Supporting Information

for

Controlling the Selectivity and Efficiency of the Hydrogen Borrowing Reaction by Switching Between Rhodium and Iridium Catalysts

Danfeng. Wang, Roy T. McBurney, Indrek Pernik,* and Barbara A. Messerle*

Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW 2019, (Australia)

[*] E-mail: barbara.messerle@mq.edu.au, indrek.pernik@mq.edu.au
S1.1 General considerations

Unless otherwise specified, all manipulations were performed under inert atmosphere using standard Schlenk techniques or vacuum techniques\(^1\) in a nitrogen or argon-filled Braun glovebox. All reagents were purchased from Aldrich Chemical Company Inc. or Alfa Aesar Inc. and used as received unless otherwise noted. RhCl\(_3\)\(\times H_2O\) and IrCl\(_3\)\(\times H_2O\) were purchased from Precious Metals Online PMO P/L. For all the air-sensitive and moisture-sensitive manipulations and preparations, acetonitrile, dichloromethane, tetrahydrofuran and pentane were dispensed from a LC Technology solvent purification system and stored under nitrogen or argon atmospheres in glass ampoules fitted with Young’s Teflon valve. The bulk compressed gases argon (> 99.999%) and carbon monoxide (> 99.5%) were obtained from Air Liquide and used as received. Nitrogen gas for Schlenk line operation comes from in-house liquid nitrogen boil-off.

The Ir and Rh complexes studied in this work were synthesized using literature procedures.\(^2\)-\(^4\) \(^1\)H and \(^13\)C\({}^1\)H\} NMR spectra were recorded on Bruker Jones 400, Ripley 500 and DMX 600 spectrometers operating at 400, 500 and 600 MHz (\(^1\)H) respectively and 101, 126 and 150 MHz (\(^13\)C) respectively. \(^1\)H and \(^13\)C\({}^1\)H\} NMR chemical shifts were referenced internally to residual solvent resonances. Unless otherwise stated, spectra were recorded at 298 K and chemical shifts (d), with uncertainties ± 0.01 Hz for \(^1\)H and ± 0.05 Hz for \(^13\)C, are quoted in parts per million, ppm. Multiplicity is abbreviated as: s, Singlet; d, doublet; dd, doublet of doublets; dt, doublet of triplets; t, triplet; q, quartet; dq, doublet of quartets; td, triplet of doublets; m, multiplet; br, broad. Deuterated solvents were purchased from Cambridge Stable Isotopes and used as received. Air sensitive NMR samples were prepared in an inert gas glovebox or by vacuum transfer of deuterated solvents into NMR tubes fitted with a Young's Teflon valve.
S1.2 Synthesis
S1.2.1 General synthetic routes of the catalysts

Scheme S1 Synthetic routes of the metal complexes. COD = 1,5-cyclooctadiene.

Ligand L₁ and L₂, complexes Ir-1, Rh-2 and Rh-3 were reported in literature.⁴

S1.2.2 Synthesis of Ir-2

Ligand L₂ (111.1 mg, 0.225 mmol) was dissolved in CH₂Cl₂ (20 mL) followed by adding Ag₂O (91.4 mg, 0.390 mmol). The reaction mixture was stirred at room temperature overnight. The solid was removed filtering through Celite and washed thoroughly with CH₂Cl₂. The solvent was removed under reduced pressure and re-dissolved with CH₂Cl₂ (20 mL). [IrCp*Cl₄]₂ (90.0 mg, 0.187 mmol) was added into the mixture prior to the addition of Na[BPh₄] (77.0 mg, 0.225 mmol) and the mixture was stirred for 3 hours under N₂. The solvent was concentrated in vacuo to ca. 2 mL and pentane (25 mL) was added. Yellow precipitate forms in solution with vigorous stirring. The solid was dried in vacuo to afford the product as a yellow solid. (200.0 mg, 80%). ¹H NMR (400 MHz, Methylene Chloride-d₂) δ 7.81 (d, ³J_Ho-Him = 8.5 Hz, 2H, o'-CH of Ph), 7.62 (d, ³J_Ho-Him = 8.4 Hz, 2H, m'-CH of Ph), 7.43 (br s, 8H, o-CH of BPh₄), 6.97 (t, ³J_H-H = 7.4 Hz, 8H, o-CH of BPh₄ overlapped with Im-H₄), 6.94 (s, 1H, m-CH of Mes), 6.93 (s, 1H, m-CH of Mes), 6.80 – 6.79 (m, 5H, p-CH of BPh₄ overlapped with Im-H₅), 6.69 (s, 1H, Tz-H₅'), 4.55 (d, ²J_H-H = 15.9 Hz, 1H, CH₂), 4.19 (d, ²J_H-H = 15.9 Hz, 1H, CH₂), 2.32 (s, 3H, p-CH₃ of Mes), 2.10 (s, 3H, o-CH₃ of Mes), 1.96 (s, 3H, o-CH₃ of Mes), 1.43 (s, 15H, CH₃ of Cp*) ppm. ¹³C {¹H} NMR (101 MHz, Methylene Chloride-d₂) δ 164.7 (q, ¹J_B-C = 49.5 Hz, ipso-C₉ of BPh₄), 152.9 (Im-C₂), 141.8 (Tz-C₄’), 140.5 (p-CCH₃ of Mes), 139.4 (o-CCH₃ of Mes), 138.8 (ipso-C₉ of ArCF₃), 136.7 (br s, o-CH of BPh₄), 135.8 (ipso-C₉ of Mes), 135.2 (o-CCH₃ of Mes), 132.7 (q, ²J_C-F = 33.3 Hz, p’-CCF₃ of ArCF₃), 130.1 (m-CH of Mes), 128.8 (m-CH of Mes), 128.1 (q, ³J_C-F = 3.44 Hz, m’-CH of ArCF₃), 126.8, (br s, m-CH of
BPh₄), 126.2 (Im-C5), 124.3 (q, \(^1J_{C-F} = 272.0 \) Hz, ArCF₃), 124.0 (Im-C4), 123.0 (p-CH of BPh₄), 122.5 (Tz-C5’), 121.9 (o’-CH of ArCF₃), 92.3 (Cq of Cp*), 45.6 (CH₂), 21.6 (p-CH₃ of Mes), 20.5 (o-CH₃ of Mes), 19.8 (o-CH₃ of Mes), 10.0 (CH₃ of Cp*) ppm. HRMS (ESI⁺, MeOH) calculated for \([\text{C}3\text{H}_3\text{ClF}3\text{IrN}_5]⁺ = [\text{M-BPh}_4]⁺ = 774.2162\); found \([\text{C}3\text{H}_3\text{ClF}3\text{IrN}_5]⁺ = [\text{M-BPh}_4]⁺ = 774.2150\). Elemental analysis calculated for \(\text{C}_{56}\text{H}_{56}\text{BClF}_3\text{IrN}_5 \): C, 61.51; H, 5.07; N, 6.40%; found C, 61.30; H, 5.62; N, 5.22% (deviations likely due to moisture).

S1.2.3 Synthesis of Ir-3

Ligand L₁ (126.9 mg, 0.300 mmol) was dissolved in CH₂Cl₂ (20 mL) followed by adding Ag₂O (121.3 mg, 0.523 mmol). The reaction mixture was stirred at room temperature overnight. The solid was removed filtering through Celite and washed thoroughly with CH₂Cl₂. The solvent was removed under reduced pressure and re-dissolved with CH₂Cl₂ (20 mL). [IrCp*Cl₂]₂ (118.6 mg, 0.149 mmol) was added into the mixture prior to the addition of Na[BPh₄] (102.6 mg, 0.300 mmol) and the mixture was stirred for 3 hours under N₂. The solvent was concentrated *in vacuo* to ca. 2 mL and pentane (25 mL) was added. Yellow precipitate forms in solution with vigorous stirring. The solid was dried *in vacuo* to afford the product as a yellow solid. (230.8 mg, 75%). \(^1\)H NMR (500 MHz, Methylene Chloride-d₂) δ 7.58 – 7.53 (m, 5H, o’-CH₃ and p’-CH of Ph), 7.43 – 7.37 (br s, 8H, o-CH of BPh₄), 6.99 (t, \(^3J_{H-H} = 7.4 \) Hz, 9H, m-CH of BPh₄ overlapped with Tz-H5), 6.93 – 6.94 (m, 3H, Im-H5 overlapped with m-CH of Mes), 6.92 (d, \(^3J_{H-H} = 2.0 \) Hz, 1H, Im-H5), 6.85 – 6.82 (t, 4H, \(^3J_{H-H} = 7.3 \) Hz, 4H, p-CH of BPh₄), 6.79 (d, \(^3J_{H-H} = 2.0 \) Hz, 1H, Im-H4), 4.55 (d, \(^2J_{H-H} = 15.9 \) Hz, 1H, CH₂), 4.20 (d, \(^2J_{H-H} = 15.8 \) Hz, 1H, CH₂), 2.32 (s, 3H, p-CH₃ of Mes), 2.10 (s, 3H, o-CH₃ of Mes), 1.96 (s, 3H, o-CH₃ of Mes), 1.43 (s, 15H, CH₃ of Cp*) ppm. \(^{13}\)C\{\(^1\)H\} NMR (126 MHz, Methylene Chloride-d₂) δ 164.8 (q, \(^1J_{B-C} = 49.5 \) Hz, ipso-Cq of BPh₄), 152.9 (Im-C2), 141.4 (Tz-C4’), 140.5 (p-CH₃ of Mes), 139.4 (o-CH₃ of Mes), 136.8 (br s, o-CH of BPh₄), 136.6 (ipso-Cq of Ph), 135.8 (ipso-Cq of Mes), 135.3 (o-CH₃ of Mes), 131.2 (p’-CH of Ph), 130.8 (o’-CH of Ph), 130.1 (m-CH of Mes), 128.8 (m-CH of Mes), 126.7 (br s, m-CH of BPh₄), 126.1 (Im-C4), 124.0 (Im-C5), 122.9 (p-CH of BPh₄), 122.4 (Tz-C5’), 121.6 (m’-CH of Ph), 92.2 (Cq of Cp*), 45.6 (CH₂), 21.6 (p-CH₃ of Mes), 20.5 (o-CH₃ of Mes), 19.8 (o-CH₃ of Mes), 10.0 (CH₃ of Cp*) ppm. HRMS (ESI⁺, MeOH) calculated for \([\text{C}3\text{H}_3\text{ClF}3\text{IrN}_5]⁺ = [\text{M-BPh}_4]⁺ = 706.2888;
found $[C_{31}H_{30}ClIrN_5]^+ = [M-BPh_4]^+ = 706.2876$. Elemental analysis calculated for $C_{53}H_{54}BIrN_5$: C, 64.41; H, 5.50; N, 6.83%; found C, 64.39; H, 5.62; N, 6.99%.

S1.2.4 Synthesis of Ir-4

Ligand L_1 (159.2 mg, 0.374 mmol) was dissolved in CH$_2$Cl$_2$ (20 mL) followed by adding Ag$_2$O (72.4 mg, 0.312 mmol). The reaction mixture was stirred at room temperature overnight. The solid was removed filtering through Celite and washed thoroughly with CH$_2$Cl$_2$. The solvent was removed under reduced pressure and re-dissolved with CH$_2$Cl$_2$ (20 mL). [Ir(COD)Cl]$_2$ (125.1 mg, 0.187 mmol) was added into the mixture prior to the addition of Na[BPh$_4$] (127.6 mg, 0.373 mmol) and the mixture was stirred for 3 hours under N$_2$. The solvent was concentrated in vacuo to ca. 2 mL and pentane (25 mL) was added. Yellow precipitate forms in solution with vigorous stirring. The solid was dried in vacuo to afford the product as a red-pink solid. (230.1 mg, 64%) 1H NMR (600 MHz, Methylene Chloride-d_2): δ 7.55 (m, 3H, o’- and p’-CH of Ph), 7.50 (m, 2H, m’-CH of Ph), 7.42 (m, 8H, o-CH of BPh$_4$), 7.02 (s, 2H, m-CH of Mes), 6.99 (t, 3$J_{H-H} = 7.5$ Hz, 8H, m-CH of BPh$_4$), 6.52 (m, 2H, =CH of COD), 4.59 (s, 2H, CH$_2$), 3.45 (m, 2H, =CH of COD), 2.36 (s, 3H, p-CH$_3$ of Mes), 2.10 (m, 2H, CH$_2$ of COD), 2.07 (s, 6H, o-CH$_3$ of Mes), 1.83 (m, 6H, CH$_2$ of COD) ppm. 13C NMR (150 MHz, Methylene Chloride-d_2): δ 172.5 (Im-C$_4$), 164.5 (q, $^3J_{B-C} = 49.5$ Hz, ipso-Cq of BPh$_4$), 140.3 (p-CH$_3$ of Mes), 139.1 (Cq, Tz-C4’), 136.3 (br s, o-CH of BPh$_4$), 136.1 (ipso-Cq of Ph), 135.7 (o-CH$_3$ of Mes), 135.6 (ipso-Cq of Mes), 130.7 (p’-CH of Ph), 130.4 (o’-CH of Ph), 129.5 (m-CH of Mes), 126.3 (br s, m-CH of BPh$_4$), 123.5 (Im-C4), 122.4 (Tz-C5’), 122.4 (p-CH of BPh$_4$), 121.9 (Im-C5), 121.1 (m’-CH of Ph), 84.0 (2C, =CH of COD), 66.2 (2C, =CH of COD), 44.9 (CH$_2$), 33.5 (2C, -CH$_2$ of COD), 29.8 (2C, -CH$_2$ of COD), 21.2 (p-CH$_3$ of Mes), 18.7 (o-CH$_3$ of Mes) ppm. HRMS (ESI$^+$, MeOH) calculated for $[C_{29}H_{33}IrN_3]^+ = [M-BPh_4]^+ = 644.2360$, found $[C_{29}H_{33}IrN_3]^+ = [M$-BPh$_4]^+ = 644.2371)$. Elemental analysis calculated for $C_{53}H_{54}BIrN_5$: C, 66.10; H, 5.55; N, 7.27%; found C, 66.36; H, 5.35; N, 7.03%.
S1.2.5 Synthesis of Rh-1

Ligand L₁ (126.9 mg, 0.300 mmol) was dissolved in CH₂Cl₂ (20 mL) followed by adding Ag₂O (121.3 mg, 0.523 mmol). The reaction mixture was stirred at room temperature overnight. The solid was removed filtering through Celite and washed thoroughly with CH₂Cl₂. The solvent was removed under reduced pressure and re-dissolved with CH₂Cl₂ (20 mL). [RhCp*Cl₂]₂ (86.7 mg, 0.149 mmol) was added into the mixture prior to the addition of Na[BPh₄] (102.6 mg, 0.300 mmol) and the mixture was stirred for 3 hours under N₂. The solvent was concentrated in vacuo to ca. 2 mL and pentane (25 mL) was added. Yellow precipitate forms in solution with vigorous stirring. The solid was dried in vacuo to afford the product as a yellow solid. (232.9 mg, 83%).

¹H NMR (400 MHz, Methylene Chloride-d₂) δ 7.63 – 7.52 (m, 5H, o’-, m’- and p’-CH of Ph), 7.39 (br s, 8H, o-CH of BPh₄), 7.26 (s, 1H, Tz-H₅), 7.04 (d, 3J_H₄-H₅ = 1.9 Hz, 1H, Im-H₅), 6.99 (t, 3J_H₃_H₄ = 7.3 Hz, 8H, m-CH of BPh₄), 2.33 (s, 3H, p-C₃H₃ of Mes), 2.13 (s, 3H, o-C₃H₃ of Mes), 1.94 (s, 3H, o-CH₃ of Mes), 1.41 (s, 15H, C₃H₃ of Cp*). ppm. ¹³C{¹H} NMR (126 MHz, Methylene Chloride-d₂) δ 169.2 (d, 1J_Rh-C = 54.1 Hz, Im-C₄), 142.2 (C₄, Tz-C₄⁺), 140.5 (p-CCH₃ of Mes), 139.3 (o-CCH₃ of Mes), 136.8 (s, o-CH of BPh₄ overlapped with ipso-C₄ of Ph), 136.0 (ipso-C₄ of Mes), 135.3 (o-CCH₃ of Mes), 131.1 (p-‘-CH of Ph), 130.8 (o-‘-CH of ph), 130.2 (m-CCH₃ of Mes), 128.9 (m-CCH₃ of Mes), 126.7 (br s, m-CH of BPh₄), 126.4 (Im-C₄), 125.0 (Im-C₅), 122.9 (p-CH of BPh₄), 122.8 (Tz-C₅⁺), 121.6 (o-‘-CH of Ph), 99.3 (d, 2J_Rh-C = 6.9 Hz, C₄ of Cp*), 45.4 (CH₂), 21.6 (p-CH₃ of Mes), 20.4 (o-CH₃ of Mes), 19.6 (o-CH₃ of Mes), 10.2 (CH₃ of Cp*) ppm. HRMS (ESI⁺, MeOH) calculated for [C₃1H₃6N₅Rh]⁺ = [M-BPh₄]⁺ = 616.1714; found [C₃1H₃6N₅Rh]⁺ = [M-BPh₄]⁺ = 616.1735. Elemental analysis calculated for C₃₅H₃₄B₁IrN₅: C, 70.56; H, 6.03; N, 7.48%; found C, 69.20; H, 6.24; N, 7.85%. (deviations likely due to moisture).
S1.2.6 NMR spectra of Ir and Rh complexes

Ir-2 H NMR (400 MHz, Methylene Chloride-d$_2$)

Ir-2 C{H} NMR (101 MHz, Methylene Chloride-d$_2$)
Ir-3 1H NMR (500 MHz, Methylene Chloride-d_2)

Ir-3 13C{1H} NMR (126 MHz, Methylene Chloride-d_2)
Ir-4 1H NMR (600 MHz, Methylene Chloride-d_2)

![NMR spectrum image]

Ir-4 13C-1H NMR (150 MHz, Methylene Chloride-d_2)

![NMR spectrum image]
Rh-1 1H NMR (500 MHz, Methylene Chloride-d_2)

Rh-1 13C{1H} NMR (126 MHz, Methylene Chloride-d_2)
S1.2.1 Synthesis of the deuterated substrates

The two deuterated versions of the alcohol substrates 2a: C₆H₅CH₂OD (2a-Od₁)⁵ and C₆H₅CD₂OH (2a-Cd₂)⁶ were synthesised according to the literature.

S1.3 General catalysis procedure

S1.3.1 General catalysis procedure for the alkylation of ketone with primary alcohols to deliver mono-alkylated ketones

All the reactions were operated in air. The methyl ketone (1a – 1q) (0.5 mmol), primary alcohol (2a – 2o) (0.5 mmol), Ir-3 (0.005 mmol, 1.0 mol%), KOtBu (0.1 mmol, 0.25 mmol or 0.40 mmol, 0.2 equiv., 0.5 equiv. or 0.8 equiv.) were weighed into a 4 mL glass vial fitted with a close-top melamine cap with PTFE liner and a stirrer bar. Toluene (1.0 mL) was then added to the mixture. The reaction mixture was stirred at room temperature for five minutes until a homogeneous mixture is observed before placing in an oil bath at 100 °C. After 6 hours, the reaction mixture was taken out of the oil bath and immediately cooled in the fridge before the work-up. The insoluble particles (mainly base) were filtered through 3 pipettes blocked with a cotton roll and were washed thoroughly with Et₂O. The crude products were combined and isolated by column chromatography using ethyl acetate/n-hexane (10:1, v/v) as eluent to afford the corresponding desired products.

S1.3.2 General catalysis procedure for the alkylation of ketone with primary alcohols to deliver mono-alkylated alcohols

All the reactions were operated in air. The methyl ketones (0.5 mmol), primary alcohols (1.0 mmol), Rh-2 complex (0.005 mmol, 1 mol%), KOH (1.0 mmol, 2.0 equiv. in respect of ketone) were weighed into a 4 mL glass vial fitted with a close-top melamine cap with PTFE liner and a stirrer bar. Toluene (1.0 mL) was then added to the mixture. The reaction mixture was stirred at room temperature for five minutes until a homogeneous mixture is observed before placing in an oil bath at 120 °C. After 6 hours, the reaction mixture was taken out of the oil bath and immediately cooled in the fridge before the work-up. The insoluble particles (mainly base) were filtered through 3 pipettes blocked with a cotton roll and were washed thoroughly with Et₂O. The crude products were combined and isolated by column chromatography using ethyl acetate/n-hexane (3:1, v/v) as eluent to afford the corresponding desired products.
S1.4 Attempts at catalysing other HB reactions

The following benchmark reactions were conducted under our catalytic conditions in order to test the applicability in other types of HB reactions. However, we only found the reactions between acetophenone and benzylalcohol (eq. 1), benzylalcohol and 1-phenylethanol (eq. 5) were successful.

![Scheme S2. Attempts at catalysing other HB reactions.](image-url)
S1.5 Extended data of optimising the reaction conditions

![Chemical reactions and conversion graphs](image-url)

a)

b)

c)

d)

e)

f)
Figure S1. Catalyst (Ir-1 – Ir-4; Rh-1 – Rh-3, a – g) screening from the loading of 5 mol% to 0.005 mol% in the presence of 1.0 equiv. of KOtBu reacted in toluene-d8 at 100 °C for 18 h. Conversions were measured by 1H NMR spectral analysis.

Table S1. a Reaction conditions: 1a (0.2 mmol, 1.0 equiv) and 2a (0.2 mmol, 1.0 equiv) in 0.5 mL toluene-d8 reacted for 18 hours. Conversions were measured by 1H NMR spectral analysis.
Table S2. *Reaction conditions: 1a (0.2 mmol, 1.0 equiv) and 2a (0.24 – 0.40 mmol, from 1.2 – 2.0 equiv.) in 0.5 mL toluene-\(d_8\) reacted for 18 hours. Conversions were measured by \(^1\)H NMR spectral analysis.

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>temp. (°C)</th>
<th>base (equiv)</th>
<th>2a (equiv)</th>
<th>conversion (%)*</th>
<th>3aa</th>
<th>4aa</th>
<th>5aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KOH (1.0)</td>
<td>9</td>
<td>2.0</td>
<td>9</td>
<td>85</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>KOH (2.0)</td>
<td>6</td>
<td>2.0</td>
<td>6</td>
<td>90</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>7</td>
<td>KOH (3.0)</td>
<td>2.0</td>
<td>91</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>KOH (4.0)</td>
<td>4</td>
<td>2.0</td>
<td>4</td>
<td>93</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>KOH (5.0)</td>
<td>2</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rh-2</td>
<td>8</td>
<td>KOH (2.0)</td>
<td>2.0</td>
<td>7</td>
<td>78</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>6</td>
<td>KOH (2.0)</td>
<td>2.0</td>
<td>6</td>
<td>89</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>120</td>
<td>8</td>
<td>KOH (2.0)</td>
<td>2.0</td>
<td>8</td>
<td>92</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>120</td>
<td>3</td>
<td>KOH (2.0)</td>
<td>1.2</td>
<td>36</td>
<td>60</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>8</td>
<td>KOH (2.0)</td>
<td>1.5</td>
<td>18</td>
<td>80</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>120</td>
<td>1</td>
<td>KOH (2.0)</td>
<td>1.8</td>
<td>12</td>
<td>88</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

S1.6 Kinetic study

S1.6.1 Time course profile of the formation of ketone product 3aa using the catalyst Ir-1

Figure S3. Time course profile of coupling benzylalcohol and acetophenone. Conditions: acetophenone 1a (0.2 mmol), benzylalcohol 2a (0.2 mmol), Ir-1 (1.0 mol %), KO\(\text{tBu}\) (0.8 equiv.), toluene-\(d_8\) (0.5 mL), 100 °C, under air. Conversions were measured by \(^1\)H NMR spectral analysis.

S1.6.2 Time course profile of the formation of alcohol product 4aa using the catalyst Rh-2

Figure S4. Time course profile of coupling benzylalcohol and acetophenone. Conditions: acetophenone 1a (0.2 mmol), benzylalcohol 2a (0.4 mmol), Rh-2 (1.0 mol %), KOH (2.0 equiv.), toluene-\(d_8\) (0.5 mL), 120 °C, under air. Conversions were measured by \(^1\)H NMR spectral analysis.
S1.7 Mechanistic investigations

S1.7.1 D$_2$O addition experiments

Scheme S5. Selected region of 1H (400 MHz, PhMe-d_8, 298 K) and 2H (77 MHz, toluene, 298 K) NMR spectra. Compare Rh-2 and Ir-3 catalysts and KOH promoted reactions, additional D$_2$O was added to the system to observe H/D scrambling.

a) - b) The 1H NMR spectra of two version of deuterated benzyl alcohols in toluene-d_8.

c) - d) The 2H NMR spectra for comparing the reactions using base KOH and Rh-2 catalyst in the presence of 1.0 equivalent of benzyl alcohol and additional D$_2$O.

e) - p) The 1H and 2H spectra NMR for comparing the reaction conditions.
S1.7.2 Deuterium labelling experiments

Scheme S6. Selected region of 2H (77 MHz, toluene, 298 K) NMR spectra. Comparisons amongst Rh-2, Ir-3 catalysts and KOH only promoted reactions, benzyl alcohol $^{2a\text{-}}$Od_1 and benzyl alcohol $^{2a\text{-}}$Cd_2 are used as the deuterated substrates, respectively. Substrate ratio of 1 and 2 at 1:1 and 1:2 were examined, reaction conditions from a) to l) are depicted in the scheme. In some cases, H/D scrambling was observed in toluene.
S1.8 1H, 13C{1H} NMR data of catalysis products

S1.8.1 Ketone scope for the alkylated ketones

3ba 3-phenyl-1-(p-tolyl)propan-1-one

1H NMR (400 MHz, Chloroform-d) δ 7.90 – 7.78 (m, 1H), 7.33 – 7.13 (m, 4H), 3.33 – 3.18 (m, 1H), 3.04 (dd, $J = 8.6, 6.8$ Hz, 1H), 2.37 (s, 2H) ppm. 13C{1H} NMR (101 MHz, Chloroform-d) δ 198.9, 143.9, 141.5, 134.5, 129.3, 128.6, 128.5, 128.2, 126.2, 40.4, 30.3, 21.7 ppm.

3ca 3-phenyl-1-(m-tolyl)propan-1-one

1H NMR (400 MHz, Chloroform-d) δ 7.82 – 7.73 (m, 2H), 7.44 – 7.17 (m, 8H), 3.36 – 3.23 (m, 2H), 3.07 (dd, $J = 8.6, 6.9$ Hz, 2H), 2.41 (d, $J = 0.7$ Hz, 3H) ppm. 13C{1H} NMR (101 MHz, Chloroform-d) δ 199.6, 141.5, 138.5, 137.0, 134.0, 128.7, 128.6, 128.6, 126.2, 125.38, 40.7, 30.3, 21.5 ppm.

3da 3-phenyl-1-(o-tolyl)propan-1-one

1H NMR (400 MHz, Chloroform-d) δ 7.61 (dd, $J = 8.0, 1.4$ Hz, 1H), 7.37 (td, $J = 7.5, 1.4$ Hz, 1H), 7.33 – 7.28 (m, 2H), 7.27 – 7.14 (m, 6H), 3.28 – 3.20 (m, 2H), 3.06 (dd, $J = 8.4, 6.9$ Hz, 2H), 2.48 (s, 3H) ppm. 13C{1H} NMR (101 MHz, Chloroform-d) δ 203.5, 141.3, 138.2, 138.0, 132.1, 131.4, 128.6, 128.5, 128.5, 126.2, 125.8, 43.3, 30.5, 21.4 ppm.

3ea 1-(4-methoxyphenyl)-3-phenylpropan-1-one

1H NMR (400 MHz, Chloroform-d) δ 7.98 – 7.92 (m, 2H), 7.34 – 7.18 (m, 5H), 6.96 – 6.88 (m, 2H), 3.87 (s, 3H), 3.30 – 3.22 (m, 2H), 3.06 (dd, $J = 8.7, 6.8$ Hz, 2H) ppm. 13C{1H} NMR (101 MHz, Chloroform-d) δ 198.0, 163.6, 141.6, 130.3 (d, $J = 34.1$ Hz), 128.6 (d, $J = 8.0$ Hz), 126.2, 113.9, 55.6, 40.3, 30.5 ppm.

3fa 1-(3-methoxyphenyl)-3-phenylpropan-1-one

1H NMR (400 MHz, Chloroform-d) δ 7.54 (ddd, $J = 7.7, 1.6, 1.0$ Hz, 1H), 7.50 (dd, $J = 2.7, 1.5$ Hz, 1H), 7.36 (t, $J = 7.9$ Hz, 1H), 7.34 – 7.24 (m, 4H), 7.24 – 7.19 (m, 1H), 7.11 (ddd, $J = 8.2, 2.7, 1.0$ Hz, 1H), 3.85 (s, 3H), 3.34 – 3.26 (m, 2H), 3.08 (dd, $J = 8.5, 6.9$ Hz, 2H) ppm. 13C{1H} NMR (101 MHz,
Chloroform-\(d\) \(\delta\) 199.2, 160.0, 141.4, 138.3, 129.7, 128.7, 128.6, 126.3, 120.8, 119.7, 112.4, 55.6, 40.7, 30.3 ppm.

3ga 1-(2-methoxyphenyl)-3-phenylpropan-1-one

\(\text{\(^1H\) NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.60 (dd, \(J = 7.7, 1.8\) Hz, 1H), 7.36 (ddd, \(J = 8.4, 7.3, 1.9\) Hz, 1H), 7.23 – 7.02 (m, 6H), 6.90 (td, \(J = 7.5, 1.0\) Hz, 1H), 6.86 (dd, \(J = 8.4, 1.0\) Hz, 1H), 3.78 (s, 3H), 3.25 – 3.18 (m, 2H), 2.94 (dd, \(J = 8.6, 7.0\) Hz, 2H) ppm. \(^{13}C\{\(^1H\)\) NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 201.8, 158.6, 141.8, 133.5, 130.5, 129.2, 128.6, 128.5, 128.4, 128.3, 126.0, 120.8, 111.6, 55.6, 45.5, 30.6 ppm.}

3ha 1-(4-fluorophenyl)-3-phenylpropan-1-one

\(\text{\(^1H\) NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 8.03 – 7.94 (m, 2H), 7.35 – 7.28 (m, 2H), 7.26 – 7.18 (m, 2H), 7.16 – 7.07 (m, 2H), 3.32 – 3.23 (m, 2H), 3.07 (dd, \(J = 8.5, 6.9\) Hz, 2H) ppm. \(^{13}C\{\(^1H\)\) NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 197.8, 141.3, 130.8, 130.7, 128.7, 128.6, 126.3, 115.9, 115.7, 40.5, 30.2 ppm.}

3ia 1-(4-bromophenyl)-3-phenylpropan-1-one

\(\text{\(^1H\) NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.86 – 7.78 (m, 2H), 7.64 – 7.54 (m, 2H), 7.34 – 7.27 (m, 2H), 7.26 – 7.18 (m, 3H), 3.34 – 3.19 (m, 2H), 3.06 (dd, \(J = 8.4, 6.9\) Hz, 2H) ppm. \(^{13}C\{\(^1H\)\) NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 198.3, 141.2, 135.7, 132.1, 129.7, 128.7, 128.5, 128.4, 126.4, 40.6, 30.2 ppm.}

3ja 1-(3-bromophenyl)-3-phenylpropan-1-one

\(\text{\(^1H\) NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 8.08 (t, \(J = 1.8\) Hz, 1H), 7.87 (ddd, \(J = 7.8, 1.7, 1.0\) Hz, 1H), 7.68 (ddd, \(J = 8.0, 2.0, 1.1\) Hz, 1H), 7.40 – 7.17 (m, 7H), 3.31 – 3.24 (m, 2H), 3.07 (dd, \(J = 8.4, 6.9\) Hz, 2H) ppm. \(^{13}C\{\(^1H\)\) NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 197.9, 141.1, 138.7, 136.1, 131.3, 130.4, 128.7, 128.6, 126.7, 126.4, 123.1, 40.7, 30.1 ppm.}

519
3ka 1-mesityl-3-phenylpropan-1-one

\[\text{1H NMR (400 MHz, Chloroform-}d\text{) } \delta \text{ 7.33 – 7.17 (m, 5H), 6.83 (q, } J = \text{ 0.7 Hz, 2H), 3.12 – 2.98 (m, 4H), 2.28 (s, 3H), 2.12 (s, 6H) ppm.} \]

\[\text{13C\{1H\} NMR (101 MHz, Chloroform-}d\text{) } \delta \text{ 209.8, 141.1, 139.6, 138.5, 132.7, 128.6, 128.6, 126.3, 46.5, 29.6, 21.2, 19.2 ppm.} \]

3ma 2,6-dibenzylcyclohexan-1-one

\[\text{1H NMR (400 MHz, Chloroform-}d\text{) } \delta \text{ 7.31 – 7.23 (m, 4H), 7.23 – 7.13 (m, 6H), 3.24 (dd, } J = \text{ 13.9, 4.8 Hz, 2H), 2.58 (dddd, } J = \text{ 13.4, 10.0, 4.3, 1.2 Hz, 2H), 2.44 (dd, } J = \text{ 13.9, 8.6 Hz, 2H), 2.13 – 2.00 (m, 2H), 1.84 – 1.71 (m, 1H), 1.69 – 1.48 (m, 2H), 1.35 (qd, } J = \text{ 13.1, 3.8 Hz, 2H) ppm.} \]

\[\text{13C\{1H\} NMR (101 MHz, Chloroform-}d\text{) } \delta \text{ 211.8, 139.56, 128.1, 127.3, 124.9, 51.9, 34.5, 33.8, 24.3 ppm.} \]

3na 2-benzyl-3,4-dihydronaphthalen-1(2\text{H})-one

\[\text{1H NMR (400 MHz, Chloroform-}d\text{) } \delta \text{ 8.05 (dd, } J = \text{ 7.9, 1.4 Hz, 1H), 7.43 (td, } J = \text{ 7.5, 1.5 Hz, 1H), 7.28 (ddt, } J = \text{ 7.8, 6.8, 1.1 Hz, 3H), 7.20 (ddt, } J = \text{ 7.6, 5.6, 2.4 Hz, 4H), 3.46 (dt, } J = \text{ 14.0, 4.3 Hz, 1H), 3.00 – 2.81 (m, 2H), 2.72 (ddt, } J = \text{ 11.4, 9.6, 4.2 Hz, 1H), 2.67 – 2.57 (m, 1H), 2.08 (dq, } J = \text{ 13.4, 4.5 Hz, 1H), 1.76 (dddd, } J = \text{ 13.4, 11.6, 10.0, 5.6 Hz, 1H) ppm.} \]

\[\text{13C\{1H\} NMR (101 MHz, Chloroform-}d\text{) } \delta \text{ 199.5, 144.2, 140.2, 133.4, 132.6, 129.4, 128.8, 128.5, 127.7, 126.7, 126.3, 49.6, 35.8, 35.7, 28.8, 28.7, 27.8, 27.7 ppm.} \]

3oa 1-(naphthalen-2-yl)-3-phenylpropan-1-one

\[\text{1H NMR (400 MHz, Chloroform-}d\text{) } \delta \text{ 8.55 (ddt, } J = \text{ 8.6, 1.5, 0.8 Hz, 1H), 7.98 (dt, } J = \text{ 8.4, 1.2 Hz, 1H), 7.91 – 7.85 (m, 1H), 7.82 (dd, } J = \text{ 7.2, 1.3 Hz, 1H), 7.64 – 7.51 (m, 2H), 7.47 (dd, } J = \text{ 8.2, 7.2 Hz, 1H), 7.34 – 7.18 (m, 6H), 3.43 – 3.36 (m, 2H), 3.15 (dd, } J = \text{ 8.4, 7.0 Hz, 2H) ppm.} \]

\[\text{13C\{1H\} NMR (101 MHz, Chloroform-}d\text{) } \delta \text{ 203.7, 141.3, 136.1, 134.1, 132.7, 130.3, 128.7, 128.6, 128.0, 127.5, 126.6, 126.3, 125.9, 124.5, 44.0, 30.7 ppm.} \]
S1.8.2 Alcohol scope for the alkylated ketones

3ab 1-phenyl-3-(p-tolyl)propan-1-one

1H NMR (400 MHz, Chloroform-\textit{d}) δ 7.99 – 7.91 (m, 1H), 7.59 – 7.53 (m, 1H), 7.49 – 7.42 (m, 1H), 6.77 – 6.67 (m, 1H), 5.92 (s, 1H), 3.31 – 3.21 (m, 1H), 3.03 – 2.95 (m, 1H) ppm.

13C\{}1H\} NMR (101 MHz, Chloroform-\textit{d}) δ 199.3, 147.8, 146.0, 137.0, 135.2, 133.2, 128.8, 128.2, 121.3, 109.1, 108.4, 101.0, 40.8, 30.0 ppm.

3ae 3-(4-methoxyphenyl)-1-phenylpropan-1-one

1H NMR (400 MHz, Chloroform-\textit{d}) δ 7.99 – 7.93 (m, 2H), 7.60 – 7.51 (m, 1H), 7.49 – 7.42 (m, 2H), 7.22 – 7.14 (m, 2H), 6.89 – 6.81 (m, 2H), 3.79 (s, 3H), 3.31 – 3.24 (m, 2H), 3.02 (dd, J = 8.4, 6.9 Hz, 2H) ppm.

13C\{}1H\} NMR (101 MHz, Chloroform-\textit{d}) δ 199.5, 158.1, 137.0, 133.4, 133.2, 129.5, 128.7, 128.2, 114.1, 55.4, 40.8, 29.4 ppm.

3ad 1-phenyl-3-(o-tolyl)propan-1-one

1H NMR (400 MHz, Chloroform-\textit{d}) δ 8.02 – 7.95 (m, 2H), 7.62 – 7.53 (m, 1H), 7.52 – 7.43 (m, 2H), 7.26 – 7.10 (m, 4H), 3.31 – 3.23 (m, 2H), 3.07 (dd, J = 9.1, 6.6 Hz, 2H), 2.37 (s, 3H) ppm. 13C\{}1H\} NMR (101 MHz, Chloroform-\textit{d}) δ 199.5, 139.5, 137.0, 136.1, 133.2, 130.5, 128.9, 128.7, 128.2, 126.4, 126.3, 39.2, 27.6, 19.5 ppm.

3ae 3-(3,5-dimethoxyphenyl)-1-phenylpropan-1-one

1H NMR (400 MHz, Chloroform-\textit{d}) δ 8.00 – 7.93 (m, 2H), 7.60 – 7.52 (m, 1H), 7.50 – 7.41 (m, 2H), 6.42 (d, J = 2.2 Hz, 2H), 6.33 (t, J = 2.3 Hz, 1H), 3.78 (s, 6H), 3.34 – 3.25 (m, 2H), 3.02 (dd, J = 8.5, 6.9 Hz, 2H) ppm. 13C\{}1H\} NMR (101 MHz, Chloroform-\textit{d}) δ 199.3, 161.0, 143.8, 137.0, 133.2, 128.7, 128.2, 106.6, 98.2, 55.4, 40.4, 30.6 ppm.

3af 3-(4-fluorophenyl)-1-phenylpropan-1-one

1H NMR (400 MHz, Chloroform-\textit{d}) δ 8.00 – 7.91 (m, 1H), 7.61 – 7.51 (m, 1H), 7.50 – 7.42 (m, 1H), 7.24 – 7.17 (m, 1H), 7.02 – 6.93 (m, 1H), 3.33 – 3.24 (m, 1H), 3.05 (t, J = 7.6 Hz, 1H) ppm. 13C\{}1H\} NMR (101 MHz, Chloroform-\textit{d}) δ 199.5, 139.5, 137.0, 136.1, 133.2, 130.5, 128.9, 128.7, 128.2, 126.4, 126.3, 39.2, 27.6, 19.5 ppm.
S22

MHz, Chloroform-\textit{d}) \(\delta\) 199.2, 162.8, 137.0, 137.0, 133.3, 130.0, 129.9, 128.8, 128.2, 115.5, 115.3, 40.6, 29.4 ppm.

\textbf{3ag} 3-(4-chlorophenyl)-1-phenylpropan-1-one

\(^1\text{H} \text{NMR (400 MHz, Chloroform-\textit{d}) \(\delta\) 7.99 – 7.91 (m, 1H), 7.60 – 7.53 (m, 1H), 7.49 – 7.42 (m, 1H), 7.29 – 7.23 (m, 1H), 7.21 – 7.16 (m, 1H), 3.33 – 3.24 (m, 1H), 3.05 (t, \(J = 7.5\) Hz, 1H) ppm.}^{13}\text{C}\{^1\text{H}\} \text{NMR (101 MHz, Chloroform-\textit{d}) \(\delta\) 199.0, 139.9, 136.9, 133.3, 132.0, 130.0, 128.8, 128.7, 128.2, 40.3, 29.5 ppm.}

\textbf{3ah} 3-(4-bromophenyl)-1-phenylpropan-1-one

\(^1\text{H} \text{NMR (400 MHz, Chloroform-\textit{d}) \(\delta\) 7.98 – 7.91 (m, 2H), 7.60 – 7.53 (m, 1H), 7.49 – 7.43 (m, 2H), 7.43 – 7.38 (m, 2H), 7.17 – 7.10 (m, 2H), 3.33 – 3.23 (m, 2H), 3.03 (t, \(J = 7.5\) Hz, 2H) ppm.}^{13}\text{C}\{^1\text{H}\} \text{NMR (101 MHz, Chloroform-\textit{d}) \(\delta\) 198.9, 140.4, 136.9, 133.3, 131.7, 130.4, 128.8, 128.1, 120.0, 40.2, 29.6 ppm.}

\textbf{3aj} 3-(furan-2-yl)-1-phenylpropan-1-one

\(^1\text{H} \text{NMR (400 MHz, Chloroform-\textit{d}) \(\delta\) 8.01 – 7.94 (m, 2H), 7.61 – 7.53 (m, 1H), 7.51 – 7.42 (m, 2H), 7.31 (dd, \(J = 1.9\), 0.9 Hz, 1H), 6.29 (dd, \(J = 3.1\), 1.9 Hz, 1H), 6.08 – 6.03 (m, 1H), 3.39 – 3.31 (m, 2H), 3.15 – 3.05 (m, 2H) ppm.}^{13}\text{C}\{^1\text{H}\} \text{NMR (101 MHz, Chloroform-\textit{d}) \(\delta\) 198.7, 154.8, 141.1, 136.8, 133.2, 128.6, 128.1, 110.3, 105.3, 37.00, 22.5 ppm.}

\textbf{3ak} 1-phenyl-3-(pyridin-3-yl)propan-1-one

\(^1\text{H} \text{NMR (400 MHz, Chloroform-\textit{d}) \(\delta\) 8.53 (s, 1H), 8.45 (d, \(J = 4.7\) Hz, 1H), 7.98 – 7.91 (m, 2H), 7.57 (ddt, \(J = 12.9\), 6.9, 1.7 Hz, 2H), 7.49 – 7.42 (m, 2H), 7.21 (dd, \(J = 7.8\), 4.8 Hz, 1H), 3.31 (dd, \(J = 7.8\), 7.0 Hz, 2H), 3.08 (t, \(J = 7.4\) Hz, 2H) ppm.}^{13}\text{C}\{^1\text{H}\} \text{NMR (101 MHz, Chloroform-\textit{d}) \(\delta\) 198.6, 150.1, 147.8, 136.8, 136.2, 133.4, 128.8, 128.1, 123.5, 39.9, 27.2 ppm.}
3al 3-(benzo[\(d\)][1,3]dioxol-5-yl)-1-phenylpropan-1-one

\[
\text{1H NMR (400 MHz, Chloroform-\textit{d}) } \delta 7.99 - 7.92 \text{ (m, 2H), } 7.60 - 7.52 \text{ (m, 1H), } 7.49 - 7.41 \text{ (m, 2H), } 6.77 - 6.67 \text{ (m, 3H), } 5.92 \text{ (s, 2H), } 3.34 - 3.18 \text{ (m, 2H), } 3.07 - 2.93 \text{ (m, 2H) ppm.} \\
\text{13C\text{1H} NMR (101 MHz, Chloroform-\textit{d}) } \delta 199.3, 147.8, 146.0, 137.0, 135.2, 133.2, 128.7, 128.1, 121.3, 109.0, 108.4, 100.9, 40.8, 30.0 \text{ ppm.}
\]

3an 3-cyclohexyl-1-phenylpropan-1-one

\[
\text{1H NMR (400 MHz, Chloroform-\textit{d}) } \delta 7.99 - 7.92 \text{ (m, 2H), } 7.59 - 7.51 \text{ (m, 1H), } 7.51 - 7.40 \text{ (m, 2H), } 3.02 - 2.93 \text{ (m, 2H), } 1.74 \text{ (dddd, } J = 18.2, 11.5, 3.3, 1.5 \text{ Hz, 4H), } 1.68 - 1.60 \text{ (m, 3H), } 1.37 - 1.09 \text{ (m, 5H), } 1.01 - 0.88 \text{ (m, 2H) ppm.} \\
\text{13C\text{1H} NMR (101 MHz, Chloroform-\textit{d}) } \delta 201.1, 137.2, 133.0, 128.7, 128.2, 37.6, 36.3, 33.4, 31.9, 26.7, 26.4 \text{ ppm.}
\]

3ao 1-phenyldodecan-1-one

\[
\text{1H NMR (400 MHz, Chloroform-\textit{d}) } \delta 8.00 - 7.92 \text{ (m, 2H), } 7.59 - 7.52 \text{ (m, 1H), } 7.46 \text{ (dd, } J = 8.3, 6.8 \text{ Hz, 2H), } 2.96 \text{ (t, } J = 7.4 \text{ Hz, 2H), } 1.74 \text{ (q, } J = 7.3 \text{ Hz, 2H), } 1.46 - 1.12 \text{ (m, 18H), } 0.88 \text{ (t, } J = 6.8 \text{ Hz, 3H) ppm.} \\
\text{13C\text{1H} NMR (101 MHz, Chloroform-\textit{d}) } \delta 200.8, 137.3, 133.0, 128.7, 128.2, 38.8, 32.1, 29.8, 29.7, 29.6, 29.5, 24.5, 22.8, 14.3 \text{ ppm.}
\]

S1.8.3 Scope for the alkylated alcohols

4a 1,3-diphenylpropan-1-ol

\[
\text{1H NMR (400 MHz, Chloroform-\textit{d}) } \delta 7.36 \text{ (d, } J = 4.3 \text{ Hz, 4H), } 7.33 - 7.26 \text{ (m, 3H), } 7.23 - 7.16 \text{ (m, 3H), } 4.70 \text{ (dd, } J = 7.8, 5.3 \text{ Hz, 1H), } 2.85 - 2.61 \text{ (m, 2H), } 2.23 - 1.97 \text{ (m, 2H) ppm.} \\
\text{13C\text{1H} NMR (101 MHz, Chloroform-\textit{d}) } \delta 144.7, 141.9, 128.7, 128.6, 128.5, 127.8, 126.1, 126.0, 74.0, 40.6, 32.2 \text{ ppm.}
\]

4b 3-phenyl-1-(p-tolyl)propan-1-ol

\[
\text{1H NMR (400 MHz, Chloroform-\textit{d}) } \delta 7.32 - 7.23 \text{ (m, 4H), } 7.19 \text{ (dd, } J = 11.0, 7.6 \text{ Hz, 5H), } 4.66 \text{ (dd, } J = 7.8, 5.5 \text{ Hz, 1H), } 2.81 - 2.60 \text{ (m, 2H), } 2.36 \text{ (s, 3H), } 2.22 - 1.96 \text{ (m, 2H) ppm.} \\
\text{13C\text{1H} NMR (101 MHz, Chloroform-\textit{d}) } \delta 142.0, 141.1, 137.5, 129.3, 128.6, 128.5, 126.0, 126.0, 73.9, 40.5, 32.2, 21.3 \text{ ppm.}
\]
4d 1-(4-bromophenyl)-3-phenylpropan-1-ol

1H NMR (400 MHz, Chloroform-d) \(\delta \) 7.36 (d, \(J = 4.4 \) Hz, 4H), 7.33 – 7.27 (m, 1H), 7.10 (s, 4H), 4.69 (dd, \(J = 7.8, 5.4 \) Hz, 1H), 2.79 – 2.58 (m, 2H), 2.33 (s, 3H), 2.19 – 1.97 (m, 2H) ppm. 13C{\(^1\)H} NMR (101 MHz, Chloroform-d) \(\delta \) 144.7, 138.8, 135.4, 129.2, 128.6, 128.4, 127.8, 126.1, 74.0, 40.7, 31.7, 21.1 ppm.

4e 3-(4-chlorophenyl)-1-phenylpropan-1-ol

1H NMR (400 MHz, Chloroform-d) \(\delta \) 7.36 (dtd, \(J = 7.2, 6.3, 1.4 \) Hz, 4H), 7.32 – 7.27 (m, 1H), 7.27 – 7.18 (m, 2H), 7.15 – 7.09 (m, 2H), 4.66 (dd, \(J = 7.9, 5.3 \) Hz, 1H), 2.68 (qdd, \(J = 14.0, 9.5, 6.2 \) Hz, 2H), 2.18 – 1.93 (m, 2H) ppm. 13C{\(^1\)H} NMR (101 MHz, Chloroform-d) \(\delta \) 144.5, 140.4, 131.7, 129.9, 128.7, 128.6, 127.9, 126.0, 73.8, 40.4, 31.5 ppm.

4f 3-(benzo[d][1,3]dioxol-5-yl)-1-phenylpropan-1-ol

1H NMR (400 MHz, Chloroform-d) \(\delta \) 7.30 – 7.24 (m, 4H), 7.22 – 7.17 (m, 1H), 6.68 – 6.52 (m, 3H), 5.82 (s, 2H), 4.58 (dd, \(J = 7.9, 5.3 \) Hz, 1H), 2.64 – 2.46 (m, 2H), 2.07 – 1.84 (m, 2H), 1.81 (s, 1H) ppm. 13C{\(^1\)H} NMR (101 MHz, Chloroform-d) \(\delta \) 147.7, 145.7, 144.7, 135.7, 128.6, 127.8, 126.03, 121.3, 109.0, 108.3, 100.9, 73.8, 40.8, 31.9 ppm.

4g 1-phenyldodecan-1-ol

1H NMR (400 MHz, Chloroform-d) \(\delta \) 7.28 (d, \(J = 4.3 \) Hz, 4H), 7.24 – 7.17 (m, 1H), 4.59 (dd, \(J = 7.5, 5.8 \) Hz, 1H), 1.83 – 1.54 (m, 3H), 1.44 – 1.29 (m, 1H), 1.19 (d, \(J = 10.7 \) Hz, 18H), 0.89 – 0.73 (m, 3H) ppm. 13C{\(^1\)H} NMR (101 MHz, Chloroform-d) \(\delta \) 145.1, 128.6, 127.6, 126.0, 74.9, 39.3, 32.1, 29.8, 29.8, 29.73, 29.7, 29.7, 29.5, 26.00, 22.8, 14.3 ppm.
S1.9 1H, 13C{1H} NMR spectra of catalysis products

S1.9.1 Ketone scope for the alkylated ketones

3ba 1H NMR (400 MHz, Chloroform-d)

3ba 13C{1H} NMR (101 MHz, Chloroform-d)
3ca 1H NMR (400 MHz, Chloroform-d)

3ca 13C{1H} NMR (101 MHz, Chloroform-d)

3da 1H NMR (400 MHz, Chloroform-d)
3da 13C-1H NMR (101 MHz, Chloroform-d)
3ea 1H NMR (400 MHz, Chloroform-d)

3ea 13C{1H} NMR (101 MHz, Chloroform-d)

3fa 1H NMR (400 MHz, Chloroform-d)
3fa 13C{¹H} NMR (101 MHz, Chloroform-$_d$)
^{1}H NMR (400 MHz, Chloroform-d)

$^{13}C\{^1H\}$ NMR (101 MHz, Chloroform-d)
3ha 1H NMR (400 MHz, Chloroform-d)

3ha 13C$\{^1$H$\}$ NMR (101 MHz, Chloroform-d)
3ia 1H NMR (400 MHz, Chloroform-d)

3ia 13C 1H NMR (101 MHz, Chloroform-d)
3ja 1H NMR (400 MHz, Chloroform-d)

3ja 13C 1H NMR (101 MHz, Chloroform-d)
3ka 1H NMR (400 MHz, Chloroform-d)

1H NMR data for 3ka:
- f1 (ppm): 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0
- f1 (ppm): -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65
- Chemical shifts:
 - CDCl$_3$: 7.27, 7.28, 7.28, 7.28, 7.29, 7.30, 7.30, 7.30, 7.31, 7.31, 7.32
 - HDO: 2.28, 3.00, 3.01, 3.02, 3.03, 3.03, 3.04, 3.04, 3.05, 3.05, 3.06

3ka 13C (1H) NMR (101 MHz, Chloroform-d)

13C NMR data for 3ka:
- f1 (ppm): -20, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200
- Chemical shifts:
 - CDCl$_3$: 77.16, 77.48, 126.26, 128.59, 128.62, 132.68, 138.48, 139.59, 141.07
 - Other: 19.15, 21.15, 29.62, 46.46, 76.84
3ma 1H NMR (400 MHz, Chloroform-d)

3ma 13C{1H} NMR (101 MHz, Chloroform-d)
3na 1H NMR (400 MHz, Chloroform-d)

3na 13C{1H} NMR (400 MHz, Chloroform-d)
3oa 1H NMR (400 MHz, Chloroform-d)

3oa 13C1H} NMR (101 MHz, Chloroform-d)
S1.9.2 Alcohol scope for the alkylated ketones

3ab 1H NMR (400 MHz, Chloroform-d)

3ab 13C{1H} NMR (101 MHz, Chloroform-d)
3ac 1H NMR (400 MHz, Chloroform-d)

3ac 13C{1H} NMR (101 MHz, Chloroform-d)
3ad 1H NMR (400 MHz, Chloroform-d)

3ad 13C{1H} NMR (101 MHz, Chloroform-d)
3ae 1H NMR (400 MHz, Chloroform-d)

3ae 13C{1H} NMR (101 MHz, Chloroform-d)
3af 1H NMR (400 MHz, Chloroform-d)

3af 13C 1H NMR (101 MHz, Chloroform-d)
3ag 1H NMR (400 MHz, Chloroform-d)

3ag 13C{1H} NMR (101 MHz, Chloroform-d)
3ah 1H NMR (400 MHz, Chloroform-d)

3ah 13C{1H} NMR (101 MHz, Chloroform-d)
3aj 1H NMR (400 MHz, Chloroform-\textit{d})

3aj 13C 1H NMR (101 MHz, Chloroform-\textit{d})
3ak 1H NMR (400 MHz, Chloroform-d)

![3ak 1H NMR spectrum](image)

3ak 13C(1H) NMR (101 MHz, Chloroform-d)

![3ak 13C(1H) NMR spectrum](image)
3al 1H NMR (400 MHz, Chloroform-d)

3al 13C (1H) NMR (101 MHz, Chloroform-d)
3an 1H NMR (400 MHz, Chloroform-d)

3an 13C(1H) NMR (101 MHz, Chloroform-d)
3ao ^1H NMR (400 MHz, Chloroform-d)

3ao ^{13}C(^1H) NMR (101 MHz, Chloroform-d)
S1.9.3 Scope for the alkylated alcohols

4a 1H NMR (400 MHz, Chloroform-d)

4a 13C 1H NMR (101 MHz, Chloroform-d)
4b 1H NMR (400 MHz, Chloroform-d)

4b 13C{1H} NMR (101 MHz, Chloroform-d)
4d 1H NMR (400 MHz, Chloroform-d)

4d 13C{1H} NMR (101 MHz, Chloroform-d)
4e 1H NMR (400 MHz, Chloroform-d)

![NMR Spectrum 4e 1H](image)

4e 13C{1H} NMR (101 MHz, Chloroform-d)

![NMR Spectrum 4e 13C{1H}](image)
4g 1H NMR (400 MHz, Chloroform-d)

4g 13C{1H} NMR (101 MHz, Chloroform-d)
S1.10 References

