Synthesis and electropolymerization of new N-heterocyclic carbene complexes of

Pd and Pt from an emissive imidazolium salt with terthiophene backbone.

Weiran Wang, Hongyu Guo and Richard A Jones*

Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, USA.

Supporting Information

Table of contents

Fig. S1. Calculated frontier molecular orbitals of 4 and 5a	2
Fig. S2. CV of complex 8 in CH ₂ Cl ₂ using a 1.8 mM solution. All potentials are reported with referenced to Fc/Fc^+ couple as 0 V.	3
Fig. S3. CV of P1 , P2 and P3 in monomer-free electrolyte solution in CH_2Cl_2 . Insets show the linear relationship between current at peak oxidation/reduction potentials and scan rates. All potentials are reported with referenced to Fc/Fc^+ couple as 0 V.	. 4
Fig. S4. Deconvoluted F 1s, P 2p and S 2p XPS spectra of P1	5
Fig. S5. Deconvoluted F 1s, P 2p, S 2p, Pd 3d and I 3d XPS spectra of P2	6
Fig. S6. Deconvoluted F 1s, P 2p, S 2p, Pd 3d and I 3d XPS spectra of P3	7
Table S1. Crystal data and structure refinement for 4, 5a, 5b and 8.	8
Table S2. DFT Optimized Atomic Coordinates for 4	0
Table S3. DFT Optimized Atomic Coordinates for 5a.	12
¹ H and ¹³ C NMR spectra	15

Fig. S1. Calculated frontier molecular orbitals of **4** and **5a**.

Fig. S2. CV of complex **8** in CH_2Cl_2 using a 1.8 mM solution. All potentials are reported with referenced to Fc/Fc^+ couple as 0 V.

Fig. S3. CV of **P1**, **P2** and **P3** in monomer-free electrolyte solution in CH_2Cl_2 . Insets show the linear relationship between current at peak oxidation/reduction potentials and scan rates. All potentials are reported with referenced to Fc/Fc^+ couple as 0 V.

Fig. S4. Deconvoluted F 1s, P 2p and S 2p XPS spectra of P1.

Fig. S5. Deconvoluted F 1s, P 2p, S 2p, Pd 3d and I 3d XPS spectra of P2.

Fig. S6. Deconvoluted F 1s, P 2p, S 2p, Pd 3d and I 3d XPS spectra of P3.

Compound	4	5a	5b	8
CCDC Number				
Chemical	$C_{15}H_{13}N_2S_3I$	$C_{20}H_{17}I_2N_3PdS_3$	$C_{20}H_{17}I_2N_3PtS_3$	$C_{13}H_{15}Cl_2I_2N_3PdS$
formula				
Formula weight	444.35	755.75	844.43	676.44
Crystal system	triclinic		monoclinic	·
Space group	P 1		<i>P2</i> ₁ / <i>c</i>	
a/Å	10.5465(14)	22.1504(19)	21.932(3)	16.423(2)
b/Å	12.5852(17)	11.3508(9)	11.3524(13)	7.9595(10)
c/Å	13.9485(18)	19.5686(17)	19.528(2)	15.932(2)
α/°	73.117(3)	90	90	90
β/°	73.645(4)	98.853(2)	99.221(6)	108.871(5)
γ/°	87.820(4)	90	90	90
Volume/Å ³	1698.0(4)	4861.4(7)	4799.2(10)	1970.6(4)
Z	4	8	8	4
$\rho_{calc},g/cm^3$	1.738	2.065	2.337	2.28
µ/mm⁻¹	2.249	3.574	8.694	4.451
F(000)	872	2864	3120	1264
Crystal	$0.2 \times 0.2 \times 0.2$	0.23 imes 0.15 imes	0.237 imes 0.2 imes	0.176 × 0.133 ×
size/mm ³		0.09	0.173	0.094
20 range for	4.372 to 54.96	4.162 to 54.906	1.882 to 54.97	5.188 to 56.886

Table S1. Crystal data and structure refinement for **4**, **5a**, **5b** and **8**.

data				
collection/°				
Index ranges	$-13 \le h \le 13$	$-28 \le h \le 28$	$-28 \le h \le 28$	$-21 \le h \le 21$
	$-16 \le k \le 16$	$-14 \le k \le 14$	$-14 \le k \le 14$	$-10 \le k \le 10$
	$-18 \le l \le 18$	$-25 \le 1 \le 25$	$-25 \le 1 \le 25$	$-21 \le 1 \le 21$
Reflections	31993	89157	69261	47017
collected				
Independent	7766	11098	11000	4954
reflections	$R_{int} = 0.0472$	$R_{int} = 0.0447$	$R_{int} = 0.0525$	$R_{int} = 0.0394$
	$\mathbf{R}_{\mathrm{sigma}} =$	$R_{sigma} = 0.0251$	$R_{sigma} = 0.0343$	$R_{sigma} = 0.0185$
	0.0406			
Data/restraints/	7766/244/396	11098/223/628	11000/407/580	4954/0/201
parameters				
GOF on F ²	1.053	1.161	1.057	1.075
R_1 , w R_2 [I>=2 σ	0.0404,	0.0375, 0.0861	0.0270, 0.0590	0.0168, 0.0406
(I)]	0.1000			
R_1 , w R_2 [all	0.0492,	0.0412, 0.0876	0.0344, 0.0612	0.0193, 0.0412
data]	0.1045			
Largest diff.	1.25/-1.11	1.63/-1.07	1.74/-1.26	0.85/-0.81
peak				
and hole / e Å ⁻³				
1	1	1		1

Compound 2	Х	Y	Z
S	-0.0057	-0.02775	-0.01494
С	-0.14939	-0.08058	-0.10181
Н	0.137408	0.042912	0.077002
С	0.061584	-0.13443	-0.02955
Н	-0.01048	0.151721	0.061962
С	0.097776	-0.05944	0.014205
Н	-0.14557	0.065088	-0.03432
S	-0.0016	-0.0002	-0.00502
S	-0.0012	0.005893	-0.00769
N	0.001618	-0.00308	-0.00499
N	-0.00195	-0.00846	-0.00531
С	0.000901	-0.00415	-0.01067
С	0.003659	-0.00537	-0.00274
С	-0.00298	0.008982	0.00712
С	-0.00019	-0.00017	-0.00085
С	-0.00712	0.015103	0.006161
С	0.008257	0.07396	-0.13524
Н	-0.00804	-0.07701	0.142657
С	0.020398	0.031007	0.026735
С	-0.06546	0.033428	-0.12863

Table S2. DFT Optimized Atomic Coordinates for **4**.

Н	0.06969	-0.02695	0.144054
С	-0.07407	0.086445	0.00033
Н	-0.06593	-0.10578	-0.00264
Н	0.070112	0.005619	0.101313
Н	0.069646	0.011524	-0.10148
С	-0.03088	0.042947	0.144521
Н	0.032389	-0.03727	-0.15604
С	-0.04275	0.149492	0.023491
Н	0.042509	-0.15834	-0.00972
С	0.035523	-0.06927	-0.0805
Н	0.035674	0.115988	-0.03001
Н	0.049274	-0.03391	0.109463
Н	-0.12313	-0.00795	0.003155

Table S3. DFT Optimized Atomic Coordinates for 5a .
--

Compound 5a	Х	Y	Z
С	-0.000008345	-0.000001168	-0.000004891
Н	-0.000009377	0.0000075	-0.000005199
С	-0.000012216	-0.000003321	-0.000005393
Н	-0.000014948	-0.000001793	-0.000006694
С	-0.000012314	-0.000004444	-0.000003321
Н	-0.000013953	-0.000006575	-0.000004078
S	-0.000005914	-0.000006099	-0.000002359
Ι	-0.000001959	0.000005568	-0.00000438
Ι	0.000001357	-0.000006315	0.000003914
Pd	-0.000001036	0.000001896	0.0000003
S	-0.000000665	0.000001502	-0.00000797
S	0.000008038	0.000005053	0.000001035
N	0.000003348	-0.000002524	0.00000311
N	0.000001959	0.00000641	0.000001946
N	-0.00000169	-0.000000434	0.00000256
С	-0.000009798	-0.00000872	-0.000001725
С	0.000008694	0.000001499	0.000004513
Н	0.000009444	-0.000000913	0.000004711
С	0.000004297	-0.00000027	0.000000329
С	-0.000000888	-0.000001025	-0.000001897

C	0.000001522	0.000003155	-0.000001733
Н	0.000003125	0.000004817	-0.00000063
С	-0.00000157	-0.000002672	0.000000524
Н	-0.00000359	-0.000004702	0.000000398
С	-0.000002196	-0.000002198	0.000000454
С	0.00000689	0.000001885	0.000003302
С	-0.000003342	-0.000000328	-0.00000205
С	0.000001959	0.00000274	0.000001398
С	-0.000000181	0.00000099	0.000000156
Н	0.00000013	-0.000000071	-0.000000188
С	0.000001612	0.00000281	-0.000000651
Н	0.000003606	0.0000047	-0.000000395
С	-0.000002975	-0.000001535	0.000000224
Н	-0.000003239	-0.000004823	0.000000369
С	-0.000005802	-0.000002469	-0.000001487
Н	-0.000007303	-0.000000435	-0.000003581
Н	-0.000007508	-0.000004675	-0.000001303
Н	-0.00000566	-0.000003553	-0.000001498
С	0.000012685	0.000002704	0.000004485
Н	0.000014914	0.000001828	0.00000681
С	0.000005767	0.000003005	0.000001592
Н	0.000006325	0.000003498	0.00000122
Н	0.000007644	0.000001211	0.000003805

Н	0.000007222	0.000004521	0.000001396
С	0.000011956	0.000005153	0.000004131
Н	0.000013978	0.000006406	0.000004142

14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

