M(H$_2$O)(PO$_3$C$_{10}$H$_6$OH).(H_2O)$_{0.5}$ (M=Co, Mn, Zn, Cu) : a new serie of layered metallophosphonate from 6-hydroxy-2-naphthylphosphonic acid precursor

Felicien Beaubrasa, Jean-Michel Rueff*a, Olivier Pereza, Fabien Veillona, Vincent Caignaerta, Jean-François Lohierb, Julien Cardinc, Guillaume Rogezd, Charlotte Jestine, Hélène Couthone, Paul-Alain Jaffrèse

aNormandie Univ, ENSICAEN, UNICAEN, CNRS, CRISMAT, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France.

bNormandie Univ, ENSICAEN, UNICAEN, CNRS, LCMT, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France.

cNormandie Univ, ENSICAEN, UNICAEN, CNRS, CIMAP, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France.

dIPCMS, UMR Unistra-CNRS 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France.

eUniv Brest, CEMCA UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France

1. **Synthesis** ...2

2. **Thermogravimetric analyses (TGA)** ..3

2. **Thermogravimetric analyses (TGA)**

3. **X-ray diffraction refinement on powder by Le Bail method**

3.1. Preparation of the sample

3.2. **X-ray diffraction powder pattern matching of the compounds**

4
1. Synthesis

Diethyl 6-hydroxy-2-naphthylphosphonate (1)

\[
\begin{align*}
\text{Br} \quad \text{OH} & \quad + \quad \text{P(}\text{OEt})_3
\end{align*}
\]

NiBr₂ (1.18 g, 5.38 mmol, 6 mol%), 6-bromo-2-naphtol (20 g, 89.7 mmol, 1.0 eq.) were mixed under nitrogen with mesitylene (25 mL). The solution was heated at 165°C and then triethylphosphite (23.0 mL, 134.5 mmol, 1.5 eq) was added dropwise (warning: an exothermic reaction occurred; discontinuous dropwise addition is required). At the end of the addition, the reaction was further stirred at 165°C for 24 hours. After cooling, the excess of triethylphosphite and mesitylene were removed by distillation under vacuum (~ 0.1 mbar). The resulting mixture was dissolved in dichloromethane (250 mL) and water (250 mL) was added to remove part of the nickel salt. The solution was stirred at room temperature overnight. The two layers were separated then the organic layer was washed twice with water (2 x 300 mL) and the aqueous layer was extracted with CH₂Cl₂ (2 x 250 mL). The organic layers were combined, dried over MgSO₄ and evaporated under reduced pressure to yield crude product (1) (oil, 14.0 g, 56%).

1H NMR (CDCl₃, 400 MHz): δ 1.35 (6H, t, J₃ = 7.2 Hz, CH₃); 4.09-4.26 (4H, m, CH₂); 7.32-7.34 (2H, m, H_ar); 7.64-7.68 (2H, m, H_ar); 7.76- 1H, d, J₃ = 8.7 Hz, H_ar); 8.321 (1H, d, J₃ = 15.5 Hz, H_ar); ³¹P NMR (CDCl₃, 162 MHz): δ 21.4; ¹³C NMR (CDCl₃, 75 MHz): δ 16.3 (d, J_pC = 6.8 Hz, CH₃); 62.6 (d, J_pC = 5.3 Hz, CH₂); 109.6 (CH_ar); 116.2 (d, J_pC = 191.7 Hz, C_q); 122.2 (CH_ar); 126.4 (d, J_pC = 10.6 Hz, CH_ar); 126.9 (d, J_pC = 14.3 Hz, CH_ar); 127.4 (C_q); 129.5 (CH_ar); 134.0 (d, J_pC = 9.8 Hz, CH_ar); 137.2 (C_q); 152.8 (C_q); m/z (ESI): (theoretical value M⁺: 280.086) 281.20 [M+H⁺]; 561.25 [2M+H⁺]; 583.25 [2M+Na⁺]; IR (cm⁻¹): 1018 (P-O); 1204 (P-O; 2984 (C-H); 3132 (O-H).

6-hydroxy-2-naphthylphosphonic acid (2)

\[
\begin{align*}
\text{EtO}_2\text{POOH} & \quad \text{EtO}_2\text{POOH}
\end{align*}
\]

To a solution of 1 (6.0 g, 21.4 mmol, 1.0 eq.) dissolved in anhydrous dichloromethane (75 mL) under nitrogen was added bromotrimethylsilane (11.3 mL, 85.6 mmol, 4.0 eq). The solution was
stirred at room temperature overnight. The volatiles were removed under vacuum. The residue was dissolved in methanol (50 mL) and the solution was stirred at reflux 10 minutes. The solution was evaporated under vacuum to yield compound 2 as a grey powder (4.3 g, 90 %).

mp: 261°C; ¹H NMR (D₂O + K₂CO₃, 400 MHz): δ 6.96 (1H, d, 4J_HH = 2.2 Hz, H_ar); 7.03 (1H, dd, 4J_HH = 2.4 Hz, 3J_HH = 8.8 Hz, H_ar); 7.58-7.66 (2H, m, H_ar); 7.76 (1H, d, 3J_HH = 8.9, H_ar); 8.01 (1H, d, 3J_HH = 13.2, H_ar); ³¹P NMR (D₂O + K₂CO₃, 162 MHz): δ 12.8; ¹³C NMR (D₂O + K₂CO₃, 125 MHz): δ 112.5 (CH_ar); 125.6 (CH_ar); 127.2 (d, 3J_PC = 12.1 Hz, CH_ar); 128.5 (C_q); 130.6 (d, 3J_PC = 9.1 Hz, CH_ar); 132.4 (d, 3J_PC = 8.3 Hz, CH_ar); 132.9 (CH_ar); 134.9 (d, 1J_PC = 170.6 Hz, C_q); 137.2 (C_q); 165.6 (C_q); m/z (ESI): (theoretical value 224.024), 222.75 [M-H]⁻; IR (cm⁻¹): 1005 (P-O); 1104 (P=O); 2730-3023 (O-H).

2. Thermogravimetric analyses (TGA)

a)

b)
Figure ST1: a) Thermogravimetric curves obtained under air at the heating rate of 2°C/min of compounds Mn(H$_2$O)(PO$_3$C$_{10}$H$_6$OH).(H$_2$O)$_{0.5}$ (3), Co(H$_2$O)(PO$_3$C$_{10}$H$_6$OH).(H$_2$O)$_{0.5}$ (4), Cu(H$_2$O)(PO$_3$C$_{10}$H$_6$OH).(H$_2$O)$_{0.5}$ (5) and Zn(H$_2$O)(PO$_3$C$_{10}$H$_6$OH).(H$_2$O)$_{0.5}$ (6). b) Inset of the thermogravimetric curves obtained between 27°C and 300°C for compounds Mn(H$_2$O)(PO$_3$C$_{10}$H$_6$OH).(H$_2$O)$_{0.5}$ (3) with the selected temperatures for X-ray powder diffraction study in temperature.

3. X-ray diffraction refinement on powder by Le Bail method

3.1 Sample preparation

X-ray powder diffraction analyses were performed on the four compounds to confirm the homogeneity of each synthesized batch samples. This study was first carried out on the compounds synthetized by hydrothermal route. By this way the X-ray diffraction patterns obtained only presented (0k0) reflections for the compounds (3) (4) (6) and (00l) reflections for the compound (5) associated to a strong preferential orientation that exacerbates these specific reflections. To solve this problem intrinsically due to the structure of the materials we decided to reduce the size of the crystals by using a soft chemistry synthesis in round bottom flask applied to the four materials. The use of this method allowed us to synthetize the four compounds as very fine powder and thus to optimize the powder diffraction pattern by decreasing the preferred orientation. The use of this strategy allowed us to obtain the desired pattern matching of the compounds and to confirm their homogeneity.

3.2. X-ray diffraction powder pattern matching of the compounds
Figure ST2: Le Bail refinement of Mn(H$_2$O)(PO$_4$)$_3$C$_{10}$H$_6$OH).H$_2$O$_{0.5}$ (3) from X-Ray powder diffraction data on soft chemistry samples synthesized in round bottom flask.
Figure ST3: Le Bail refinement of Co\((H_2O)(PO_3C_{10}H_{6}OH).(H_2O)_{0.5}\) (4) from X-Ray powder diffraction data on soft chemistry samples synthesized in round bottom flask.
Figure ST4: Le Bail refinement of Cu(H_2O)(PO$_3$)$_3$C$_{10}$H$_6$OH.H_2O)$_{0.5}$ (5) from X-Ray powder diffraction data on soft chemistry samples synthesized in round bottom flask.

Figure ST5: Le Bail refinement of Zn(H_2O)(PO$_3$)$_3$C$_{10}$H$_6$OH.H_2O)$_{0.5}$ (6) from X-Ray powder diffraction data on soft chemistry samples synthesized in round bottom flask.
<table>
<thead>
<tr>
<th>Intermolecular P---P distances</th>
<th>Mn(H₂O)(PO₃C₁₀H₆O)(H₂O)₀·₅ (3)</th>
<th>Co(H₂O)(PO₃C₁₀H₆O)(H₂O)₀·₅ (4)</th>
<th>Cu(H₂O)(PO₃C₁₀H₆O)(H₂O)₀·₅ (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along the a direction</td>
<td>7.467 Å</td>
<td>7.334 Å</td>
<td>5.660 Å</td>
</tr>
<tr>
<td>Along the c direction</td>
<td>8.076 Å</td>
<td>7.440 Å</td>
<td>4.752 Å</td>
</tr>
</tbody>
</table>

Tableau ST1: Intermolecular P---P distances obtained from the single crystal study performed on Mn(H₂O)(PO₃C₁₀H₆O)(H₂O)₀·₅ (3), Co(H₂O)(PO₃C₁₀H₆O)(H₂O)₀·₅ (4), Cu(H₂O)(PO₃C₁₀H₆O)(H₂O)₀·₅ (5) and Zn(H₂O)(PO₃C₁₀H₆O)(H₂O)₀·₅ (6).

<table>
<thead>
<tr>
<th>Intercolumnar distances d(C---H-C) between two naphthalene moieties</th>
</tr>
</thead>
<tbody>
<tr>
<td>C21···H1···C17</td>
</tr>
<tr>
<td>C13···H1···C17</td>
</tr>
<tr>
<td>C8···H1···C20</td>
</tr>
<tr>
<td>C15···H1···C20</td>
</tr>
</tbody>
</table>

Tableau ST2: C---H-C bond distances between two naphthalene moieties tilted with an angle of 31.6 ° in compound (3).

<table>
<thead>
<tr>
<th>Intercolumnar C---H-C bonds between two tilted naphthalene moieties with an angle of 31.6 °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C21-H1---C12</td>
</tr>
<tr>
<td>C21-H1---C25</td>
</tr>
<tr>
<td>C14-H1---C21</td>
</tr>
<tr>
<td>C14-H1---C8</td>
</tr>
<tr>
<td>C13-H1---C16</td>
</tr>
</tbody>
</table>

Tableau ST3: Co(H₂O)(PO₃C₁₀H₆O)(H₂O)₀·₅ intercolumnar C---H-C bonds between two tilted naphthalene moieties with an angle of 31.6 °

<table>
<thead>
<tr>
<th>Interlayer O---H-O bonds between free water molecule and hydroxyl groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>O29-H2---O11</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Tableau ST4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tableau ST5 : Hydrogen bond distances between–OH groups and H\(_2\)O molecules present at the interface of 2 organic layers in compound (3).
Figure ST6: C···H–C hydrogen bonds between two neighboring rings of Mn(H$_2$O)(PO$_3$C$_{10}$H$_6$OH).H$_2$O$_{0.5}$ (3).

Figure ST7: O···H–O hydrogen bonds network between the free water molecules and the hydroxyl groups present at the interface of two organic layers of Mn(H$_2$O)(PO$_3$C$_{10}$H$_6$OH).H$_2$O$_{0.5}$ (3). In grey: hydrogen bonds between –OH groups and H$_2$O molecules; in red hydrogen
Figure ST8: Schema and transfer matrix allowing passing from the monoclinic cell 1 to the monoclinic cell 2

\[
\begin{pmatrix}
a_2 \\
b_2 \\
c_2
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
a_1 \\
b_1 \\
c_1
\end{pmatrix}
\]