Supporting Information

Isomeric Ir(III) complexes for tracking mitochondrial pH fluctuation and inducing mitochondria disfunction during photodynamic therapy

Haijie Chen,‡ Chen Ge,‡ Huiqun Cao,‡ Xuepeng Zhang, Ling Zhang, Linhai Jiang, Pingyu Zhang* and Qianling Zhang **

‡ College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China. E-mail: p.zhang6@szu.edu.cn (P. Z.); zhql@szu.edu.cn (Q. Z.)
** Lab of Computational and Drug Design, School of Chemical Biology and Biotechnology. Peking University Shenzhen Graduate School, Shenzhen 518055, China
Contents

Scheme S1. The synthetic routes of the iridium complexes.

Fig. S1. The separation of 1-4 on preparative thin-layer silica gel plates.

Fig. S2. The 1H NMR spectrum of 1.

Fig. S3. The 13C NMR spectrum of 1.

Fig. S4. The ESI-MS spectrum of 1.

Fig. S5. The 1H - 1H Cozy spectrum of 1.

Fig. S6. The 1H NMR spectrum of 2.

Fig. S7. The 13C NMR spectrum of 2.

Fig. S8. The ESI-MS spectrum of 2.

Fig. S9. The 1H-1H Cozy spectrum of 2.

Fig. S10. The comparison of the 1H NMR spectrum of 1 and 2.

Fig. S11. The 1H NMR spectrum of 3.

Fig. S12. The 13C NMR spectrum of 3.

Fig. S13. The ESI-MS spectrum of 3.

Fig. S14. The 1H-1H Cozy spectrum of 3.

Fig. S15. The 1H NMR spectrum of 4.

Fig. S16. The 13C NMR spectrum of 4.

Fig. S17. The ESI-MS spectrum of 4.

Fig. S18. The 1H-1H Cozy spectrum of 4.

Fig. S19. The comparison of the 1H NMR spectrum of 3 and 4.

Fig. S20. The UV-vis spectra and emission spectra of 1-4.

Fig. S21. The photostability of 1-4.

Fig. S22. The stability of 1-4 in the PBS solution.

Fig. S23. The stability of 1-4 in the cell culture medium (DMEM).

Fig. S24. Change of the phosphorescence spectra of 1-4 with varying pH from 3.0 to 12.1.

Fig. S25. The linear fitting of luminescence titration curve.

Fig. S26. The phosphorescence spectra and photographs of 1-4 with varying pH from 5.8 to 7.9.

Fig. S27. The pH reversibility of the phosphorescence intensity of 1-4.
Fig. S28. The emission intensities of 1-4 in the presence of kinds of biological molecules.

Fig. S29. The emission intensities of 1-4 in the presence of kinds of ions.

Fig. S30. The schematic isomers of 1 and 2 and their respective relative free energies.

Fig. S31. The iridium concentrations in mitochondria were determined by ICP-MS.

Fig. S32. EPR signals of ROS.

Fig. S33. Measurement of 1O2 quantum yields.

Fig. S34. The cellular ROS generation.

Fig. S35. The normalized emission intensity in Hep-G2 cells after irradiation according to Fig. 6.

Fig. S36. JC-1 assay in the dark or upon light irradiation.

Fig. S37. The enlarged images of irradiation treatment in Fig. 7.

Table S1. Blue shift of 1 and 2 ranging from pH 6.0 to pH 8.0.

Table S2. The phosphorescence quantum yield of 1-4.

Table S3. Determination of 1O2 quantum yield of 1-4.

Table S4. The phototoxicity of 1-4 towards Hep-G2 cell line upon different irradiation time.

Table S5. The dark cytotoxicity and phototoxicity of 1-4 towards normal cell lines.
Scheme S1. The synthetic routes of the iridium complexes.

Fig. S1. The separation of 1-4 on preparative thin-layer silica gel plates with dichloromethane and methanol mixture solution (v:v = 10:1).
Fig. S2. The 500 MHz 1H NMR spectrum of 1 in the DMSO-d$_6$ solution.

Fig. S3. The 500 MHz 13C NMR spectrum of 1 in the DMSO-d$_6$ solution.
Fig. S4. The ESI-MS spectrum of 1 (CH$_3$OH, positive mode).

Fig. S5. The 500 MHz 1H-1H Cozy spectrum of 1 in the DMSO-d$_6$ solution.
Fig. S6. The 500 MHz 1H NMR spectrum of 2 in the DMSO-d$_6$ solution.

Fig. S7. The 500 MHz 13C NMR spectrum of 2 in the DMSO-d$_6$ solution.
Fig. S8. The ESI-MS spectrum of 2 (CH$_3$OH, positive mode).

Fig. S9. The 500 MHz 1H-1H Cozy spectrum of 2 in the DMSO-d$_6$ solution.
Fig. S10. The assignment of H atoms of the 1H NMR spectra of 1 and 2.

Fig. S11. The 500 MHz 1H NMR spectrum of 3 in the DMSO-d$_6$ solution.
Fig. S12. The 500 MHz 13C NMR spectrum of 3 in the DMSO-d$_6$ solution.

Fig. S13. The ESI-MS spectrum of 3 (CH$_3$OH, positive mode).
Fig. S14. The 500 MHz 1H-1H Cozy spectrum of 3 in the DMSO-d$_6$ solution.

Fig. S15. The 500 MHz 1H NMR spectrum of 4 in the DMSO-d$_6$ solution.
Fig. S16. The 500 MHz 13C NMR spectrum of 4 in the DMSO-d$_6$ solution.

Fig. S17. The ESI-MS spectrum of 4 (CH$_3$OH, positive mode).
Fig. S18. The 500 MHz 1H-1H Cozy spectrum of 4 in the DMSO-d$_6$ solution.

Fig. S19. The assignment of H atoms of the 1H NMR spectra of 3 and 4.
Fig. S20. The UV-vis spectra and emission spectra of 1-4 (5 \(\mu \)M) in PBS solution (pH=7.4). The excitation wavelength of the emission spectra was 405 nm.

Fig. S21. The UV-vis spectra and emission spectra of 1-4 (5 \(\mu \)M) in PBS solution before and after laser irradiation for 1 h (465 nm, 6.5 mW/cm\(^2\)). The excitation wavelength of the emission spectra was 405 nm.
Fig. S22. The UV-vis spectra of 1-4 (5 μM) in PBS solution for 48 h at room temperature.

Fig. S23. The UV-vis spectra of 1-4 (5 μM) in cell culture medium (DMEM) for 48 h at room temperature.
Fig. S24. Change of the phosphorescence spectra of 5 μM 1-4 in PBS solution with varying pH values from 3.0 to 12.1.

Fig. S25. Linear fitting was used in titration jump discontinuity region of luminescence titration curve in Fig. 2 and the acid/base transition widths were calculated.
Fig. S26. The phosphorescence emission spectra and photographs of 1-4 with varying pH values from 5.8 to 7.9 ($\lambda_{ex} = 405$ nm).
Fig. S27. The pH reversibility of the phosphorescence intensity of 1-4 between pH 5.0 and 9.0 in PBS solution.

Fig. S28. The emission intensities of 1-4 (5 μM) in the presence of 50 μM amino acids or 1 equiv. DNA and RNA. 1-control, 2-Ala, 3-Arg, 4-Asn, 5-Cys, 6-Gln, 7-Glu, 8-Gly, 9-GSH, 10-GSSH, 11-His, 12-Ile, 13-Leu, 14-Lys, 15-Met, 16-Phe, 17-Pro, 18-Ser, 19-Thr, 20-Trp, 21-Tyr, 22-Val, 23-RNA, 24-DNA.
Fig. S29. The emission intensities of 1-4 in the presence of 50 μM ions. 1-control, 2-Ca$^{2+}$, 3-Co$^{2+}$, 4-Cu$^{2+}$, 5-Fe$^{3+}$, 6-K$^+$, 7-Li$^{2+}$, 8-Mg$^{2+}$, 9-Mn$^{2+}$, 10-Cl$^-$, 11-SO$_4^{2-}$, 12-Br$^-$, 13-NO$_3^-$.

Fig. S30. The schematic isomers of 1 and 2 and their respective relative free energies (in kcal/mol).
Fig. S31. The iridium concentrations were determined in mitochondria of Hep-G2 cells with exposure to 1-4 (5 μM) for 1 h by ICP-MS.

Fig. S32. (a-d) EPR signals of $^1\text{O}_2$ trapped by TEMP with producing by 1-4 in the dark or upon light irradiation. (e-h) EPR signals of $^\cdot\text{O}_2$ or $^\cdot\text{OH}$ trapped by DMPO with producing by 1-4 in the dark or upon light irradiation. Black lines represent dark and color lines represent 465 nm light irradiation for 5 min.
Fig. S33. Measurement of $^{1}\text{O}_2$ quantum yields. Changes in absorbance of RNO at 440 nm against irradiation time in the presence of Ru(bpy)$_3^{2+}$ or 1-4 in histidine-PBS solution. The irradiation time interval was 5 min. The light source was a 465 nm LED-lamp (6.5 mW/cm2).

Fig. S34. (a) Confocal microscopy imaging of the Hep-G2 cells colabeled with 5 µM 1-4 for 1 h and singlet oxygen sensor green (SOSG, 5 µM, 30 min) in the absence or presence of NaN$_3$ (5 mM, 1 h) in the dark and under light irradiation for 5 min at 465nm. The power of LED-lamp was 6.5 mW/cm2. (b) Normalized emission intensity of SOSG after light irradiation for 5 min from (a). The normalized intensity was collected from average per-cell intensity. $\lambda_{ex} = 488$ nm, $\lambda_{em} = 525 \pm 30$ nm. Scale bar: 40 µm.
Fig. S35. The normalized emission intensity in Hep-G2 cells of 1-4 after irradiation according to Fig. 6.

Fig. S36. Confocal microscopy images of Hep-G2 cells incubated with JC-1 (100 nM, 30 min) in the presence or absence of CCCP (10 μM, 20 min), then the cells were located in the dark or upon light irradiation, respectively. The lighting group was irradiated under 465 nm light (6.5 mW/cm², 30 min). JC-1 aggregates (red channel): $\lambda_{\text{ex}} = 514$ nm, $\lambda_{\text{em}} = 595 \pm 20$ nm; JC-1 monomers (green channel): $\lambda_{\text{ex}} = 488$ nm, $\lambda_{\text{em}} = 530 \pm 20$ nm.
Fig. S37. The enlarged images of irradiation treatment in Fig. 7.
Table S1. Blue shifts of the complexes at various pH values from pH 6.0 to pH 8.0.

<table>
<thead>
<tr>
<th>Complexes</th>
<th>pH 6.0</th>
<th>pH 7.0</th>
<th>pH 8.0</th>
<th>ΔW_1</th>
<th>ΔW_2</th>
<th>ΔW_1/ΔW_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>557.0</td>
<td>537.6</td>
<td>515.6</td>
<td>19.4</td>
<td>22.0</td>
<td>~0.9</td>
</tr>
<tr>
<td>2</td>
<td>551.0</td>
<td>516.2</td>
<td>510.4</td>
<td>34.8</td>
<td>5.8</td>
<td>~6.0</td>
</tr>
<tr>
<td>3</td>
<td>574.8</td>
<td>575.2</td>
<td>575.4</td>
<td>0.4</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>570.6</td>
<td>570.2</td>
<td>569.6</td>
<td>0.4</td>
<td>0.6</td>
<td>~0.7</td>
</tr>
</tbody>
</table>

*The maximum emission intensity at the pH value. ΔW_1 = W_pH 7.0 - W_pH 6.0; ΔW_2 = W_pH 8.0 - W_pH 7.0.

Table S2. The phosphorescence quantum yields of 1-4 at different pH values.

<table>
<thead>
<tr>
<th>Complexes</th>
<th>pH 4.0</th>
<th>pH 5.0</th>
<th>pH 6.0</th>
<th>pH 7.0</th>
<th>pH 8.0</th>
<th>pH 9.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0081</td>
<td>0.0071</td>
<td>0.0073</td>
<td>0.0098</td>
<td>0.0138</td>
<td>0.0229</td>
</tr>
<tr>
<td>2</td>
<td>0.0016</td>
<td>0.0025</td>
<td>0.0032</td>
<td>0.0075</td>
<td>0.0119</td>
<td>0.0324</td>
</tr>
<tr>
<td>3</td>
<td>0.0020</td>
<td>0.0034</td>
<td>0.0036</td>
<td>0.0042</td>
<td>0.0057</td>
<td>0.0064</td>
</tr>
<tr>
<td>4</td>
<td>0.0020</td>
<td>0.0021</td>
<td>0.0022</td>
<td>0.0027</td>
<td>0.0030</td>
<td>0.0092</td>
</tr>
</tbody>
</table>

Table S3. Determination of the 1O_2 quantum yields.

<table>
<thead>
<tr>
<th>Complexes</th>
<th>Φ(1O_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ru(bpy)_3]^{2+}</td>
<td>0.22</td>
</tr>
<tr>
<td>1</td>
<td>0.29</td>
</tr>
<tr>
<td>2</td>
<td>0.32</td>
</tr>
<tr>
<td>3</td>
<td>0.44</td>
</tr>
<tr>
<td>4</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Table S4. The dark cytotoxicity and phototoxicity (IC_{50}, μM) of the complexes towards Hep-G2 cell line upon different irradiation time.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Dark</th>
<th>Light 10 min (PI)</th>
<th>Light 20 min (PI)</th>
<th>Light 40 min (PI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>100</td>
<td>48.76 (>2.1)</td>
<td>48.95 (>2.0)</td>
<td>35.26 (>2.84)</td>
</tr>
<tr>
<td>2</td>
<td>>100</td>
<td>3.56 (>28.1)</td>
<td>2.91 (>34.4)</td>
<td>2.76 (>36.2)</td>
</tr>
<tr>
<td>3</td>
<td>>100</td>
<td>0.55 (>182)</td>
<td>0.54 (>185.2)</td>
<td>0.27 (>370.4)</td>
</tr>
<tr>
<td>4</td>
<td>99.72±0.78</td>
<td>0.25 (398.9)</td>
<td>0.13 (767.1)</td>
<td>0.072 (1385)</td>
</tr>
<tr>
<td>cisplatin</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
</tbody>
</table>

The cells incubated with the compounds for 1 h, medium replaced with fresh non-drug medium in both 'dark' and 'light' plates. The ‘light’ plates were irradiated with blue LED (465 nm, 6.5 mW/cm²) for different irradiation time. PI = IC_{50}(dark)/IC_{50}(light).
Table S5. The dark cytotoxicity and phototoxicity (IC₅₀, μM) of the complexes towards human normal lung (MRC-5) and liver (LO2) cell lines.

<table>
<thead>
<tr>
<th>Complexes</th>
<th>MRC-5</th>
<th>LO2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Light</td>
<td>Dark</td>
</tr>
<tr>
<td>1</td>
<td>36.23±0.83</td>
<td>87.67±1.01</td>
</tr>
<tr>
<td>2</td>
<td>4.65±0.11</td>
<td>70.24±1.14</td>
</tr>
<tr>
<td>3</td>
<td>0.12±0.03</td>
<td>>100</td>
</tr>
<tr>
<td>4</td>
<td>0.07±0.02</td>
<td>>100</td>
</tr>
<tr>
<td>cisplatin</td>
<td>>100</td>
<td>>100</td>
</tr>
</tbody>
</table>

The cells incubated with the compounds for 1 h, medium replaced with fresh non-drug medium in both ‘dark’ and ‘light’ plates, ‘light’ plate irradiated with blue (465 nm, 6.5 mW/cm², 1 h). All plates incubated for another 46 h. Data are presented as the means ± standard deviations.