Supplementary Information

Self-improvement of solar water oxidation for the

continuously-irradiated hematite photoanode

Zhongyuan Zhou,^{a,b} Shaolong Wu,^{*a,b} Chenhong Xiao,^{a,b} Liujing Li,^{a,b} Weijia Shao,^{a,b} Hao Ding,^{a,b} Long Wen,^c and Xiaofeng Li^{a,b}

^aSchool of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China ^bKey Lab of Advanced Optical Manufacturing Technologies of Jiangsy Province &

^bKey Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China

^cInstitute of Nanophotonics, Jinan University, Guangzhou 511443, China

*E-mail: shaolong_wu@suda.edu.cn

Fig. S1 SEM images of FTO/α -Fe₂O₃ (a and b), $FTO/Sn@\alpha$ -Fe₂O₃ (c and d) and $FTO/TiO_2/Sn@\alpha$ -Fe₂O₃ (e and f) photoanodes before and after PC for 12 h.

Fig. S2 Using SEM images of $FTO/TiO_2/Sn@\alpha$ -Fe₂O₃ photoanode to determine the α -Fe₂O₃ thickness.

Fig. S3 XRD patterns of FTO/α -Fe₂O₃, $FTO/Sn@\alpha$ -Fe₂O₃ and $FTO/TiO_2/Sn@\alpha$ -Fe₂O₃ photoanodes before PC and $FTO/TiO_2/Sn@\alpha$ -Fe₂O₃ photoanode after PC for 12 h.

Fig. S4 Raman plots of FTO/α -Fe₂O₃, $FTO/Sn@\alpha$ -Fe₂O₃ and $FTO/TiO_2/Sn@\alpha$ -Fe₂O₃ photoanodes before PC and $FTO/TiO_2/Sn@\alpha$ -Fe₂O₃ photoanode after PC for 12 h.

Fig. S5 XPS spectra of FTO/ α -Fe₂O₃, FTO/Sn@ α -Fe₂O₃ and FTO/TiO₂/Sn@ α -Fe₂O₃ photoanodes before PC. In (b), the peaks of Fe 2p_{1/2} and Fe 2p_{3/2} indicate the typical values of Fe³⁺ in hematite. In (c), the different peaks of O 1s are caused by Sn and Ti doping from Sn dopant and an underlayer TiO₂. In (d), the peaks of Ti 2p_{1/2} and Ti 2p_{3/2} indicate that the Ti element exists in the FTO/TiO₂/Sn@ α -Fe₂O₃ photoanode. In (e), the peaks of Sn 3d_{5/2} and Sn 3d_{3/2} suggest that the Sn element exists in the FTO/Sn@ α -Fe₂O₃ and FTO/TiO₂/Sn@ α -Fe₂O₃ photoanode. (f) The fitting profile O1s XPS spectra.

	$J_{\rm ph@1.23 V} ({\rm mA \ cm^{-2}})$			J _{ph@1.5 V} (mA cm ⁻²)			U _{on} (V vs. RHE)			РС	
Samples	Before	After	Improve	Before	After	Improv	Before	After	Improve	Conditions	Ref.
	PC	PC	ment	РС	PC	ement	PC	PC	ment		
			0.072			0.0(0				AM 1.5G for 12 h	This
FTO/a-Fe ₂ O ₃	0.051	0.123	0.072	0.075	0.144	0.069	-	-	-	in 1 M NaOH	This
			(141%)			(92%)				solution	WOLK
FTO/Sn@			0 122			0 358				AM 1.5G for 12 h	This
a-Ee ₂ O ₂	0.272	0.394	(45%)	0.419	0.777	(85%)	1.01	0.93	0.08	in 1 M NaOH	work
u-10203			(4570)			(8370)				solution	WOIK
FTO/TiO ₂ /			0.43			0.84				AM 1.5G for 12 h	This
$\operatorname{Sn} @ \mathfrak{a} - \operatorname{Fe}_2 O_2$	0.69	1.12	(62%)	1.24	2.08	(68%)	0.95	0.85	0.1	in 1 M NaOH	work
511(0)(0) 1 0203			(02/0)			(0070)				solution	WOIR
FTO/Ti@			0.05			0.05				AM 1.5G for 70 h	
α -Fe ₂ O ₃	0.27	0.32	(17%)	0.35	0.4	(14%)	0.96	0.86	0.1	in 1 M NaOH	[1]
W 1 •203			(1,7,0)			(11/0)				solution	
FTO/Fe ₂ TiO ₅			0.4			0.5				AM 1.5G for 2.5 h	
$/\alpha$ -Fe ₂ O ₃	1.62	2.02	(24%)	2.2	2.7	(22%)	0.9	0.9	0	in 1 M NaOH	[2]
2 3			× ,			. ,				solution	
FTO/SnO ₂ /	1.3	3.3	2.0	2.4	4.1	1.7	0.7	0.4	0.3	AM 1.5G for 20 h	[3,4]
BiVO ₄			(153%)			(70%)				in $pH = 7$ solution	
FTO/SnO ₂ /	1.0	1.0	0	2.3	2.3	0	0.75	0.75	0	AM 1.5G for 20 h	[4]
BiVO ₄			(0%)			(0%)				in $pH = 4$ solution	
FTO/SnO ₂ /			3			2.1				AM 1.5G for 20 h	
BiVO ₄	1.1	4.3	(290%)	2.4	4.5	(87%)	0.75	0.25	0.5	$\ln pH = 10$	[4]
			0.05							solution	
FTO/BiVO ₄	0.3	0.55	0.25	-	-	-	1.0	0.8	0.2	AM 1.5G for 3 h	[5]
			(83%)			0.55				$\ln pH = / \text{ solution}$	
FTO/BiVO ₄	0.7	1.2	0.5	0.95	1.5	0.55	0.65	0.42	0.23	UV light for 20 h	[6]
			(/1%)			(5/%)				In air	
FTO/WO ₃	0.53	0.69	(20%)	0.6	0.76	(26%)	0.65	0.65	0	UV light for 4 h in	[7]
TiO			(30%)			(20%)				all UV light for 1 h in	
nanotubo	0.4	0.6	(50%)	0.4	0.6	(50%)	0.22	0.22	0		[8]
nanotube	:		(3070)	:		(30%)	:			all	

Table S1 A comparison of the PEC performances between our present photoanodes and the typical related photoanodes with PC effect.

Fig. S6 PEIS and Mott-Schottky plots of FTO/α -Fe₂O₃, $FTO/Sn@\alpha$ -Fe₂O₃ and $FTO/TiO_2/Sn@\alpha$ -Fe₂O₃ photoanodes. Fig. S5a shows that the radius of the sample with Sn doping and a TiO₂ underlayer is getting smaller, implying that the resistance associated with charge trapping on the surface states and transferring into electrolyte is getting smaller.⁹ So the introduced Sn doping and a TiO₂ underlayer in photoanode can reduce the trapping and transfer resistance.¹⁰ The Mott-schottky analysis can be used to calculate the charge carrier density (N_D) from the slope based on the below Equation 1:¹¹

$$N_{\rm D} = (2/\epsilon\epsilon_0 {\rm e})(d_{\rm C}^{-2}/d_{\rm v})^{-1}$$
(1)

C is the space charge capacitance, *V* is the potential, ε is the dielectric constant of hematite, ε_0 is the permittivity of vacuum, *e* is the electron charge. After introducing the Sn doping and a TiO₂ underlayer, *N*_D can be increased five times (2.9×10²⁰ cm⁻³) compared to the pristine FTO/ α -Fe₂O₃ photoanode (5.5×10¹⁹ cm⁻³). So it can prove that the Sn doping and a TiO₂ underlayer can increase carrier density.¹²

Fig. S7 IPCE spectra of $FTO/TiO_2/Sn@\alpha$ -Fe₂O₃ photoanode before and after PC for 12 h at $1.5V_{RHE}$.

Fig. S8 (a) *J-E* curves of FTO/TiO₂/Sn@ α -Fe₂O₃ photoanode irradiated by the AM 1.5G simulator in air for 12 h; (b) *J-E* curves of FTO/TiO₂/Sn@ α -Fe₂O₃ photoanode immersed in 1 M NaOH solution without irradiation for 12 h.

Fig. S9 Cyclic *J-E* test of $FTO/TiO_2/Sn@\alpha-Fe_2O_3$ photoanode with being photocharged or discharged. One cycle is the photoanode was firstly discharged in the dark and in air for 12 h, and then photocharged in 1.0 M NaOH solution under AM 1.5G irradiation for 12 h.

Fig. S10 Reflectance and transmissivity spectra of $FTO/TiO_2/Sn@\alpha-Fe_2O_3$ photoanode in PC process for various durations.

Fig. S11 *J-E* curves of $FTO/TiO_2/Sn@\alpha-Fe_2O_3$ photoanode under AM 1.5G irradiation with and without H_2O_2 before (a) and after (b) PC for 12 h.

Fig. S12 R_s of FTO/TiO₂/Sn@ α -Fe₂O₃ photoanode based on the equivalent circuit in PC process for various durations.

Fig. S13 Contrastive PEIS data of $FTO/TiO_2/Sn@\alpha$ -Fe₂O₃ photoanode before (a) and after PC for 12 h (b) measured at a bias from 0.7 V_{REH} to 1.6 V_{REH}.

Fig. S14 R_s of FTO/TiO₂/Sn@ α -Fe₂O₃ photoanode before and after PC for 12 h measured at a bias from 0.7 V_{REH} to 1.6 V_{REH}.

Fig. S15 Photocurrent onset potential of $FTO/TiO_2/Sn@\alpha-Fe_2O_3$ photoanode before PC is consistent with the C_{ss} peak and the R_{ct} valley.

Fig. S16 XPS survey (a) and Sn 3d (b) core-level spectra of $FTO/TiO_2/Sn@\alpha$ -Fe₂O₃ photoanode before and after PC for 12 h.

References

- 1. J. Xie, P. Yang, X. Liang and J. Xiong, *ACS Appl. Energy Mater.*, 2018, 1, 2769.
- 2. J. Deng, X. Lv and J. Zhong, J. Phys. Chem. C, 2018, 122, 29268.
- 3. B. J. Trzesniewski and W. A. Smith, J. Mater. Chem. A, 2016, 4, 2919.
- B. J. Trzesniewski, I. A. Digdaya, T. Nagaki, S. Ravishankar, I. Herraiz-Cardona, D. A. Vermaas, A. Longo, S. Gimenez and W. A. Smith, *Energy Environ. Sci.*, 2017, 10, 1517.
- 5. E. Y. Liu, J. E. Thorne, Y. He and D. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 22083.
- 6. T. Li, J. He, B. Pena and C. P. Berlinguette, *Angew. Chem. Int. Ed.*, 2016, 55, 1769.
- 7. T. Li, J. He, B. Pena and C. P. Berlinguette, ACS Appl. Mater. Interfaces, 2016, 8, 25010.
- 8. T. Zhang, Y. Liu, J. Liang and D. Wang, Appl. Surf. Sci., 2017, 394, 440.
- 9. S. C. Riha, B. M. Klahr, E. C. Tyo, S. Seifert, S. Vajda, M. J. Pellin, T. W. Hamann and A. B. F. Martinson, *ACS Nano*, 2013, 7, 2396.
- 10. H. Zhang and C. Cheng, ACS Energy Lett., 2017, 2, 813.
- 11. A. K. Singh and D. Sarkar, Nanoscale, 2018, 10, 13130.
- X.-L. Zheng, C.-T. Dinh, F. P. G. D. Arquer, B. Zhang, M. Liu, O. Voznyy, Y.-Y. Li, G. Knight, S. Hoogland, Z.-H. Lu, X.-W. Du and E. H. Sargent, *Small*, 2016, 12, 3181.