Supporting information

A new tilt and an old twist on the nickel arsenide structure-type: synthesis and characterisation of the quaternary transitionmetal cyanamides A_2 MnSn₂(NCN)₆ (A =Li and Na)

Alex J. Corkett, *a and Richard Dronskowskia,b

^aChair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany

^bHoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, China

Corresponding Author

* Email: alexander.corkett@ac.RWTH-aachen.de

Atom	Wyckoff site	X	у	Z	<i>U_{iso}</i> (10 ² ×Å ²)
Li1	2 <i>d</i>	1/3	2/3	1/2	1.43(3)
Mn	1 <i>b</i>	0	0	1/2	2.81(13)
Sn1	2 <i>c</i>	⅓	2/3	0	1.43(3)
С	6 <i>k</i>	0.646(3)	0	0.2554(8)	2.48(16)
N1	6 <i>k</i>	0.6842(13)	0	0.3753(7)	u
N2	6 <i>k</i>	0.5998(13)	0	0.1211(7)	u
Trigonal, $P^3 1m$ (No. 162), $Z = 1$, $a = 5.85976(6)$ Å, $c = 9.5466(2)$ Å; $R_{wp} = 5.31$ %, $R_p = 4.17$ %, $\chi^2 = 1.203$, 34 variables					

Table S1. Crystallographic data and fractional coordinates for Li₂MnSn₂(NCN)₆. Standard deviations are given in parentheses.

Table S2. Infrared frequencies assigned to characteristic vibrations for $Na_2MnSn_2(NCN)_6$, $Li_2MnSn_2(NCN)_6$ and [NaCl]-type MnNCN.

	$Na_2MnSn_2(NCN)_6$	Li ₂ MnSn ₂ (NCN) ₆	[NaCl]-type MnNCN
δ (NCN)	606, 707	608, 711	647
v _s (NCN)	1200, 1284	1200, 1288	
v _{as} (NCN)	2055, 21455	2049, 2166	2005

Fig. S1 Rietveld fit of $Li_2MnSn_2(NCN)_6$ to PXRD data, showing observed (red), calculated (black) and difference (blue) intensities. Bragg positions of $Li_2MnSn_2(NCN)_6$ (green) and SnO_2 (pink) are denoted by vertical markers.

Fig. S2 Group-subgroup relationship from *M*NCN ($P6_3/mmc$) to A_2 MnSn₂(NCN)₆ ($P\overline{3}1m$).

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)
(0,0,0)	Γ_1^+	(a)	P6₃/mmc (194)	1	0.1188
(0,0,0)	Γ_3^+	(<i>a</i>)	P ³ 1m (164)	2	0.1007
(1⁄3,1⁄3,0)	<i>K</i> ₁	(<i>a</i> ,0)	P6 ₃ /mcm (193)	2	0.2910
(1⁄3,1⁄3,0)	<i>K</i> ₂	(0,a)	P ³ 1m (162)	1	0.5779

Table S3. Normalized mode amplitudes of $Na_2MnSn_2(NCN)_6$ (norm. factor: $\sqrt{3}$).

Table S4. Normalized mode amplitudes of $Li_2MnSn_2(NCN)_6$ (norm. factor: $\sqrt{3}$).

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)
(0,0,0)	Γ_1^+	(<i>a</i>)	P6 ₃ /mmc (194)	1	0.0458
(0,0,0)	Γ_3^+	(<i>a</i>)	P ³ 1m (164)	2	0.0806
(1⁄3,1⁄3,0)	<i>K</i> ₁	(<i>a</i> ,0)	P6 ₃ /mcm (193)	2	0.336
(1/3,1/3,0)	К2	(0 <i>,a</i>)	P ³ 1m (162)	1	0.4945

Table S5. Normalized mode amplitudes of $PbSb_2O_6$ (norm. factor: $\sqrt{3}$).

K-vector	Irrep	Direction	Isotropy Subgroup	Dimension	Amplitude (Å)
(0,0,0)	Γ_3^+	(<i>a</i>)	P ³ 1m (164)	1	0.4242
(⅓,⅓,0)	<i>K</i> ₁	(<i>a</i> ,0)	P6₃/mcm (193)	1	0.3930