromethane + K,CO; 693 (5.08) 325 (4.95) 624 (4.34) - 706 266
Chloroform 697 (4.83) 325 (5.15) 645 (4.42) 741 (5.07) 713 322
Chloroform + K,CO3 693 (5.03) 326 (4.88) 624 (4.26) - 713 405
Acetone 688 (5.06) 324 (4.87) 620 (4.28) - 698 208
Dimethylformamide 691 (5.11) 325 (4.96) 623 (4.33) - 700 186
Pyridine 693 (5.11) 324 (5.00) 623 (4.34) - 714 424
Dimethylsulfoxide 697 (5.11) 324 (4.99) 627 (4.34) - 703 122
Ethyl acetate 688 (5.09) 322 (4.97) 621 (4.31) - 704 330
Toluene 694 (5.11) 321 (4.98) 625 (4.32) - 706 245
Tetrahydrofuran 689 (5.10) 323 (4.94) 621 (4.32) - 706 349
1,4-Dioxane 692 (5.07) 322 (4.93) 623 (4.30) - 707 307
1-Hexanol 689 (5.10) 325 (4.97) 621 (4.31) - 702 269
1,2 4 —DMF
—=1,4-Dioxane
1-Hexanol
1 Acetone
——Chloroform
0,8 ] :ggm + Base
=—=DMSO
05 .

Normalized Intensity (a.u.)

0,4
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Wavelength (nm)

Fig. S3. Emission spectra of compound 7a in different solvents.
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Fig. S4. Positive ion in reflectron mode MALDI-TOF mass spectrum of compound 7a were obtained in dithranol (DIT).
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Fig. S5. Positive ion in reflectron mode MALDI-TOF mass spectrum of compound 8a were obtained in dithranol (DIT).
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Fig. S6. Positive ion in reflectron mode MALDI-TOF mass spectrum of compound 9a were obtained in dithranol (DIT).
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Fig. S18. a) The photodegradation of compounds 8b in DMF showing the disappearance of the Q-band at eight minutes intervals. b) The
photodegradation of compounds 6b in DMF showing the disappearance of the Q-band at ten minutes intervals.
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Fig. S19. a) Fluorescence emission spectral changes of compound 8a on addition of different concentrations of BQ in DMF. b) Fluorescence
emission spectral changes of compound 9a on addition of different concentrations of KI in DMF. Concentration ~1x107¢ M.
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Fig. S20 a) Stern-Volmer plots for 1,4-benzoquinone (BQ) quenching of 6a, 7a, 8a and 9a, concentration: ~1x10-6 M in DMF. b) Stern-
Volmer plots for potassium iodide (KI) quenching of 6a, 7a, 8a and 9a, concentration: ~1x10-® M in DMF. [BQ] and [KI] concentration =0,
0.008, 0.016, 0.024, 0.032, 0.040 M.



