Supporting Information for

Cerium-Carbon Dative Interactions Supported by Carbodiphosphorane

Wei Su,^a Sudip Pan,^b Xiong Sun,^a Lili Zhao,^{*b} Gernot Frenking,^{*b,c,d} and Congqing Zhu^{*a}

^a State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

^b Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China

^c Fachbereich Chemie, Philipps-Universit ät Marburg, Hans-Meerwein-Straße 4, Marburg 35032, Germany

^d Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain.

* Correspondence and requests for materials should be addressed to C.Z. (zcq@nju.edu.cn) or to L.Z. (ias_llzhao@njtech.edu.cn) or to G.F. (frenking@chemie.uni-marburg.de).

Contents

1.	Experimental Section	S2
2.	NMR Spectra	S7
3.	X-ray Crystallography	S10
4.	Computational Details and Supplementary Data	S13
5.	References	S34

1. Experimental section

General procedures: Synthesis of cerium complexes was carried out in a glove-box (SG1800/750TS-F, VIGOR) under an N₂ atmosphere with O₂ and H₂O content both less than 1 ppm. The solvents were obtained by passing through a Solv Purer G5 (MIKROUNA) solvent purification system and further dried over 4 Å molecular sieves. C_6D_6 was distilled over Na and benzophenone and stored under N₂ prior to use. Deuterated dichloromethane (DCM-d₂) was distilled from CaH₂ and stored under an N₂ atmosphere prior to use. Other reagents were used as received without further purification. The nuclear magnetic resonance spectra were recorded at room temperature (RT) on a Bruker AVIII-400 (¹H 400.1 MHz; ³¹P{¹H} 162.0 MHz) spectrometer. ¹H NMR chemical shifts are referred to an internal standard, tetramethylsilane, and ³¹P{¹H} NMR chemical shifts are relative to 85% H₃PO₄. Elemental analysis (C, H, N) was performed on a Vario EL III elemental analyser at the Shanghai Institute of Organic Chemistry, the Chinese Academy of Sciences. FT-IR was performed with a Bio-Rad FTS-185 spectrometer. Compound [H₂1](PF₆)₂ was synthesized as previously reported.¹

Synthesis of ligand 1.

A solution of NaHMDS in THF (2 M, 3 mL) was added dropwise to an off-white suspension of [H₂1](PF₆)₂ (3 mmol, 2.49 g) in THF (15 mL), producing a dark brown solution which was then stirred at RT for 2 h. Subsequently, it was concentrated to *ca*. 5 mL and stored overnight at -30 °C. The yellow solid was collected by decanting the mother liquid and then was washed with cold THF (1 mL × 3), and dried in *vacuo*. Yield: 1.10 g, 68%. ¹H NMR (400 MHz, Benzene-d₆, 298 K) δ 8.70 (dt, *J* = 7.2, 3.3 Hz, 2H, Py), 8.35 (d, *J* = 4.0 Hz, 2H, Py), 8.07 (m, 8H, Ph), 7.11 – 6.93 (m, 14H, Py+Ph), 6.50 (dd, *J* = 7.8, 4.8, 2H, Py). ¹³C{¹H} NMR (101 MHz, Benzene-d₆, 298 K): δ 148.7 (t, *J* = 9.1Hz), 134.6 (t, *J* = 4.0 Hz), 132.6 (t, *J* = 5.1 Hz), 129.0 (s), 128.4 (t, *J* = 11.1 Hz), 127.3 (t, *J* = 6.1 Hz), 122.6 (s). ³¹P{¹H} NMR (162 MHz, Benzene-d₆, 298 K) δ -5.1 (s).

Synthesis of complex 2

THF (20 mL) was added to a mixture of 1 (0.5 mmol, 270 mg) and CeBr₃ (0.5 mmol,

190 mg). The yellow suspension was stirred at RT for 5 h. It was then filtered and the yellow residue on Celite was thoroughly washed with THF (5 mL × 3). Subsequently, the yellow residue was dissolved in DCM to give a yellow solution. The filtrate was dried in *vacuo*, affording the desired product as yellow powder. Crystals suitable for X-ray analysis were obtained by diffusion of Et₂O into a saturated DCM solution of **2**. Yield: 470 mg, 95%. ¹H NMR (400 MHz, DCM-d₂, 298 K): δ 10.65, 8.32, 7.91, 7.76, 6.46, 4.06, 3.19, 2.11, -10.71 ppm. ³¹P{¹H} NMR (162 MHz, DCM-d₂, 298 K): -10.2 ppm. Anal. calcd. for **2** CH₂Cl₂ (C₄₀H₃₈Br₃Cl₂CeN₂OP₂): C, 44.67; H, 3.56; N, 2.60. Found: C, 45.09; H, 3.60; N, 2.53. FT-IR v/cm⁻¹ (Nujol): 1622 (w), 1571 (w), 1439 (s), 1214 (w), 1105 (m), 988 (m), 744 (m), 729 (m), 716 (m), 690 (m), 560 (m), 528 (m), 498 (m).

Synthesis of complex 3.

A suspension of **1** (0.5 mmol, 270 mg), CeBr₃ (0.25 mmol, 95 mg) and NaBPh₄ (0.5 mmol, 171 mg) in THF was stirred at RT for 8 h. The resulting suspension was then filtered and the yellow residue over Celite was thoroughly washed with THF (5 ml \times 3). Subsequently, the yellow residue was dissolved in DCM to give a yellow-orange solution. The filtrate was dried *in vacuo*, affording the desired product as a yellow-orange powder. Orange crystals suitable for X-ray analysis were obtained by

slow evaporation of Et₂O into a saturated solution of **3** in DCM. Yield: 321 mg, 66%.

Alternatively, **3** could be prepared stepwise. A suspension of **2** (0.5 mol, 495 mg) and NaBPh₄ (1 mmol, 342 mg) in THF (5 mL) was stirred at 50 °C for 30 min, when the solution became yellow. Compound **1** (0.5 mmol, 270 mg) in THF (5 mL) was then added and the mixture was stirred at 50 °C for a further 12 h, affording a yellow suspension. Work-up was the same as in the previous method. Yield: 730 mg, 78%. Once obtained in its crystalline form, redissolvation of complex **3** with polar solvent (DCM, pyridine, *etc.*) would lead to its complete decomposition. The low stability of complex **3** in solution prevented reliable characterizations, but the isolation of **3** was repeated three times and the products' solid structures were identical. Anal. Calcd. for **3** CH₂Cl₂ (C₁₁₉H₉₈B₂BrCl₂CeN₄P₄): C, 70.74; H, 4.89; N, 2.77. Found: C, 70.71; H, 4.97; N, 2.69. FT-IR v/cm⁻¹ (Nujol): 1715 (w), 1578 (m), 1437 (s), 1425 (s), 1311 (w), 1266 (w), 1211 (w), 1152 (m), 1136 (m), 1122 (m), 1104 (m), 1069 (w), 1048 (w), 1031 (w), 989 (m), 844 (w), 805 (w), 769 (w), 733 (s), 705 (s), 693 (s), 613 (m), 554 (m), 540 (m), 528 (m), 499 (m).

Figure S1. Major resonance structures of complex 2 (a) and the cation of complex 3 (b).

2. NMR spectra

Figure S2. ¹H NMR of complex 1 in C₆D₆.

Figure S3. ${}^{31}P{}^{1}H$ NMR spectra of complex 1 in C₆D₆.

Figure S4. ¹³C{¹H} NMR spectra of complex 1 in C_6D_6 (*, solvent residue peak).

Figure S5. ¹H NMR of complex 2 in DCM-d₂ (*, solvent residue peak).

Figure S6. ${}^{31}P{}^{1}H$ NMR spectra of complex 2 in DCM-d₂(#, protonated 1).

3. X-ray Crystallography

Crystals suitable for X-ray diffraction were obtained by slow evaporation of Et₂O into a saturated solution of complexes **2** and **3** in DCM. The intensity data were collected with a Bruker APEX-II CCD area detector using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) or Ga K α radiation ($\lambda = 0.134139$ Å). Multiscan or empirical absorption corrections (SADABS) were applied. The structures were solved by Patterson methods, expanded by difference Fourier syntheses, and refined by full-matrix least squares on F^2 using the Bruker SHELXTL-2014 program package.² All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were introduced at their geometric positions and refined as riding atoms. The X-ray crystal structures have been deposited in the Cambridge Crystallographic Data Centre (CCDC) and the data can be obtained free of charge from the CCDC (www.ccdc.cam.ac.uk/data_request/cif). Details of the data collection and refinement for complexes **2** and **3** are given in Tables S1 and S2.

CCDC number	1919789
Empirical formula	$C_{41}H_{40}Br_3CeCl_4N_2OP_2$
Formula weight	1160.34
Temperature/K	153
Crystal system	triclinic
Space group	P-1
a/Å	11.4475(6)
b/Å	12.6572(7)
c/Å	16.0775(9)
α/°	77.950(2)
β/°	87.542(2)
γ/°	73.331(2)
Volume/Å ³	2182.1(2)
Z	2
$\rho_{calc}g/cm^3$	1.766
μ/mm ⁻¹	4.143
F(000)	1138.0
Crystal size/mm ³	$0.05 \times 0.04 \times 0.03$
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	4.282 to 49.998
Index ranges	$-13 \le h \le 13, -15 \le k \le 11, -19 \le l \le 18$
Reflections collected	16087
Independent reflections	7648 [$R_{int} = 0.0434, R_{sigma} = 0.0652$]
Data/restraints/parameters	7648/20/497
Goodness-of-fit on F ²	1.045
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0494, wR_2 = 0.1236$
Final R indexes [all data]	$R_1 = 0.0683, wR_2 = 0.1303$
Largest diff. peak/hole / e Å ⁻³	2.34/-1.93

Table S1. Crystal data and structure refinement for $2 \ 2CH_2Cl_2$.

CCDC number	1919790	1919791	1919792		
Empirical formula	C118HocB2BrCeN4P4				
Formula weight	1935.51				
Temperature/K	153	193	193		
Crystal system		monoclinic	I		
Space group		$P2_1/c$			
a/Å	17.1745(11)	17.0971(11)	17.131		
b/Å	29.9779(17)	30.3657(18)	30.502		
c/Å	19.4419(13)	19.5806(13)	19.646		
α/°	90	90	90		
β/°	105.349(2)	104.649(3)	104.62		
$\gamma/^{\circ}$	90	90	90		
Volume/Å ³	9652.7(11)	9835.1(11)	9932.7		
Z	4	4	4		
pcalcg/cm ³	1.332	1.307	1.294		
μ/mm ⁻¹	1.005	3.437	3.307		
F(000)	3980.0	3980.0	3980.0		
Crystal size/mm ³	$0.05 \times 0.04 \times 0.03$	$0.06 \times 0.04 \times 0.03$	$0.2 \times 0.1 \times 0.05$		
Radiation	MoKα ($\lambda = 0.71073$)	GaKa ($\lambda = 1.34139$)	$GaK\alpha (\lambda = 1.34139)$		
2Θ range for data collection/ °	4.39 to 50.054	4.648 to 105.96	4.638 to 108.02		
Index ranges	$-20 \le h \le 20, -35 \le k \le$ 35, -23 $\le 1 \le 20$	$-20 \le h \le 20, -30 \le k \le$ 36, $-23 \le l \le 23$	$-20 \le h \le 20, -36 \le k \le$ 25, $-14 \le 1 \le 23$		
Reflections collected	141612	90872	86025		
Independent	17059 [$R_{int} = 0.1170$, $R_{sizes} = 0.0745$]	17341 [$\mathbf{R}_{int} = 0.0634$, $\mathbf{R}_{ciama} = 0.0423$]	$18140[R_{int} = 0.1390,$ $R_{sigma} = 0.1205$		
Data/restraints/par ameters	17059/0/1171	17341/0/1208	18140/30/1208		
Goodness-of-fit on F ²	1.166	1.052	1.023		
Final R indexes [I>=2σ (I)]	$R_1 = 0.0786, wR_2 = 0.1458$	$R_1 = 0.0464, wR_2 = 0.1156$	$R_1 = 0.0675, wR_2 = 0.1512$		
Final R indexes	$R_1 = 0.1222, wR_2 =$	$R_1 = 0.0542, wR_2 = 0.1107$	$R_1 = 0.1456, wR_2 = 0.1874$		
Largest diff. peak/hole / e Å ⁻³	1.57/-0.85	1.94/-0.89	1.52/-1.05		

 Table S2. Crystal data and structure refinement for 3.

4. Computational Details and Supplementary Data.

Computational details: The geometries of 2 and 3 in their doublet and quartet spin states were fully optimized at the BP86-D3(BJ)/def2-SVP/Stuttgart RSC ECP level^{3,4} where Stuttgart RSC ECP basis set is used for Ce and def2-SVP is used for other elements. Taking the most stable doublet complex for 2, further reoptimization was performed at the BP86-D3(BJ)/def2-TZVPP/Stuttgart RSC ECP level. Harmonic vibrational frequency calculations were also done to learn the nature of the stationary points, the zero-point energy (ZPE) and free energy values. The Stuttgart RSC ECP basis set considers quasi-relativistic effective core potential (ECP) for 28 core electrons. The correction to basis set superposition error (BSSE) is incorporated by using the standard counterpoise (CP) method proposed by Boys and Bernardi.⁵ All these computations were done using the Gaussian 16 program.⁶ The partial charges on each atom of the complexes were computed via natural bond orbital (NBO) analysis using NBO 7.0 program.⁷ Quantum theory of atoms in molecules (QTAIM) analysis performed was with wave functions generated at the BP86-D3(BJ)/def2-TZVPP/x2c-TZVPPall⁸ 2) level (for and BP86-D3(BJ)/def2-SVP/x2c-TZVPPall (for 3) level using the AIMALL program⁹ where all electron x2c-TZVPPall basis set is used for Ce instead of ECP. The EDA-NOCV¹⁰ was carried out using ADF(2017.01) program package¹¹ at the BP86-D3(BJ)/TZ2P-ZORA level¹² where the scalar relativistic effects were considered for Ce using the zeroth-order regular approximation (ZORA).¹³ In EDA, the interaction energy (ΔE_{int}) between two fragments is decomposed into four energy terms, viz., the electrostatic interaction energy (ΔE_{elstat}), the Pauli repulsion (ΔE_{Pauli}), the orbital interaction energy (ΔE_{orb}), and the dispersion interaction energy (ΔE_{disp}), Therefore, the interaction energy (ΔE_{int}) between two fragments can be defined as:

$$\Delta E_{\text{int}} = \Delta E_{\text{elstat}} + \Delta E_{\text{Pauli}} + \Delta E_{\text{orb}} + \Delta E_{\text{disp}}$$
(1).

where ΔE_{elstat} is computed classically by taking the two fragments at their optimized positions but considering the charge distribution is unperturbed on each fragment by other one. The next one is ΔE_{Pauli} , which appears as the repulsive energy between electrons of the same spin and it is computed by employing Kohn-Sham determinant on the superimposed fragments to obey the Pauli principle by antisymmetrization and renormalization. The ΔE_{orb} originates from the mixing of orbitals, charge transfer and polarization between two fragments. Finally, the ΔE_{disp} represents the dispersion interaction between the two fragments.

The EDA-NOCV calculation combines charge and energy decomposition schemes to divide the deformation density, $\Delta \rho(r)$, associated with the bond formation into different components (σ , π , δ) of a chemical bond. From the mathematical point of view, each NOCV, ψ_i is defined as an eigenvector of the deformation density matrix in the basis of fragment orbitals.

$$\Delta P \psi_{i} = v_{i} \psi_{i} \tag{2}.$$

In EDA-NOCV, ΔE_{orb} is given by the following equation

$$\Delta E_{orb} = \sum_{k} \Delta E_{k}^{orb} = \sum_{k=1}^{N/2} v_{k} [-F_{-k}^{TS} + F_{k}^{TS}]$$
(3)

where, $-F_{-k}^{TS}$ and F_{k}^{TS} are diagonal Kohn-Sham matrix elements corresponding to NOCVs with the eigenvalues $-v_{k}$ and v_{k} , respectively. The ΔE_{k}^{orb} terms are assigned to a particular type of bond by visual inspection of the shape of the deformation density, $\Delta \rho_{k}$. The EDA-NOCV scheme thus provides both qualitative ($\Delta \rho_{orb}$) and quantitative (ΔE_{orb}) information about the strength of orbital interactions in chemical bonds. More details about EDA-NOCV can be found in related reviews.¹⁴

Figure S7. The BP86-D3(BJ)/def2-SVP/Stuttgart RSC 1997 ECP geometries of **2** and **3** in doublet and quartet states. The bond distances and angles are in Å and degree, respectively. Relative energies are in kcal mol⁻¹.

HOMO-2 ($\varepsilon_{\alpha/\beta} = -9.61/-9.60$) HOMO-22 ($\varepsilon_{\alpha/\beta} = -11.05/-11.04$) **Figure S8.** The shape and energy of the SOMO and relevant occupied molecular orbitals responsible for Ce-C interactions in **3**. The isosurface value is 0.025 e Å⁻³. Energy eigenvalues are in eV.

Figure S9. The shape of the spin density in 2 and 3. The isosurface value is 0.002 e $Å^{-3}$.

Table S3. The ZPE uncorrected dissociation energy (D_e , kcal/mol), ZPE and BSSE corrected dissociation energy (D_0 , kcal/mol), and free energy change at 298 K for the dissociation process (ΔG^{298} , kcal/mol) of **2** and **3** complexes at the BP86-D3(BJ)/def2-TZVPP/Stuttgart RSC ECP level for **2** and BP86-D3(BJ)/def2-SVP/Stuttgart RSC ECP level for **3**.

Process	De	D_0^{BSSE}	ΔG^{298}
2 (D) \rightarrow CDP (S) + CeBr ₃ (THF) (D)	81.2	75.5	60.6
3 (D) \rightarrow 2CDP (S) + CeBr ²⁺ (D)	420.0	401.3	384.7
3 (D) \rightarrow CDP (S) + (CDP)CeBr ²⁺ (D)	145.1	131.6	126.0
$(CDP)CeBr^{2+}(D) \rightarrow CDP(S) + CeBr^{2+}(D)$	274.9	263.8	258.7
3 (D) $\rightarrow 2$ CDP ⁺ (D) + CeBr (D)	260.5	243.0	225.3
3 (D) \rightarrow CDP ⁺ (D) + (CDP)CeBr ⁺ (T)	105.7	91.3	84.4
$(CDP)CeBr^{+}(T) \rightarrow CDP^{+}(D) + CeBr(D)$	154.7	147.4	140.9

Table S4. EDA-NOCV results for 2 at the BP86-D3(BJ)/TZ2P-ZORA level taking

Energy	y Interaction ^[c]	2
Energy		$CDP(S) + CeBr_3(THF)(D)$
$\Delta E_{ m int}$		-113.8
$\Delta E_{ m Pauli}$		148.7
$\Delta E_{ m disp}^{[a]}$		-35.7 (13.6%)
$\Delta E_{ m elstat}{}^{[a]}$		-131.8 (50.2%)
$\Delta E_{\rm orb}^{[a]}$		-95.0 (36.2%)
$\Delta E_{\text{orb}(1)}^{[b]}$	$CDP(C) \rightarrow CeBr_3(THF)$ $\sigma\text{-donation}$	-29.1 (30.6%)
$\Delta E_{\text{orb}(2)}^{[b]}$	$CDP(N) \rightarrow CeBr_3(THF)$ $\sigma\text{-donation}$	-9.6 (10.1%)
$\Delta E_{\text{orb(3)}}^{[b]}$	$CDP(N) \rightarrow CeBr_3(THF)$ $\sigma\text{-donation}$	-9.0 (9.5%)
$\Delta E_{\text{orb}(4)}^{[b]}$	$CDP(C) \rightarrow CeBr_3(THF)$ π -donation	-8.7 (9.2%)
$\Delta E_{\text{orb(rest)}}$		-38.6 (40.6%)

CDP (S) + CeBr₃(THF) (D) as interacting fragments. Energy values are in kcal mol⁻¹.

^[a]The values in parentheses are the percentage contributions to the total attractive interactions ($\Delta E_{\text{elstat}} + \Delta E_{\text{orb}} + \Delta E_{\text{disp}}$).

^[b]The values in parentheses are the percentage contributions to the total orbital interactions ΔE_{orb} .

^[c]The assignment of (C) and (N) means the donation from C and N centers of CDP units, respectively.

Energy	Interaction ^[c]	3
		$(CDP)_2 (S) + CeBr^{2+}$
		(D)
$\Delta E_{ m int}$		-422.8
$\Delta E_{ ext{Pauli}}$		224.8
$\Delta E_{ m disp}{}^{[a]}$		-44.2 (6.8%)
$\Delta E_{\rm elstat}^{[a]}$		-280.6 (43.3%)
$\Delta E_{\rm orb}^{[a]}$		-322.9 (49.9%)
$\Delta E_{\text{orb}(1)}^{[b]}$	$CDP(C) \rightarrow CeBr \leftarrow CDP(C) \sigma$ -donation (+,+) coupled	-62.6 (19.4%)
	with CDP(C) \rightarrow CeBr \leftarrow CDP(C) π -donation	
$\Delta E_{\text{orb(2)}}^{[b]}$	$CDP(C) \rightarrow CeBr \leftarrow CDP(C) \sigma$ -donation (+,-)	-36.8 (11.4%)
$\Delta E_{\text{orb(3)}}^{[b]}$	$CDP(C) \rightarrow CeBr \leftarrow CDP(C) \pi$ -donation coupled with	-20.7 (6.4%)
	$CDP(N) \rightarrow CeBr \leftarrow CDP(N) \sigma$ -donation	
$\Delta E_{\text{orb}(4)}^{[b]}$	$CDP(C) \rightarrow CeBr \leftarrow CDP(C) \pi$ -donation coupled with	-16.9 (5.2%)
	$CDP(C) \rightarrow CeBr \leftarrow CDP(C) \sigma$ -donation (+,+)	
$\Delta E_{\text{orb(5)}}^{[b]}$	$CDP(N) \rightarrow CeBr \leftarrow CDP(N) \sigma$ -donation coupled with	-18.6 (5.8%)
	polarization in CeBr	
$\Delta E_{\text{orb(6)}}^{[b]}$	$CDP(N) \rightarrow CeBr \leftarrow CDP(N) \sigma$ -donation	-22.3 (6.9%)
$\Delta E_{\text{orb(7)}}^{[b]}$	$CDP(N) \rightarrow CeBr \leftarrow CDP(N) \sigma$ -donation coupled with	-13.7 (4.2%)
	$CDP(C) \rightarrow CeBr \leftarrow CDP(C) \pi$ -donation and	
	polarization in CeBr	
$\Delta E_{\text{orb(8)}}^{[b]}$	$CDP(N) \rightarrow CeBr \leftarrow CDP(N) \sigma$ -donation	-12.9 (4.0%)
$\Delta E_{\text{orb(9)}}^{[b]}$	Polarization in CeBr with slight back-donation to	-12.6 (3.9%)
	$(CDP)_2$	
$\Delta E_{\text{orb(rest)}}$		-105.8 (32.8%)

Table S5. EDA-NOCV results for **3** at the BP86-D3(BJ)/TZ2P-ZORA level taking $(CDP)_2$ (S)+ CeBr²⁺ (D) as interacting fragments. Energy values are in kcal mol⁻¹.

^[a]The values in parentheses are the percentage contributions to the total attractive interactions ($\Delta E_{\text{elstat}} + \Delta E_{\text{orb}} + \Delta E_{\text{disp}}$).

^[b]The values in parentheses are the percentage contributions to the total orbital interactions ΔE_{orb} .

^[c]The assignment of (C) and (N) means the donation from C and N centers of CDP units, respectively.

Energy	3	
	$[(CDP)_2]^{2+}(S) + CeBr(D)$	
$\Delta E_{ m int}$	-371.6	
$\Delta E_{ ext{Pauli}}$	352.2	
$\Delta E_{ m disp}{}^{[a]}$	-44.2 (6.1%)	
$\Delta E_{ m elstat}{}^{[a]}$	-270.1 (37.3%)	
$\Delta E_{ m orb}{}^{[a]}$	-409.5 (56.6%)	

Table S6. EDA-NOCV results for **3** at the BP86-D3(BJ)/TZ2P-ZORA level taking $[(CDP)_2]^{2+}(S) + CeBr(D)$ as interacting fragments. Energy values are in kcal mol⁻¹.

^[a]The values in parentheses are the percentage contributions to the total attractive interactions ($\Delta E_{\text{elstat}} + \Delta E_{\text{orb}} + \Delta E_{\text{disp}}$).

Table S7. The electron density ($\rho(r_c)$, au), Laplacian of electron density ($\nabla^2 \rho(r_c)$, au), kinetic energy density ($G(r_c)$, au), potential energy density kinetic energy density ($V(r_c)$, au), total electronic energy density ($H(r_c)$, au) and ellipticity ($\varepsilon(r_c)$) at the bond critical points of **2**, and **3** at the BP86-D3(BJ)/def2-TZVPP/x2c-TZVPPall// BP86-D3(BJ)/def2-TZVPP/Stuttgart RSC ECP level for **2** and BP86-D3(BJ) /def2-SVP/x2c-TZVPPall//BP86-D3(BJ)/def2-SVP/Stuttgart RSC ECP level for **3**.

Complex	BCP	$\rho(r_{\rm c})$	$\nabla^2 \rho(r_c)$	$G(r_c)$	$V(r_c)$	$H(r_{\rm c})$	$\boldsymbol{\varepsilon}(\boldsymbol{r}_c)$
	Ce-C1	0.057	0.097	0.035	-0.045	-0.010	0.11
2	Ce-N1	0.038	0.096	0.026	-0.029	-0.003	
	Ce-N2	0.036	0.095	0.026	-0.028	-0.002	
3	Ce-C1	0.062	0.095	0.038	-0.052	-0.014	0.19
	Ce-C2	0.062	0.097	0.038	-0.053	-0.015	0.18
	Ce-N1	0.040	0.116	0.029	-0.030	-0.001	
	Ce-N2	0.040	0.117	0.0298	-0.0303	-0.0005	
	Ce-N3	0.041	0.124	0.031	-0.032	-0.001	
	Ce-N4	0.041	0.123	0.031	-0.032	-0.001	

Figure S10. Shape of the deformation densities $\Delta \rho_{(1)-(4)}$ and the shape of the associated orbitals in **2** and eigenvalues $|v_n|$ of the charge flow. The MO energy eigen values are in eV.

Δho	(CDP)2	CeBr ²⁺
$\Delta E_{\rm orb(1)} = -62.6$ $ v_{1\alpha/1\beta} = 0.34/0.35$	HOMO-3 ($\varepsilon = -4.29$) $v_{1\alpha/1\beta} = -0.08/-0.11$ HOMO ($\varepsilon = -3.99$) $v_{1\alpha/1\beta} = -0.10/-0.08$	LUMO+5 (ε = -14.30) $v_{1\alpha/1\beta} = 0.15/0.14$ LUMO+7 (ε = -13.58) $v_{1\alpha/1\beta} = 0.01/0.01$
$\Delta E_{orb(2)} = -36.8$ $ y_{2\alpha/2\beta} = 0.32/0.31$	$v_{1\alpha/1\beta} = -0.10/-0.08$ HOMO-2 ($\epsilon = -4.26$) $v_{2\alpha/2\beta} = -0.08/-0.07$	i = 0.03/0.02 $i = 0.03/0.03$ $i = 0.03/0.02$ $i = 0.03/0.02$ $i = 0.03/0.02$

Figure S11. Shape of the deformation densities $\Delta \rho_{(1)-(9)}$ and the shape of the associated orbitals in **3** and eigenvalues $|v_n|$ of the charge flow. The MO energy eigen values are in eV.

3 (at C1-Ce-N1 plane)

Figure S12. The contour plots of Laplacian of electron density at the mentioned plane of 2 and 3 complexes.

Table S8. The Cartesian coordinates of 2 and 3.

2			
E = -1	0575.0032 au		
Ce	-1.763986795	0.194171604	-0.082960901
Br	-1.546161765	-0.439433018	2.749857054
Br	-3.742297467	2.277757170	0.355662326
Br	-1.702130425	-0.562148601	-2.863546087
Р	1.697228519	1.405803352	-0.228994812
Р	1.500402745	-1.449882124	0.253096778
0	-4.016964351	-1.088731765	-0.113945419
Ν	-0.599208201	2.403873629	-1.195377162
Ν	-1.035048579	-2.407627914	0.077322195
С	-1.375928270	3.227328611	-1.923086020
Н	-2.449109314	3.042311607	-1.856522560
С	-0.854398865	4.266153256	-2.695605993
Н	-1.528736630	4.896228345	-3.274650361
С	0.523937126	4.475118245	-2.708106223
Н	0.962893880	5.278793275	-3.300704164
С	1.336282363	3.627675325	-1.952660853
Н	2.420143231	3.739465665	-1.947551784
С	0.734240662	2.602095372	-1.220656039
С	2.067479599	2.253017938	1.340157412
С	2.841669497	3.423353586	1.410883115
Н	3.257041421	3.866719992	0.504347270
С	3.083185586	4.021211639	2.647757045
Н	3.685179138	4.929291922	2.704055414
С	2.548400429	3.458801011	3.814006133
Н	2.738386211	3.930665607	4.779241940
С	1.761750915	2.306985593	3.740466445
Н	1.323757484	1.874773936	4.640452305
С	1.516231712	1.703743368	2.505478751
Н	0.875707425	0.821948160	2.438514466
С	3.278231816	1.248567096	-1.121657983
С	4.526383699	1.357350068	-0.492338408
Н	4.582825924	1.679806770	0.547291156
С	5.693729760	1.041139044	-1.193306825
Н	6.661851388	1.122706844	-0.697097737
С	5.619931389	0.617712884	-2.522597720
Н	6.530775930	0.361808629	-3.065275371
С	4.377001724	0.518318574	-3.157614663
Н	4.315008128	0.179387361	-4.191730975
С	3.210684986	0.829649367	-2.462064224
Н	2.237363991	0.724333950	-2.943937165
С	0.776047336	0.017456297	-0.091746564

С	2.439495804	-1.528838248	1.807176109	
С	1.767223359	-1.861566709	2.995172006	
Н	0.738243025	-2.220167577	2.960435298	
С	2.390262693	-1.660406275	4.228055151	
Η	1.852720564	-1.904377519	5.144991210	
С	3.681041014	-1.127765223	4.288598230	
Н	4.159642344	-0.962583084	5.254702359	
С	4.353107641	-0.793604014	3.108530769	
Η	5.356792710	-0.368308725	3.150314091	
С	3.735038578	-0.987503856	1.873686879	
Η	4.249699532	-0.690121212	0.960573105	
С	2.521927559	-2.115536091	-1.106373804	
С	3.809023792	-2.649904097	-0.973002780	
Η	4.282824414	-2.707300408	0.006406233	
C	4.489320738	-3.113759596	-2.103727643	
Η	5.500301400	-3.510501030	-2.000659827	
C	3.874650206	-3.076702567	-3.357399585	
Н	4.406376205	-3.446527221	-4.235430024	
С	2.575707515	-2.570207538	-3.486017428	
Η	2.086576559	-2.547771385	-4.460772107	
С	1.902080287	-2.078251479	-2.370016175	
Η	0.897846651	-1.652648833	-2.471524400	
С	0.228256573	-2.758825714	0.374614318	
С	0.599703648	-4.073369831	0.670508189	
Η	1.640075698	-4.306471440	0.898002938	
С	-0.379935200	-5.064668432	0.660183528	
Η	-0.124761155	-6.098547287	0.895272743	
С	-1.688272792	-4.707004562	0.330607284	
Η	-2.485257423	-5.449347452	0.295490365	
С	-1.971458202	-3.372355716	0.044241157	
Η	-2.976800284	-3.035336866	-0.210621483	
C	-4.811930023	-1.095200263	1.122050330	
Η	-4.303270029	-0.455040957	1.853008506	
Η	-4.825028674	-2.131395088	1.497269137	
С	-6.193548573	-0.598573829	0.717699972	
Η	-6.210671955	0.499434554	0.755663963	
Η	-6.982588523	-0.992736937	1.371147392	
С	-6.309125065	-1.081332591	-0.736629669	
Η	-6.568682431	-2.150541240	-0.775753807	
Η	-7.056233010	-0.524035217	-1.316164230	
С	-4.898569896	-0.847044328	-1.262039668	
Η	-4.575582461	-1.519704368	-2.065035817	
Η	-4.755562264	0.195467583	-1.584009818	

Ce	-0.000043980	0.000166026	-0.212452018
Br	0.000364020	0.000252026	-3.046446223
Р	-3.158414191	-1.344793105	0.896223061
Р	-3.422292242	1.314292080	-0.328250027
Р	3.158343234	1.344714157	0.896292060
Р	3.422221279	-1.314344029	-0.328311026
Ν	-0.586031005	-1.792233107	1.659269116
Ν	-0.976771077	2.425675192	-0.786230061
Ν	0.585840041	1.792717161	1.659003114
Ν	0.976610118	-2.425709139	-0.785794062
С	0.437978078	-2.436866142	2.260041157
Н	1.427856142	-1.966542098	2.133771152
С	0.258898079	-3.631834235	2.970591209
Н	1.120158146	-4.123199256	3.446329245
С	-1.031192010	-4.184322287	3.047078214
Н	-1.206979008	-5.127315356	3.587358258
С	-2.097403091	-3.511805251	2.428855171
Н	-3.122890163	-3.906793289	2.477259173
С	-1.831667089	-2.307083163	1.754910125
С	-3.695888220	-2.431188192	-0.481604038
С	-3.143579183	-2.180421164	-1.756216129
Н	-2.457306143	-1.331593096	-1.910350142
С	-3.490893198	-2.994383230	-2.844513206
Н	-3.061155170	-2.782104211	-3.834897278
С	-4.391822254	-4.059014315	-2.665761195
Н	-4.673797267	-4.692454363	-3.520950254
С	-4.940291289	-4.314235338	-1.395075104
Н	-5.647022354	-5.146858406	-1.256623095
С	-4.593000272	-3.505874275	-0.300138024
Η	-5.035087302	-3.704975294	0.688560044
С	-4.535267294	-1.267476118	2.094354147
С	-5.866129411	-1.151860123	1.638898115
Н	-6.096896412	-1.292291134	0.572573038
С	-6.896828471	-0.863529115	2.546540180
Н	-7.932348547	-0.770395120	2.185964153
С	-6.607168434	-0.699387095	3.911996276
Н	-7.417759498	-0.478353091	4.623022329
С	-5.283498354	-0.823118092	4.371676312
Н	-5.057921338	-0.703206083	5.442495400
C	-4.246927273	-1.095699103	3.466309248
Н	-3.208561197	-1.166582094	3.827658271

С	-2.443621159	0.126678008	0.419777027	
С	-4.717895342	2.040355122	0.739963052	
С	-4.518884326	1.987795121	2.135656150	
Н	-3.618015258	1.494207095	2.530732180	
С	-5.482944386	2.521020147	3.002525215	
Н	-5.331744370	2.465106147	4.091066290	
С	-6.646571501	3.114052178	2.480372175	
Н	-7.406452568	3.527883196	3.160971223	
С	-6.842997492	3.178001179	1.089601076	
Н	-7.753469597	3.642980200	0.681465047	
С	-5.882003458	2.643229151	0.215537012	
Н	-6.047887455	2.682660153	-0.872094065	
С	-4.233986297	0.852456038	-1.898870139	
С	-5.477702356	0.182479978	-1.882894140	
Н	-6.045855415	0.097143966	-0.945002070	
С	-5.992043433	-0.370000067	-3.064551223	
Н	-6.961827471	-0.890045118	-3.048466225	
С	-5.268278359	-0.259927051	-4.265651311	
Н	-5.672919389	-0.695434088	-5.192125377	
С	-4.032317276	0.409591010	-4.284885311	
Н	-3.462429236	0.497364024	-5.222254380	
С	-3.511126243	0.965498057	-3.105916226	
Н	-2.524910177	1.453263101	-3.126358226	
С	-2.298995175	2.707709197	-0.778171057	
С	-2.802651227	3.976436280	-1.109956085	
Н	-3.885750307	4.165965282	-1.082879080	
С	-1.897535173	4.989270364	-1.464479108	
Н	-2.260584209	5.994402452	-1.728131126	
С	-0.524156070	4.695045358	-1.476761111	
Н	0.223045975	5.453338401	-1.752275129	
С	-0.110455026	3.401583271	-1.130753084	
Н	0.959511057	3.134890262	-1.139029083	
С	-0.438006039	2.437496197	2.259890162	
Н	-1.428030104	1.967547154	2.133383149	
С	-0.258591039	3.632131283	2.970910208	
Н	-1.119724104	4.123598308	3.446772246	
С	1.031680049	4.184154337	3.047719217	
Н	1.207737050	5.126880409	3.588378257	
C	2.097715131	3.511508303	2.429344174	
Н	3.123322199	3.906149344	2.477981177	
C	1.831653124	2.307099212	1.754949125	
C	3.696014259	2.431252244	-0.481356038	
C	3.143779223	2.180611218	-1.756035129	
Н	2.457520184	1.331791151	-1.910280142	

С	3.491164237	2.994681279	-2.844223206	
Н	3.061498209	2.782507259	-3.834661281	
С	4.392082291	4.059300368	-2.665306193	
Н	4.674099305	4.692830418	-3.520414256	
С	4.940481327	4.314380391	-1.394566104	
Н	5.647212381	5.146979461	-1.255974096	
С	4.593121311	3.505903327	-0.299730025	
Н	5.035181342	3.704895346	0.689003045	
С	4.535059332	1.267209169	2.094581148	
С	5.865963408	1.151694173	1.639213113	
Н	6.096823439	1.292345189	0.572937038	
С	6.896587483	0.863186166	2.546884183	
Н	7.932138570	0.770123171	2.186380155	
С	6.606817483	0.698778150	3.912286281	
Н	7.417356529	0.477608142	4.623329331	
C	5.283112393	0.822433146	4.371881310	
Н	5.057436378	0.702324135	5.442657381	
С	4.246616313	1.095184150	3.466478246	
Н	3.208222238	1.166002147	3.827764270	
С	2.443582195	-0.126698956	0.419671027	
С	4.234058334	-0.852450990	-1.898832138	
С	5.477792422	-0.182507927	-1.882641140	
Н	6.045816467	-0.097261914	-0.944663073	
С	5.992300454	0.370047119	-3.064189224	
Н	6.962094494	0.890067169	-3.047946223	
С	5.268685397	0.260077103	-4.265389310	
Н	5.673453434	0.695644140	-5.191780374	
С	4.032720313	-0.409424959	-4.284841310	
Н	3.462959275	-0.497119972	-5.222294380	
С	3.511364282	-0.965413002	-3.105981225	
Н	2.525157218	-1.453187053	-3.126569231	
C	4.717728382	-2.040589071	0.739894053	
C	5.881784485	-2.643532099	0.215454013	
Н	6.047755478	-2.682801100	-0.872169066	
C	6.842660565	-3.178555127	1.089505078	
Н	7.753087637	-3.643600152	0.681345046	
C	6.646166521	-3.114757126	2.480266175	
Н	7.405941594	-3.528777146	3.160870225	
C	5.482590419	-2.521623097	3.002437213	
Н	5.331374422	-2.465811090	4.090981294	
C	4.518644365	-1.988179065	2.135588151	
Н	3.617804296	-1.494538043	2.530660180	
C	2.298841216	-2.707674145	-0.778345061	
С	2.802448266	-3.976259228	-1.110751084	

Н	3.885569344	-4.165729231	-1.084152079	
С	1.897255211	-4.989020311	-1.465273107	
Н	2.260257247	-5.994035362	-1.729440125	
С	0.523849109	-4.694885308	-1.476871111	
Н	-0.223413936	-5.453140382	-1.752328131	
С	0.110210066	-3.401570216	-1.130245085	
Η	-0.959780016	-3.134968210	-1.137944084	

5. References

1. W. Su, S. Pan, X. Sun, S. Wang, L. Zhao, G. Frenking, C. Zhu, Nat. Comm. 2018, 9, 4997.

2. (a) G. Sheldrick, *Acta Crystallogr. Section C* 2015, **71**, 3-8; (b) G. Sheldrick, *Acta Crystallogr.*

Section A 2008, **64**, 112-122; (c) O. V. Dolomanov, L. J. Bourhis, J. A. K. Howard, H. Puschmann, *J. Applied Crystallogr.* 2009, **42**, 339-341.

3. (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098-3100; (b) J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822-8824; (c) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* 2011, **32**, 1456-1465; (d) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* 2010, **132**, 154104-154119.

4. (a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305; (b) F. Weigend, *Phys. Chem. Chem. Phys.* 2006, 8, 1057-1065; (c) M. Dolg, H. Stoll, H. Preuss, R.M. Pitzer, *J. Phys. Chem.* 1993, 97, 5852-5859.

5. S. F. Boys, F. Bernardi, Mol. Phys., 1970, 19, 553-566.

Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
 NBO 7.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2018.

8. P. Pollak, F. Weigend, J. Chem. Theory Comput. 2017, 13, 3696-3705.

9. AIMAll (Version 17.11.14), T. A. Keith, TK Gristmill Software, Overland Park KS, USA, **2017** (aim.tkgristmill.com).

10. (a) A. Michalak, M. Mitoraj, T. Ziegler, J. Phys. Chem. A 2008, 112, 1933-1939; (b) M. P.

Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 2009, 5, 962-975.

11. (a) ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com; (b) G. T. Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. Van Gisbergen, J. G. Snijders, T. Ziegler, *J. Comput. Chem.* 2001, **22**, 931-967.

12. E. Van Lenthe, E. J. Baerends, J. Comput. Chem. 2003, 24, 1142-1156.

13. E. Van Lenthe, A. Ehlers, E. J. Baerends, J. Chem. Phys. 1999, 110, 8943-8953.

14. (a) L. Zhao, M. Von Hopffgarten, D. M. Andrada, G. Frenking, WIREs Comput. Mol. Sci.,

2018, 8, e1345; (b) G. Frenking, F. M. Bickelhaupt, The EDA Perspective of Chemical Bonding in

The Chemical Bond. Fundamental Aspects of Chemical Bonding, G. Frenking and S. Shaik (Eds),

Wiley-VCH, Weinheim, 2014, 121; (c) G. Frenking, R. Tonner, S. Klein, N. Takagi, T. Shimizu, A.

Krapp, K. K. Pandey, P. Parameswaran, Chem. Soc. Rev. 2014, 43, 5106-5139; (d) L. Zhao, M.

Hermann, N. Holzmann, G. Frenking, Coord. Chem. Rev. 2017, 344, 163-204; (e) G. Frenking, M.

Hermann, D. M. Andrada, N. Holzmann, Chem. Soc. Rev. 2016, 45, 1129-1144.