Cluster–oxalate frameworks with extra-large channels: solventfree synthesis, chemical stability, and proton conduction

Lindong Luan,^{a,b} Ying Zhang,^a Hongmei Zeng,^a Guohong Zou,^a Yong Dai,^b Xiaoying Zhou^{*b} and Zhien Lin^{*}

^a College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

^b Department of Criminal Science and Technology, Sichuan Police College, Luzhou 646000, P. R. China

* To whom correspondence should be addressed. Tel: +86-28-85412284. E-mail: 907287136@qq.com (X. Zhou); zhienlin@scu.edu.cn (Z. Lin)

Physical measurements:

Powder X-ray diffraction (XRD) data were obtained using a Rigaku D/MAX-rA diffractometer with Cu-Ka radiation ($\lambda = 1.5418$ Å). IR spectra (KBr pellets) were recorded on a Nicolet Impact 410 FTIR spectrometer. The thermogravimetric analyses were performed on a Netzsch STA 449c analyzer in a flow of N₂ with a heating rate of 10 °C/min. Magnetic measurement was performed on the Quantum Design SQUID MPMS XL-7 magnetometer in a magnetic field of 1000 Oe in the temperature range of 2-300 K. Alternating current impedance measurements were carried out with a Solartron SI 1260 impedance/gain-phase analyzer over the frequency range from 0.1 Hz to 10 MHz with an applied voltage of 10 mV. The relative humidity was controlled by a STIK Corp. CIHI-150B incubator. The sample was pressed to form a cylindrical pellet of crystalline powder sample (~2 mm thickness $\times 5$ mm ϕ) coated with C-pressed electrodes. Two silver electrodes were attached to both sides of pellet to form four end terminals (quasi-four-probe method). Single crystal X-ray diffraction data were collected on a New Gemini, Dual, Cu at zero, EosS2 diffractometer at room temperature. The crystal structures were solved by direct methods. The structures were refined on F^2 by full-matrix least-squares methods using the SHELXTL program package.¹

Reference

1. G. M. Sheldrick, Acta Cryst., Sect. A, 2008, 64, 112.

Table S1. Hydrogen bond information for SCU-62

D-H…Aª	d(D-H) (Å)	$d(H \cdots A)$ (Å)	$d(D \cdots A)$ (Å)	<(DHA) (deg)		
N1-H1…O8#1	0.86	1.87	2.672(6)	154.8		
N1-H2…O2#2	0.86	2.21	2.882(7)	135.4		
^a Symmetry transformations used to generate equivalent atoms: $\#1 \ 1_{-y} \ +z: \#2$						

^a Symmetry transformations used to generate equivalent atoms: #1 1-x, 1-y, +z; #2 1/2+y, 1-x, -1/4+z.

Table S2. Hydrogen bond information for SCU-65

D-H····A ^a	d(D-H) (Å)	$d(H^{\dots}A)(\text{\AA})$	$d(D \cdots A)$ (Å)	<(DHA) (deg)
N1-H1…O6#1	0.98	2.09	2.997(4)	152.8
N2-H2A…O10	0.89	2.45	3.233(4)	147.2
N2-H2B…O6#1	0.89	1.99	2.828(4)	157.5
N2-H2C…O1	0.89	2.34	2.882(4)	119.1
N2-H2C…O2	0.89	2.27	3.143(4)	165.3

^a Symmetry transformations used to generate equivalent atoms: #1 2-x, 1-y, 1-z.

Fig. S1. ORTEP plot of the asymmetric unit of SCU-62, showing the labeling scheme and the 50% probability displacement ellipsoid.

Fig. S2. ORTEP plot of the asymmetric unit of SCU-65, showing the labeling scheme and the 50% probability displacement ellipsoid.

Fig. S3. Experimental and simulated powder XRD patterns of SCU-62.

Fig. S4. IR spectrum of SCU-62. The strong bands at 1650 and 1320 cm⁻¹ correspond to the C=O and C-O stretching vibrations in the oxalate groups, respectively. The strong bands in the region 995-1140 cm⁻¹ are assigned to the asymmetric stretch of SO₄ tetrahedra. The weak bands for CH₂ bending vibration appear at 1485 cm⁻¹. The band at 1370 cm⁻¹ is assigned to the C-N stretching vibration.

Fig. S5. IR spectrum of SCU-65. The bands at 1652 and 1316 cm⁻¹ correspond to the C=O and C-O stretching vibrations in the oxalate groups, respectively. The strong bands in the region 1000-1150 cm⁻¹ are assigned to the asymmetric stretch of PO₄ tetrahedra. Also present are the weak bands for CH₂ bending vibration at 1465 cm⁻¹, and a C–N stretching band at 1380 cm⁻¹.

Fig. S6. TGA curve of SCU-62.

Fig. S7. TGA curve of SCU-65.

Fig. S8. Temperature dependence of χ_M and $\chi_M T$ for SCU-62. The solid lines are fit to the Curie-Weiss law in the high-temperature region.

Fig. S9. Nyquist plots for SCU-65 at 85 °C under different RH conditions. The conductivity is 3.0×10^{-6} S·cm⁻¹ (80% RH), 9.0×10^{-6} S·cm⁻¹ (85% RH), 2.5×10^{-5} S·cm⁻¹ (90% RH), and 5.5×10^{-5} S·cm⁻¹ (95% RH).

Fig. S10. (left) Topological representation of the lacunary D6R cluster. (right) The lacunary D6R cluster can be converted into a regular D6R unit by inserting a node at the crystallographic site position (1.0387, 1.6997, 2.3053).