SUPPORTING INFORMATION

Synthesis, Characterisation and Potent Cytotoxicity of Unconventional Platinum(IV) Complexes with Modified Lipophilicities

Krishant M. Deo,^a Jennette Sakoff,^b Jayne Gilbert,^b Yingjie Zhang^c and Janice R. Aldrich Wright^a

^a Nanoscale Organisation and Dynamics Group, Western Sydney University, Campbelltown, NSW 2560, Australia

^b Calvary Mater Newcastle, Waratah, NSW 2298, Australia

^c Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia

Contents

A.	NMR Spectra	2
B.	HPLC	23
C.	ESI-MS	28
D.	UV-Vis Spectra	33
E.	CD Spectra	38
F.	Flash Chromatography Details	43
G.	Lipophilicity Studies	43
H.	In vitro cytotoxicity	45
I.	Crystallographic Data	47

A. NMR Spectra

Figure A.1 ¹H NMR of [Pt(PHEN)(SSDACH)(Acetate)₂](NO₃)₂ in D₂O at 298 K. Inset: Structure and proton numbering scheme of [Pt(PHEN)(SSDACH)(Acetate)₂](NO₃)₂.

Figure A.2 COSY NMR of [Pt(PHEN)(SSDACH)(Acetate)₂](NO₃)₂ in D₂O at 298 K.

Figure A.3 ¹⁹⁵Pt NMR of [Pt(PHEN)(SSDACH)(Acetate)₂](NO₃)₂ in D₂O at 298 K, showing a peak at 724 ppm.

Figure A.4 ¹H-¹⁹⁵Pt HMQC NMR of **[Pt(PHEN)(SSDACH)(Acetate)₂](NO₃)**₂ showing proton and platinum coupling resonances, in D₂O at 298 K.

Figure A.5 ¹H NMR of [Pt(PHEN)(SSDACH)(Propanoate)₂](NO₃)₂ in D₂O at 298 K. Inset: Structure and proton numbering scheme of [Pt(PHEN)(SSDACH)(Propanoate)₂](NO₃)₂.

Figure A.6 COSY NMR of [Pt(PHEN)(SSDACH)(Propanoate)₂](NO₃)₂ in D₂O at 298 K.

Figure A.7 ¹⁹⁵Pt NMR of [Pt(PHEN)(SSDACH)(Propanoate)₂](NO₃)₂ in D₂O at 298 K, showing a peak at 710 ppm.

Figure A.8 ¹H-¹⁹⁵Pt HMQC NMR of **[Pt(PHEN)(SSDACH)(Propanoate)₂](NO₃)**₂ showing proton and platinum coupling resonances, in D₂O at 298 K.

Figure A.9 ¹H NMR of [**Pt(PHEN)(SSDACH)(Butanoate)**₂](**NO**₃)₂ in D₂O at 298 K. Inset: Structure and proton numbering scheme of [**Pt(PHEN)(SSDACH)(Butanoate)**₂](**NO**₃)₂.

Figure A.10 COSY NMR of [Pt(PHEN)(SSDACH)(Butanoate)₂](NO₃)₂ in D₂O at 298 K.

Figure A.11 ¹⁹⁵Pt NMR of **[Pt(PHEN)(SSDACH)(Butanoate)₂](NO₃)**₂ in D₂O at 298 K, showing a peak at 707 ppm.

Figure A.12 ¹H-¹⁹⁵Pt HMQC NMR of **[Pt(PHEN)(SSDACH)(Butanoate)₂](NO₃)**₂ showing proton and platinum coupling resonances, in D₂O at 298 K.

Figure A.13 ¹H NMR of [Pt(PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂ in D₂O at 298 K. Inset: Structure and proton numbering scheme of [Pt(PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂.

Figure A.14 COSY NMR of [Pt(PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂ in D₂O at 298 K.

Figure A.15 ¹⁹⁵Pt NMR of [Pt(PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂ in D₂O at 298 K, showing a peak at 705 ppm.

Figure A.16 ¹H-¹⁹⁵Pt HMQC NMR of **[Pt(PHEN)(SSDACH)(Pentanoate)₂](NO₃)**₂ showing proton and platinum coupling resonances, in D₂O at 298 K.

Figure A.17 ¹H NMR of [Pt(PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂ in D₂O at 298 K. Inset: Structure and proton numbering scheme of [Pt(PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂.

Figure A.18 COSY NMR of [Pt(PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂ in D₂O at 298 K.

Figure A.19 ¹⁹⁵Pt NMR of [Pt(PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂ in D₂O at 298 K, showing a peak at 703 ppm.

Figure A.20 ¹H-¹⁹⁵Pt HMQC NMR of **[Pt(PHEN)(SSDACH)(Hexanoate)₂](NO₃)**₂ showing proton and platinum coupling resonances, in D₂O at 298 K.

Figure A.21 ¹H NMR of [Pt(56Me₂PHEN)(SSDACH)(Acetate)₂](NO₃)₂ in D₂O at 298 K. Inset: Structure and proton numbering scheme of [Pt(56Me₂PHEN)(SSDACH)(Acetate)₂](NO₃)₂.

Figure A.22 COSY NMR of $[Pt(56Me_2PHEN)(SSDACH)(Acetate)_2](NO_3)_2$ in D₂O at 298 K.

Figure A.23 ¹⁹⁵Pt NMR of [Pt(56Me₂PHEN)(SSDACH)(Acetate)₂](NO₃)₂ in D₂O at 298 K, showing a peak at 711 ppm.

Figure A.24 ¹H-¹⁹⁵Pt HMQC NMR of [Pt(56Me₂PHEN)(SSDACH)(Acetate)₂](NO₃)₂ showing proton and platinum coupling resonances, in D₂O at 298 K.

Figure A.25 ¹H NMR of [Pt(56Me₂PHEN)(SSDACH)(Propanoate)₂](NO₃)₂ in D₂O at 298 K. Inset: Structure and proton numbering scheme of [Pt(56Me₂PHEN)(SSDACH)(Propanoate)₂](NO₃)₂.

Figure A.26 COSY NMR of [Pt(56Me₂PHEN)(SSDACH)(Propanoate)₂](NO₃)₂ in D₂O at 298 K.

Figure A.27 ¹⁹⁵Pt NMR of **[Pt(56Me₂PHEN)(SSDACH)(Propanoate)₂](NO₃)₂** in D₂O at 298 K, showing a peak at 697 ppm.

Figure A.28 ¹H-¹⁹⁵Pt HMQC NMR of [Pt(56Me₂PHEN)(SSDACH)(Propanoate)₂](NO₃)₂ showing proton and platinum coupling resonances, in D₂O at 298 K.

Figure A.29 ¹H NMR of [Pt(56Me₂PHEN)(SSDACH)(Butanoate)₂](NO₃)₂ in D₂O at 298 K. Inset: Structure and proton numbering scheme of [Pt(56Me₂PHEN)(SSDACH)(Butanoate)₂](NO₃)₂.

Figure A.30 COSY NMR of [Pt(56Me₂PHEN)(SSDACH)(Butanoate)₂](NO₃)₂ in D₂O at 298 K. Inset: Structure and proton numbering scheme of [Pt(56Me₂PHEN)(SSDACH)(Butanoate)₂](NO₃)₂.

Figure A.31 ¹⁹⁵Pt NMR of [Pt(56Me₂PHEN)(SSDACH)(Butanoate)₂](NO₃)₂ in D₂O at 298 K, showing a peak at 692 ppm.

Figure A.32 ¹H-¹⁹⁵Pt HMQC NMR of [Pt(56Me₂PHEN)(SSDACH)(Butanoate)₂](NO₃)₂ showing proton and platinum coupling resonances, in D₂O at 298 K.

Figure A.33 ¹H NMR of [Pt(56Me₂PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂ in D₂O at 298 K. Inset: Structure and proton numbering scheme of [Pt(56Me₂PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂.

Figure A.34 COSY NMR of [Pt(56Me₂PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂ in D₂O at 298 K.

Figure A.35 ¹⁹⁵Pt NMR of [Pt(56Me₂PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂ in D₂O at 298 K, showing a peak at 691 ppm.

Figure A.36 ¹H-¹⁹⁵Pt HMQC NMR of [Pt(56Me₂PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂ showing proton and platinum coupling resonances, in D₂O at 298 K.

Figure A.37 ¹H NMR of [Pt(56Me₂PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂ in D₂O at 298 K. Inset: Structure and proton numbering scheme of [Pt(56Me₂PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂.

Figure A.38 COSY NMR of $[Pt(56Me_2PHEN)(SSDACH)(Hexanoate)_2](NO_3)_2$ in D₂O at 298 K.

Figure A.39 ¹⁹⁵Pt NMR of [Pt(56Me₂PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂ in D₂O at 298 K, showing a peak at 689 ppm.

Figure A.40 ¹H-¹⁹⁵Pt HMQC NMR of [Pt(56Me₂PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂ showing proton and platinum coupling resonances, in D₂O at 298 K.

Label	Complex									
	1	2	3	4	5	6	7	8	9	10
H2/9	9.32 (d, <i>J</i> =	9.21 (d, <i>J</i> =	9.33 (d, <i>J</i> =	9.36 (d, <i>J</i> =	9.39 (d, <i>J</i> =	9.23 (d, <i>J</i> =	9.21 (d, <i>J</i> =	9.25 (d, <i>J</i> =	9.28 (d, <i>J</i> =	9.32 (d, <i>J</i> =
112/9	5.52 Hz, 2 H)	5.56 Hz, 2 H)	5.48 Hz, 2 H)	5.60 Hz, 2 H)	5.52 Hz, 2 H)	5.52 Hz, 2 H)	5.48 Hz, 2 H)	5.48 Hz, 2 H)	5.56 Hz, 2 H)	5.24 Hz, 2 H)
	8.22 (dd, $J_1 =$	8.23 (dd, $J_1 =$	8.24 (dd, J_1 =	8.26 (dd, J_1 =	8.28 (dd, $J_1 =$	8.20 (dd, J_1 =	8.20 (dd, J_1 =	8.21 (dd, J_1 =	8.23 (dd, J_1 =	8.26 (dd, J_1 =
H3/8	8.30 Hz, $J_2 =$	8.30 Hz, $J_2 =$	8.30 Hz, $J_2 =$	8.40 Hz, $J_2 =$	8.36 Hz, $J_2 =$	8.60 Hz, $J_2 =$	8.62 Hz, $J_2 =$	8.60 Hz, $J_2 =$	8.70 Hz, $J_2 =$	8.60 Hz, $J_2 =$
	5.66 Hz, 2 H)	5.62 Hz, 2 H)	5.66 Hz, 2 H)	5.80 Hz, 2 H)	5.68 Hz, 2 H)	5.60 Hz, 2 H)	5.58 Hz, 2 H)	5.60 Hz, 2 H)	5.50 Hz, 2 H)	5.60 Hz, 2 H)
H4/7	9.05 (d, $J =$	9.05 (d, $J =$	9.07 (d, $J =$	9.10 (d, $J =$	9.11 (d, $J =$	9.16 (d, $J =$	9.17 (d, $J =$	9.18 (d, $J =$	9.21 (d, <i>J</i> =	9.24 (d, $J =$
	8.24 Hz, 2 H)	8.56 Hz, 2 H)	8.24 Hz, 2 H)	8.32 Hz, 2 H)	8.28 Hz, 2 H)	8.32 Hz, 2 H)	8.56 Hz, 2 H)	8.52Hz, 2 H)	8.68 Hz, 2 H)	8.44 Hz, 2 H)
H5/6	8.29 (s, 2 H)	8.29 (s, 2 H)	8.31 (s, 2 H)	8.34 (s, 2 H)	8.35 (s, 2H)	-	-	-	-	-
CH ₃	-	-	-	-	-	2.82 (s, 6 H)	2.83 (s, 6 H)	2.82 (s, 6 H)	2.84 (s, 6 H)	2.84 (s, 6 H)
H1′/2′	3.19 (m, 2 H)	3.17 (m, 2 H)	3.17 (m, 2 H)	3.17 (m, 2 H)	3.17 (m, 2 H)	3.17 (m, 2 H)	3.15 (m, 2 H)	3.15 (m, 2 H)	3.15 (m, 2 H)	3.15 (m, 2 H)
H3′/6′	2.40 (m, 2 H)	2.40 (m, 2 H)	2.41 (m, 2 H)	2.41 (m, 2 H)	2.42 (m, 2 H)	2.39 (m, 2 H)	2.39 (m, 2 H)	2.40 (m, 2 H)	2.40 (m, 2 H)	2.40 (m, 2 H)
H4′/5′	1.68 (m, 10 H)	1.69 (m, 4 H)	1.70 (m, 4 H)	1.72 (m, 4 H)	1.70 (m, 4 H)	1.67 (m, 10 H)	1.69 (m, 4 H)	1.69 (m, 4 H)	1.69 (m, 4 H)	1.69 (m, 4 H)
H3′/6′	1.68 (m, 10 H)	1.69 (m, 4 H)	1.70 (m, 4 H)	1.72 (m, 4 H)	1.70 (m, 4 H)	1.67 (m, 10 H)	1.69 (m, 4 H)	1.69 (m, 4 H)	1.69 (m, 4 H)	1.69 (m, 4 H)
H4′/5′	1.29 (m, 2 H)	1.29 (m, 2 H)	1.29 (m, 2 H)	1.29 (m, 2 H)	1.29 (m, 2 H)	1.29 (m, 2 H)	1.29 (m, 2 H)	1.28 (m, 2 H)	1.28 (m, 2 H)	1.27 (m, 2 H)
a	1.68 (m, 10 H)	2.03 (m, 4 H)	1.99 (t, <i>J</i> = 7.24 Hz, 4 H)	2.02 (t, <i>J</i> = 7.14 Hz, 4 H)	2.02 (t, <i>J</i> = 7.14 Hz, 4 H)	1.67 (m, 10 H)	2.02 (m, 4 H)	1.97 (t, <i>J</i> = 7.22 Hz, 4 H)	2.00 (td, $J_1 =$ 7.14 Hz, $J_2 =$ 1.79 Hz, 4 H)	2.01 (oct, <i>J</i> = 7.23 Hz, 4 H)
b	-	0.54 (t, <i>J</i> = 7.54 Hz, 6 H)	0.99 (sxt, J = 7.51 Hz, 4 H)	0.93 (pnt, $J =$ 7.30 Hz, 4 H)	0.95 (pnt, J = 7.55 Hz, 4 H)	-	0.52 (t, J = 7.54 Hz, 6H)	0.97 (sxt, J = 7.30, 4 H)	0.89 (pnt, J = 7.24, 4 H)	0.90 (m, 4 H)
с	-	-	0.24 (t, <i>J</i> = 7.42 Hz, 6 H)	0.43 (m, 4 H)	0.39 (m, 6 H)	-	-	0.19 (t, <i>J</i> = 7.42 Hz, 6 H)	0.33 (m, 4 H)	0.17 (m, 4 H)
d	-	-	-	0.29 (t, <i>J</i> = 7.16 Hz, 6 H)	0.65 (m, 4 H)	-	-	-	0.22 (m, 6 H)	0.55 (m, 4 H)
e	-	-	-	-	0.32 (m, 4 H)	-	-	-	-	0.31 (t, <i>J</i> = 7.34 Hz, 6 H)
¹ H/ ¹⁹⁵ Pt	9.31, 8.22, 1.69/720	9.29, 8.22/708	9.35, 8.26/701	9.35, 8.26/701	9.38, 8.28/700	9.22, 8.18, 1.68/708	9.20, 8.20/694	9.24, 8.22/690	9.27, 8.22/687	9.32, 8.26/685

Table A.1 Summary of NMR spectroscopy data of **1-10** in D₂O, showing chemical shift (ppm), integration, multiplicity and coupling constants.

B. HPLC

Figure B.1 HPLC trace of [Pt(PHEN)(SSDACH)(Acetate)₂](NO₃)₂ using a gradient of 0–30 % (H₂O:ACN/H₂O (90:10)) over 15 min, $T_R = 6.4$ min.

Figure B.2 HPLC trace of [Pt(PHEN)(SSDACH)(Propanoate)₂](NO₃)₂ using a gradient of 0-30 % (H₂O:ACN/H₂O (90:10)) over 15 min, T_R = 8.1 min.

Figure B.3 HPLC trace of [Pt(PHEN)(SSDACH)(Butanoate)₂](NO₃)₂ using a gradient of 0– 30 % (H₂O:ACN/H₂O (90:10)) over 15 min, $T_R = 10.1$ min.

Figure B.4 HPLC trace of [Pt(PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂ using a gradient of 0–30 % (H₂O:ACN/H₂O (90:10)) over 15 min, $T_R = 12.6$ min.

Figure B.5 HPLC trace of [Pt(PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂ using a gradient of 0–30 % (H₂O:ACN/H₂O (90:10)) over 15 min, $T_R = 15.6$ min.

Figure B.6 HPLC trace of [Pt(56Me₂PHEN)(SSDACH)(Acetate)₂](NO₃)₂ using a gradient of 0–30 % (H₂O:ACN/H₂O (90:10)) over 15 min, $T_R = 8.8$ min.

Figure B.7 HPLC trace of [Pt(56Me₂PHEN)(SSDACH)(Propanoate)₂](NO₃)₂ using a gradient of 0–30 % (H₂O:ACN/H₂O (90:10)) over 15 min, $T_R = 10.6$ min.

Figure B.8 HPLC trace of [Pt(56Me₂PHEN)(SSDACH)(Butanoate)₂](NO₃)₂ using a gradient of 0–30 % (H₂O:ACN/H₂O (90:10)) over 15 min, $T_R = 12.5$ min.

Figure B.9 HPLC trace of [Pt(56Me₂PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂ using a gradient of 0–30 % (H₂O:ACN/H₂O (90:10)) over 15 min, $T_R = 14.9$ min.

Figure B.10 HPLC trace of [Pt(56Me₂PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂ using a gradient of 0–30 % (H₂O:ACN/H₂O (90:10)) over 15 min, $T_R = 17.5$ min.

C. ESI-MS

Figure C.1 ESI-MS spectrum of [Pt(PHEN)(SSDACH)(Acetate)₂](NO₃)₂.

Figure C.2 ESI-MS spectrum of [Pt(PHEN)(SSDACH)(Propanoate)₂](NO₃)₂.

Figure C.3 ESI-MS spectrum of [Pt(PHEN)(SSDACH)(Butanoate)₂](NO₃)₂.

Figure C.4 ESI-MS spectrum of [Pt(PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂.

Figure C.5 ESI-MS spectrum of [Pt(PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂.

Figure C.6 ESI-MS spectrum of [Pt(56Me₂PHEN)(SSDACH)(Acetate)₂](NO₃)₂.

Figure C.7 ESI-MS spectrum of [Pt(56Me₂PHEN)(SSDACH)(Propanoate)₂](NO₃)₂.

Figure C.8 ESI-MS spectrum of [Pt(56Me₂PHEN)(SSDACH)(Butanoate)₂](NO₃)₂.

Figure C.9 ESI-MS spectrum of [Pt(56Me₂PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂.

Figure C.10 ESI-MS spectrum of [Pt(56Me₂PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂.

D. UV-Vis Spectra

Figure D.1 Exemplar of a replicate of the UV spectrum of **[Pt(PHEN)(SSDACH)(Acetate)_2](NO_3)_2** in water.

Figure D.2 Exemplar of a replicate of the UV spectrum of **[Pt(PHEN)(SSDACH)(Propanoate)**₂**](NO**₃)₂ in water.

Figure D.3 Exemplar of a replicate of the UV spectrum of **[Pt(PHEN)(SSDACH)(Butanoate)**₂**](NO**₃)₂ in water.

Figure D.4 Exemplar of a replicate of the UV spectrum of **[Pt(PHEN)(SSDACH)(Pentanoate)**₂**](NO**₃)₂ in water.

Figure D.5 Exemplar of a replicate of the UV spectrum of **[Pt(PHEN)(SSDACH)(Hexanoate)_2](NO_3)_2** in water.

Figure D.6 Exemplar of a replicate of the UV spectrum of $[Pt(56Me_2PHEN)(SSDACH)(Acetate)_2](NO_3)_2$ in water.

Figure D.7 Exemplar of a replicate of the UV spectrum of **[Pt(56Me₂PHEN)(SSDACH)(Propanoate)₂](NO₃)₂** in water.

Figure D.8 Exemplar of a replicate of the UV spectrum of **[Pt(56Me₂PHEN)(SSDACH)(Butanoate)₂](NO₃)₂** in water.

Figure D.9 Exemplar of a replicate of the UV spectrum of **[Pt(56Me₂PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂** in water.

Figure D.10 Exemplar of a replicate of the UV spectrum of **[Pt(56Me₂PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂** in water.

E. CD Spectra

Figure E.1 CD spectrum of [Pt(PHEN)(SSDACH)(Acetate)₂](NO₃)₂ in water. 13pt smoothing applied.

Figure E.2 CD spectrum of [Pt(PHEN)(SSDACH)(Propanoate)₂](NO₃)₂ in water. 13pt smoothing applied.

Figure E.3 CD spectrum of [Pt(PHEN)(SSDACH)(Butanoate)₂](NO₃)₂ in water. 13pt smoothing applied.

Figure E.4 CD spectrum of [Pt(PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂ in water. 13pt smoothing applied.

Figure E.5 CD spectrum of [Pt(PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂ in water. 13pt smoothing applied.

Figure E.5 SRCD spectrum of [Pt(PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂ in water, with additional spectral information highlighted in purple. 7pt smoothing applied.

Figure E.6 CD spectrum of [Pt(56Me₂PHEN)(SSDACH)(Acetate)₂](NO₃)₂ in water. 13pt smoothing applied.

Figure E.7 CD spectrum of [Pt(56Me₂PHEN)(SSDACH)(Propanoate)₂](NO₃)₂ in water. 13pt smoothing applied.

Figure E.8 CD spectrum of [Pt(56Me₂PHEN)(SSDACH)(Butanoate)₂](NO₃)₂ in water. 13pt smoothing applied.

Figure E.9 CD spectrum of [Pt(56Me₂PHEN)(SSDACH)(Pentanoate)₂](NO₃)₂ in water. 13pt smoothing applied.

Figure E.10 CD spectrum of [Pt(56Me₂PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂ in water. 13pt smoothing applied.

Figure E.10 SRCD spectrum of [Pt(56Me₂PHEN)(SSDACH)(Hexanoate)₂](NO₃)₂ in water, with additional spectral information highlighted in purple. 7pt smoothing applied.

F. Flash Chromatography Details

Table E.1 Flash chromatography gradients, flowrates and elution times of 56MESS(IV) derivatives (complexes 6-10)

Complex	Gradient (H ₂ O:MeOH)	Flowrate	Elution
			time (min)
	100.0 22		
[Pt(56Me ₂ PHEN)(SSDACH)	100:0 over 22 min	10 mL/min	16 – 22
$(Acetate)_{2} (NO_{3})_{2} (6)$			
[Pt(56Me ₂ PHEN)(SSDACH)	100:0 over 42 min	8 mL/min for 33 min	33 - 42
(Propanoate) ₂](NO ₃) ₂ (7)		15 mL/min for 9 min	
[Pt(56Me ₂ PHEN)(SSDACH)	100:0 over 42 min	8 mL/min	47 – 55
$(Butanoate)_2](NO_3)_2$ (8)	90:10 over 13 min		
[Pt(56Me ₂ PHEN)(SSDACH)	100:0 over 95 min	8 mL/min	79 – 95
$(Pentanoate)_2 (NO_3)_2 (9)$			
[Pt(56Me ₂ PHEN)(SSDACH)	100:0 over 72 min	8 mL/min for 61 min	92 –
$(\text{Hexanoate})_2 (\text{NO}_3)_2 (10)$	95:5 over 2 min	15 mL/min for 10	112
	85:15 over 2 min	min	
	75.25 over 8 min	25 mL/min for 2 min	
	0:100 over 28 min	15 mL/min for 10	
	0.100 0001 28 11111		
		min	
		25 mL/min for 8 min	
		15 mL/min for 20	
		min	

Figure G.1 Plot of log P values of carboxylic acid ligands vs. log k_w values of synthesised **PHENSS(IV)** derivatives, complexes 1–5.

Figure G.2 Plot of log P values of carboxylic acid ligands vs. log k_w values of synthesised **56MESS(IV)** derivatives, complexes 6–10.

Log P values of carboxylic acids used to construct the plots against *log k_w* were obtained from literature.^{1, 2}

H. In vitro cytotoxicity

Table H.1 *In vitro* cytotoxicity of synthesised complexes. Cisplatin, oxaliplatin and carboplatin values are shown for comparison. IC₅₀ values [nM] are reported with standard error; produced from duplicate experiments that were conducted on 3-4 separate occasions (n = 3-4); n.d. = not determined. ^{α} data taken from ref³.

	IC ₅₀ ± Std Dev (nM)										
Complex	HT29	U87	MCF-7	A2780	H460	A431	Du145	BE2-C	SJ-G2	MIA	MCF10A
1	100 ± 19	1400 ± 250	1400 ± 340	310 ± 72	320 ± 37	650 ± 150	140 ± 29	510 ± 52	340 ± 47	200 ± 30	290 ± 60
2	87 ± 21	1000 ± 20	1200 ± 600	200 ± 6	300 ± 17	430 ± 120	200 ± 72	410 ± 38	290 ± 20	190 ± 22	270 ± 12
3	120 ± 24	570 ± 40	790 ± 100	290 ± 21	290 ± 80	560 ± 31	73 ± 33	340 ± 120	330 ± 55	210 ± 36	350 ± 23
4	130 ± 34	670 ± 130	840 ± 490	270 ± 27	380 ± 57	680 ± 93	100 ± 49	1100 ± 460	330 ± 33	210 ± 20	330 ± 45
5	150 ± 17	740 ± 35	930 ± 220	300 ± 50	540 ± 130	540 ± 52	110 ± 3.3	1000 ± 530	340 ± 62	190 ± 15	380 ± 13
6	16 ± 2	93 ± 0	100 ± 35	29 ± 2	24 ± 3	160 ± 120	25 ± 7	90 ± 19	91 ± 20	18 ± 1	29 ± 4
7	13 ± 5	80 ± 30	110 ± 35	28 ± 10	22 ± 9	21 ± 5	28 ± 20	72 ± 21	80 ± 24	13 ± 5	24 ± 10
8	27 ± 9	140 ± 30	350 ± 50	44 ± 4	38 ± 1	75 ± 29	19 ± 1	180 ± 34	200 ± 55	26 ± 4	38 ± 5
9	15 ± 6	100 ± 30	160 ± 24	31 ± 7	22 ± 2	44 ± 6	14 ± 4	130 ± 15	140 ± 26	20 ± 6	28 ± 2
10	13 ± 6	79 ± 20	150 ± 17	29 ± 4	20 ± 5	18 ± 9	10 ± 0	100 ± 27	140 ± 32	13 ± 6	25 ± 4
PHENSS(II)	160 ± 45	980 ± 270	1500 ± 500	230 ± 30	360 ± 35	480 ± 170	100 ± 38	380 ± 46	330 ± 66	200 ± 57	300 ± 58
PHENSS(IV)	710 ± 300	4900 ± 610	16000 ± 4500	800 ± 84	1700 ± 200	4300 ± 530	310 ± 92	3000 ± 530	1700 ± 350	3400 ± 2200	1700 ± 200
$56 MESS(II)^{\alpha}$	76 ± 61	76 ± 14	50 ± 4	30 ± 4	37 ± 9	51 ± 21	7 ± 2	100 ± 16	74 ± 18	15 ± 2	20 ± 5
$56 MESS(IV)^{\alpha}$	22 ± 4	140 ± 23	140 ± 0	63 ± 16	53 ± 10	100 ± 15	9 ± 3	320 ± 61	110 ± 9	27 ± 2	30 ± 3
Cisplatin ^a	11300 ± 1900	3800 ± 1100	6500 ± 800	1000 ± 100	900 ± 200	2400 ± 300	1200 ± 100	1900 ± 200	400 ± 100	7500 ± 1300	n.d.
Oxaliplatin ^α	900 ± 200	1800 ± 200	500 ± 100	160 ± 0	1600 ± 100	4100 ± 500	2900 ± 400	900 ± 200	3000 ± 1200	900 ± 200	n.d.
Carboplatin ^a	>50000	>50000	>50000	9200 ± 2900	14000 ± 1000	24300 ± 2200	14700 ± 1200	18700 ± 1200	5700 ± 200	>50000	n.d.

Figure H.1 In vitro cytotoxicity of PHENSS(IV) derivatives (1-5).

Figure H.2 In vitro cytotoxicity of 56MESS(IV) derivatives (6–10).

I. Crystallographic Data

DonorHAcceptor	D - H	HA	DA	D - HA
N(3)H(3A)O(10)	0.89	1.99	2.86(2)	167
N(3)H(3B)O(8)	0.89	2.52	3.35(3)	157
N(3)H(3B)O(9)	0.89	2.12	2.95(3)	156'
N(4)H(4A)O(6)	0.89	2.00	2.80(2)	149
N(4)H(4B)O(5)	0.89	2.26	3.04(2)	145
N(4)H(4B)O(7)	0.89	2.34	3.19(3)	160'

Table I.1 Calculated hydrogen bonds for complex **3** using PLATON.

REFERENCES

- 1. R. Collander, Acta Chem. Scand., 1951, **5**, 774-780.
- 2. P. E. Keane, J. Simiand, E. Mendes, V. Santucci and M. Morre, *Neuropharmacology*, 1983, **22**, 875-879.
- F. J. Macias, K. M. Deo, B. J. Pages, P. Wormell, J. K. Clegg, Y. Zhang, F. Li, G. Zheng, J. Sakoff, J. Gilbert and J. R. Aldrich-Wright, *Chem. Eur. J.*, 2015, 21, 16990-17001.