Two rare-earth-based quaternary chalcogenides EuCdGeQ₄ (Q = S, Se) with strong second-harmonic generation

Wenhao Xing,^[abc] Naizheng Wang,^[bc] Yangwu Guo,^[bc] Zhuang Li,^[bc] Jian Tang,^[ad] Kaijin Kang,^[ad] Wenlong Yin,^{*[ac]} Zheshuai Lin,^[b] Jiyong Yao,^[b] and Bin Kang^[ae]

^a Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang

621900, People's Republic of China

* E-mail: <u>wlyin@caep.cn</u>

^b China Center for Crystal Research and Development, Key Laboratory of Functional

Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese

Academy of Sciences, Beijing 100190, People's Republic of China, China.

^c University of Chinese Academy of Sciences, Beijing 100190, People's Republic of

China.

^d Physics and Space Science College, China West Normal University, Nanchong 637002,

People's Republic of China.

^e Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China.

Number elements	1 (mol%)	2(mol%)	3 (mol%)	4 (mol%)	5 (mol%)	6 (mol%)
Eu	14.50	14.44	14.20	13.78	14.72	13.83
Cd	14.27	14.15	14.50	14.30	14.72	14.59
Ge	15.06	15.06	15.25	17.34	13.72	14.39
S	56.17	56.36	56.05	54.58	56.85	57.19

Figure S1. The EDX analysis of EuCdGeS₄.

Figure S2. The EDX analysis of EuCdGeSe₄.

Figure S3. The calculated band structure and the density of states (DOS) of $EuCdGeS_4$

Figure S4. The calculated band structure and the density of states (DOS) of EuCdGeSe₄.

Synthesis of EuQ (Q = S, Se)

The binary materials EuQ (Q = S, Se) were synthesized by stoichiometric reactions of the elements within the sealed silica tubes. In the preparation of EuQ (Q = S, Se), the fused-silica tubes were carbon-coated to avoid deleterious reactions with elemental Eu. The tubes were heated to 1273 K for EuS and 1223 K EuSe in 10 h, maintained the temperature for 48 h, and cooling down to room temperature by shuting off the furnace. In order to enhance the crystallinity and purity, regrinding and a repeated heat treatment were necessary for the samples. Eventually, dark powder of EuS and dark red powder of EuSe were obtained. They showed high crystallinity and purity according to the PXRD patterns, which agreed well with patterns simulated from the reported single-crystal structure. [1]

Figure S5. Powder XRD patterns of EuQ (Q = S, Se).

EuCdGeS ₄	Eu	Cd	Ge	S 1	S2	S3
BVS	2.01	1.96	3.97	1.87	2.071	1.933
EuCdGeSe ₄	Eu	Cd	Ge	Se1	Se2	Se3
BVS	1.78	1.91	3.90	1.86	2.26	2.11

 $\label{eq:table_state} \textbf{Table S1.} \quad \text{Bond valence sums for } EuCdGeS_4 \text{ and } EuCdGeSe_4.$

Materials	Space Group	Eg (eV)	SHG (×AgGaS ₂)	Phase- matching	congruent-melting	Ref.
BaZnSiSe ₄	Ama2	2.71	1/3@41-74um	-	-	[2]
BaZnGeSe ₄	Ama2	2.46	1	yes	-	[2]
BaCdSnS ₄	Fdd2	2.30	0.7	no	-	[3]
BaCdSnSe ₄	Fdd2	1.79	1.6	no	-	[4]
SrCdGeS ₄	Ama2	2.6	1.7	yes	987/946	[5]
SrCdGeSe ₄	Ama2	1.9	5.3	yes	885/833	[5]
SrZnSnS ₄	Fdd2	3.37	1×LiGaS2	yes	No	[6]
SrCdSnS ₄	Fdd2	2.05	1.3	yes	889/790	[7]
SrCdSnSe ₄	Fdd2	1.54	1.5	yes	786/688	[7]
BaHgGeSe ₄	Ama2	2.49	4.7	yes	732/589	[8]
SrHgGeSe ₄	Ama2	2.42	4.8	yes	745/684	[8]
β-BaHgSnS ₄	Ama2	2.77	2.8	yes	no	[9]
SrHgSnS ₄	Ama2	2.72	1.9	yes	no	[9]
BaHgSnSe ₄	Fdd2	1.98	5.1	yes	712/675	[9]
SrHgSnSe ₄	Fdd2	2.07	4.9	yes	no	[9]
BaMnSnS ₄	Fdd2	1.9	1.2	yes	829/636	[10]
BaCdGeS ₄	Fdd2	2.58	0.3	yes	921/677	[10]
EuCdGeS ₄	Ama2	2.5	2.6	yes	997/864	This work
EuCdGeSe ₄	Ama2	2.25	3.8	yes	882/723	This work

Table S4.Space groups and optical performances of $A^{II}M^{II}M^{IV}Q_4$ (A^{II} = alkaline-earthmetal; M^{II} = Zn, Cd, Hg, Mn; MIV = Si, Ge, Sn; Q = S, Se).

"-" means no data available.

EuCc	lGeS ₄	EuCdGeS ₄		
Bonds	Length / Å	Bonds	Length / Å	
Eu–S1 (×2)	3.1530	Eu–Se1 (×2)	3.2114	
Eu–S1 (×2)	3.1314	Eu–Se2 (\times 2)	3.2643	
Eu–S2 (×2)	3.0106	Eu–Se2 (×2)	3.2605	
Eu–S3 (×2)	3.1051	Eu–Se3 (×2)	3.1405	
Ge–S1 (×2)	2.2250	Ge–Se1	2.328	
Ge–S2	2.240	Ge–S2 (×2)	2.3657	
Ge–S3	2.191	Ge–Se3	2.379	
Cd–S1 (×2)	2.5951	Cd–Se1	2.789	
Cd–S2	2.449	$Cd-Se2 (\times 2)$	2.6906	
Cd–S3	2.670	Cd–S3	2.5627	

Table S3. Bond lengths for $EuCdGeS_4$ and $EuCdGeSe_4$.

EuCdGeS ₄							
Bonds Angle /		Bonds	Angle /				
S1—Eu—S1 ⁱ	70.424	S3 ^{iv} —Eu—S1 ⁱⁱⁱ	79.64				
S1—Eu—S1 ⁱⁱⁱ	146.82	S3 ^v —Eu—S1	87.84				
S1 ⁱⁱ —Eu—S1	103.38	S3 ^{iv} —Eu—S1	33.43				
S2—Eu—S1 ⁱ	131.74	S3 ^{iv} —Eu—S3 ^v	116.78				
S2 ⁱⁱ —Eu—S3 ^v	148.86	S1 ⁱⁱⁱ —Ge—S1 ^{vii}	105.02				
S2—Eu—S2 ⁱⁱ	131.44	S1 ^{vii} —Ge—S2	105.84				
S2—Eu—S1 ⁱⁱⁱ	70.56	S3—Ge—S1 ⁱⁱⁱ	117.12				
S2—Eu—S1 ⁱⁱ	74.07	S3—Ge—S2	104.85				
S2—Eu—S3 ^v	64.86	S1x—Cd—S1ix	85.74				
S1 ⁱ —Eu—S1 ⁱⁱⁱ	132.24	S1 ^{ix} —Cd—S3 ^{xi}	93.85				
S2 ⁱⁱ —Eu—S1 ⁱⁱ	76.38	S2—Cd—S1 ^x	135.12				
S3 ^{iv} —Eu—S1 ⁱ	75.85	S2—Cd—S3 ^{xi}	99.54				
Symmetry codes: (i) $-x$,	-y-1/2, z-1/2; (ii) -x, -y,	<i>z</i> ; (iii) <i>x</i> , <i>y</i> +1/2, <i>z</i> -1/2; (i	(v) -x, $-y+1/2$, $z-1/2$;				
(v) x, y-1/2, z-1/2; (vi) x, y, z-1; (vii) -x+1/2, y+1/2, 100 z-1/2; (viii) x, y,							
z+1; (ix) $x, y+1/2, z+1/2$; (x) $-x+1/2, y+1/2, z+1/2$; (xi) $x, y-1/2, z+1/2$; (xii)							
x+1/2, -y, z; (xiii) $x+1/2, -y+1/2, z+1/2.$							
EuCdGeSe ₄							
Bollus	Angle /	Bollus	Angle /				
Seli—Eu—Sel	119.31	Se3—Eu—Se2	74.24				
Sel—Eu—Se2	86.84	Se31—Eu—Se2111	72.48				
Sel—Eu—Se2111	76.73	Se31—Eu—Se21	74.25				
Seli—Eu—Se2i	86.84	Se3—Eu—Se3i	130.13				
Se1i—Eu—Se2iii	79.33	Se1—Ge—Se2v	117.03				
Se1—Eu—Se2i	132.37	Se1—Ge—Se2iv	117.03				
Se2iii—Eu—Se2ii	131.53	Se1—Ge—Se3ii	104.41				
Se2—Eu—Se2iii	148.17	Se2iv—Ge—Se2v	105.46				
Se2—Eu—Se2ii	69.711	Se2v—Ge—Se3ii	105.94				
Se2i—Eu—Se2	104.46	Se2iii—Cd—Se1	94.35				
Se3—Eu—Se1	150.06	Se2xii—Cd—Se2iii	88.80				
Se3i—Eu—Se1	63.85	Se3xiii—Cd—Se1	98.69				
Se3—Eu—Se2iii	130.32	Se3xiii—Cd—Se2iii	133.69				
Se3i—Eu—Se2	75.83						
Symmetry codes: (i) $-x+1$, $-y$, z ; (ii) $-x+1$, $-y+1/2$, $z-1/2$; (iii) x , $y-1/2$, $z-1/2$; (iv) x , y , $z-1$; (v) $-x+3/2$, y , $z-1$; (vi) $x+1/2$, $-y$, z ; (vii) x , $y+1/2$, $z+1/2$; (viii) x , y , $z+1$; (ix) $x-1/2$, $-y$, z ; (x) $-x+1$, $-y+1/2$, $z+1/2$; (xi) $-x+1$, $-y$, $z+1$; (xii) $-x+3/2$, $y-1/2$, $z-1/2$; (xiii) $-x+1$, $-y$, $z-1$.							

Table S4. Selected bond angles for $EuCdGeS_4$ and $EuCdGeSe_4$.

Reference

- 1. K.G. Subhadra, B. R. Rao, D.B. Sirdeshmukh, Pramana J. Phys. 1992, 38, 681-683.
- 2. W. Yin, A. K. Iyer, C. Li, J. Yao, A. Mar, J. Alloys Compd., 2017, 708, 414-421.
- N. Zhen, K. Wu, Y. Wang, Q. Li, W. Gao, D. Hou, Z. Yang, H. Jiang, Y. Dong, S. Pan, *Dalton Trans.*, 2016, 45, 10681-10688.
- 4. K. Wu, X. Su, Z. Yang, S. Pan, Dalton Trans., 2015, 44 () 19856-19864.
- 5. Y. Dou, Y. Chen, Z. Li, A.K. Iyer, B. Kang, W. Yin, J. Yao, A. Mar, *Cryst. Growth Des.*, 2019, 19, 1206-1214.
- Y. Zhang, D. Mei, Y. Yang, W. Cao, Y. Wu, J. Lu, Z. Lin, J. Mater. Chem. C, 2019, 7, 8556-8561.
- 7. Y.-J. Lin, B.-W. Liu, R. Ye, X.-M. Jiang, L.-Q. Yang, H.-Y. Zeng, G.-C. Guo, J. Mater. Chem. C, 2019, 7, 4459-4465.
- 8. Y. Guo, F. Liang, W. Yin, Z. Li, X. Luo, Z.-S. Lin, J. Yao, A. Mar, Y. Wu, *Chem. Mater.*, 2019, 31, 3034-3040.
- Y. Guo, F. Liang, Z. Li, W. Xing, Z. Lin, J. Yao, A. Mar, Y. Wu, *Inorg. Chem.*, 2019, 58, 10390-10398.
- 10. Y. Lin, R. Ye, L. Yang, X. Jiang, B. Liu, H. Zeng, G. Guo, *Inorg. Chem. Front.*, 2019, DOI: 10.1039/C9QI00727J.G.