Supporting Information

Can Lina, Pengyan Wanga, Huihui Jina, Jiahuan Zhaoa, Ding Chena, Suli Liub, *, Chengtian Zhanga, Shichun Mua, *

aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

bKey Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China

*Corresponding author: E-mail: msc@whut.edu.cn, niuniu_410@126.com
Materials: Cobalt chloride hexahydrate (CoCl$_2$·6H$_2$O, Aladdin), Iron (III) nitrate nonahydrate (Fe(NO$_3$)$_3$·9H$_2$O, Aladdin), 2-methylimidazole (C$_4$H$_6$N$_2$, Aladdin), sodium hypophosphite (NaH$_2$PO$_2$·H$_2$O, Aladdin), ethanol (Aladdin), Nafion (Sigma-Aldrich), IrO$_2$ (Sigma-Aldrich). All reagents are purchased from commercial companies without further treatment. Deionized water acts as solvent in the experiment.

Electrochemical Measurements: OER and HER tests were carried out at room temperature with an electrochemical workstation (CHI660E, Shanghai, China) with a standard three-electrode system. Comprising a graphite rod as the counter electrode, a saturated Hg/HgO as the reference electrode, and Ni foam coated with catalyst as working electrode. To prepare the working electrode, the as-prepared electrocatalyst (5 mg) and Nafion (20 µL, 5 wt%) were scattered in 980 µL isopropanol-water solution (volume ratio of isopropanol to water is 9:1) and then mixture was ultrasonicated for 1 h to form homogeneous ink. The well-mixed ink was used to coat and cover Ni foam surface to achieve a mass loading of 3 mg cm$^{-2}$. For comparison, IrO$_2$ ink was prepared by the same method. Ni foam substrate was thoroughly cleaned with 0.5 M H$_2$SO$_4$ (15 min), absolute ethanol (20 min) and finally rinsed with deionized water (20 min) in an ultrasound bath. Polarization curves were obtained at room temperature with a scan rate of 5 mV s$^{-1}$ in 1.0 M KOH. All potentials were transformed to the reversible hydrogen electrode (RHE) by following the equation: $E_{\text{RHE}} = E_{\text{Hg/HgO}} + 0.059pH + 0.098V$. The overpotential ($\eta$) of OER was calculated by the formula (η (V) = $E_{\text{RHE}} - 1.23$ V) and the overpotential (η) of HER was calculated by the following formula (η (V) = - E_{RHE}). The obtained polarization curves were iR-compensated. Tafel plots were
fitted according to the formula ($\eta = \log j + a$), where η is the overpotential, j represents the current density, a and b represent constant and Tafel slope, respectively.

Electrochemical impedance spectroscopy (EIS) was performed at open circuit potential with the frequency range of 10^{-1} Hz to 10^5 Hz. The double layer capacitance (C_{dl}) was determined by cyclic voltammetry curves measured by scan rates of 80, 100, 120, 140 and 160 mV s$^{-1}$.
Figure S1. SEM image of Fe$_{0.27}$Co$_{0.73}$ precursor
Figure S2. SEM images of Fe$_{0.27}$Co$_{0.73}$ precursor that was calcined in nitrogen without adding phosphorus source.
Figure S3. XRD patterns of ZIF-67 and Fe$_{0.27}$Co$_{0.73}$ precursor
Figure S4. XRD patterns of Fe$_{0.22}$Co$_{0.78}$P, Fe$_{0.44}$Co$_{0.56}$P, CoP.
Figure S5. XRD patterns for a slow scan of 1 degree per minute for a specific diffraction angle including CoP, Fe$_{0.22}$Co$_{0.78}$P and Fe$_{0.44}$Co$_{0.56}$P.
Figure S6. Low-resolution TEM image of Fe$_{0.27}$Co$_{0.73}$P
Figure S7. (a) N$_2$ adsorption-desorption isotherms and (b) pore size distributions of Fe$_{0.27}$Co$_{0.73}$P.
Figure S8. XPS spectrum of Fe$_{0.27}$Co$_{0.73}$P and Fe$_{0.22}$Co$_{0.78}$P in Fe 2p region.
Figure S9. Multi-step current curve for Fe$_{0.27}$Co$_{0.73}$P/NF without iR correction.
Figure S10. Polarization curves of $\text{Fe}_{0.27}\text{Co}_{0.73}\text{P/NF}$, $\text{Fe}_{0.22}\text{Co}_{0.78}\text{P/NF}$ and $\text{Fe}_{0.44}\text{Co}_{0.56}\text{P/NF}$.
Figure S11. Tafel slopes of Fe$_{0.27}$Co$_{0.73}$P/NF, Fe$_{0.22}$Co$_{0.78}$P/NF and Fe$_{0.44}$Co$_{0.56}$P/NF.
Figure S12. Polarization curves of Fe$_{0.27}$Co$_{0.73}$P/NF, Fe$_{0.22}$Co$_{0.78}$P/NF and Fe$_{0.44}$Co$_{0.56}$P/NF.
Figure S13. Tafel slopes of Fe$_{0.27}$Co$_{0.73}$P/NF, Fe$_{0.22}$Co$_{0.78}$P/NF and Fe$_{0.44}$Co$_{0.56}$P/NF.
Figure S14. Polarization curves for Fe$_{0.27}$Co$_{0.73}$P/NF initial and after 3000 CV cycles.
Figure S15. XPS spectrum of Fe$_{0.27}$Co$_{0.73}$P before and after OER test in Co 2p region and Fe 2p region.
Figure S16. CVs of (a) CoP/NF and (c) Fe\textsubscript{0.27}Co\textsubscript{0.73}P/NF and corresponding current densities of (b) CoP/NF and (d) Fe\textsubscript{0.27}Co\textsubscript{0.73}P/NF plotted as a function of scan rate.
Figure S17. CVs of (a) Fe$_{0.22}$Co$_{0.78}$P/NF and (c) Fe$_{0.44}$Co$_{0.56}$P/NF and corresponding current densities of (b) Fe$_{0.22}$Co$_{0.78}$P/NF and (d) Fe$_{0.44}$Co$_{0.56}$P/NF plotted as a function of scan rate.
Figure S18. EIS spectra of Fe$_{0.27}$Co$_{0.73}$P/NF, Fe$_{0.22}$Co$_{0.78}$P/NF, CoP/NF and Fe$_{0.44}$Co$_{0.56}$P/NF.
Table S1. Comparison of OER performance in 1.0 M KOH for Fe$_{0.27}$Co$_{0.73}$P /NF with other recently reported representative OER electrocatalysts in alkaline solution.

<table>
<thead>
<tr>
<th>Electrocatalsys</th>
<th>Current density (mA cm$^{-2}$)</th>
<th>Overpotential (mV)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe${0.27}$Co${0.73}$P/NF</td>
<td>10</td>
<td>251</td>
<td>This work</td>
</tr>
<tr>
<td>NiCo LDH</td>
<td>20</td>
<td>393</td>
<td>Nano Lett. 2015, 15, 1421.</td>
</tr>
<tr>
<td>Ni${1.85}$Fe${0.15}$P NSAs/NF</td>
<td>20</td>
<td>270</td>
<td>ACS Appl. Mater. Interfaces 2017, 9, 26001.</td>
</tr>
<tr>
<td>Ni$_3$N/NF</td>
<td>20</td>
<td>399</td>
<td>J. Mater. Chem. 2015, 3, 8171.</td>
</tr>
</tbody>
</table>
Video S1. Video of Fe$_{0.27}$Co$_{0.73}$P/NF electrodes electrolyze water in electrolyzed water reaction tank containing 1.0 M KOH alkaline solution.
Video S2. Video demonstration uses a drainage method to collect hydrogen and oxygen for characterizing the Fe$_{0.27}$Co$_{0.73}$P Faradaic efficiency.