Manganese oxides hierarchical structures derived from coordination polymers and their enhanced catalytic activity at low temperature for selective catalytic reduction of NOx

Supporting Information.

Table of contents

Table S1. List of chemicals used for the synthesis of Mn-CP with their suppliers.

Fig. S1. FT-IR spectra of (a) sodium fumarate (b) Mn-CP.

Fig. S2. (a) Low- and (b) high-magnification FESEM images of the Mn-CP. (c - f) Elemental mapping data displaying the distribution of C, O and Mn in Mn-CP

Fig. S3. TGA curve of Mn-CP.

Fig. S4. (a) N2 adsorption-desorption (BET isotherm) and (b) BJH pore size distribution of the MnOx catalysts.

Fig. S5. (a) Low-magnification and (b) high-magnification FESEM images of MnOx-350 after catalytic reaction for 10 hours.

Fig. S6. SEM images of MnOx-300

Fig. S7. NOx conversion efficiency of the MnOx-300

Graphical abstract.
<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Suppliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluronic F-127</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Potassium bromide</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Manganese(II) chloride tetrahydrate</td>
<td>Junsei Chemical Co., Ltd.</td>
</tr>
<tr>
<td>Disodium fumarate</td>
<td>Tokyo Chemical Industry Co., Ltd.</td>
</tr>
<tr>
<td>Acetone</td>
<td>Samchun Pure Chemical Co., Ltd.</td>
</tr>
</tbody>
</table>

Table S1. List of chemicals with their suppliers used for the synthesis of Mn-CP.

![Graph of vibrations](image)
Fig. S1. FT-IR spectra of (a) sodium fumarate (b) Mn-CP.

![FT-IR spectra](image1)

Fig. S2. (a) Low- and (b) high-magnification FESEM images of the Mn-CP. (c - f) Elemental mapping data displaying the distribution of C, O and Mn in Mn-CP

![FESEM images and mapping data](image2)
Fig. S3. TGA curve of Mn-CP.

Fig. S4. (a) N\textsubscript{2} adsorption-desorption (BET isotherm) and (b) BJH pore size distribution of the MnOx catalysts.
Fig. S5. (a) Low-magnification and (b) high-magnification FESEM images of MnOx-350 after catalytic reaction for 10 hours.

\[
\frac{[400 \text{ (ppm)}]_{\text{in}} - [34.8 \text{ (ppm)}]_{\text{out}}}{[400 \text{ (ppm)}]_{\text{in}}} \times 100(\%) = 91.3(\%)
\]
(1)

\[
\frac{[400 \text{ (ppm)}]_{\text{in}} - [36 \text{ (ppm)}]_{\text{out}}}{[400 \text{ (ppm)}]_{\text{in}}} \times 100(\%) = 91(\%)
\]
(2)

Equation S1. The catalytic conversion of NOx using MnOx-350 at (1) 150 °C and (2) 200 °C.

Fig. S6 SEM images of MnOx-300
Fig. S7 NOx conversion efficiency of the MnOx-300

AUTHOR INFORMATION

Corresponding Author

sykwak@snu.ac.kr.