Electronic Supplementary Information (ESI) for

Unsymmetrical β-Functionalized 'Push-Pull' Porphyrins: Synthesis, Photophysical, Electrochemical and Nonlinear Optical Properties

Pinki Rathi,^a Ekta,^a Sandeep Kumar,^a Dipanjan Banerjee,^b Soma Venugopal Rao^{b*} Muniappan Sankar^{a*}

^aDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India

^bAdvanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India

Table of contents

	Page No.
Figure S1. ¹ H NMR spectrum of $H_2TPP(TPA)_2NO_2$ in CDCl ₃ at 298 K.	S-3
Figure S2. ¹ H NMR spectrum of NiTPP(TPA) ₂ NO ₂ in CDCl ₃ at 298 K.	S-4
Figure S3. ¹ H NMR spectrum of ZnTPP(TPA) ₂ NO ₂ in CDCl ₃ at 298 K.	S-4
Figure S4. ¹ H NMR spectrum of $H_2TPP(TPA)_2CHO$ in $CDCl_3$ at 298 K.	S-5
Figure S5. ¹ H NMR spectrum of NiTPP(TPA) ₂ CHO in CDCl ₃ at 298 K.	S-5
Figure S6. ¹ H NMR spectrum of $ZnTPP(TPA)_2CHO$ in $CDCI_3$ at 298 K.	S-6
Figure S7. ¹³ C NMR spectrum of H_2 TPP(TPA) ₂ NO ₂ in CDCl ₃ at 298 K	S-6
Figure S8. ¹³ C NMR spectrum of NiTPP(TPA) ₂ NO ₂ in $CDCI_3$ at 298 K	S-7
Figure S9. ¹³ C NMR spectrum of $ZnTPP(TPA)_2NO_2$ in $CDCI_3$ at 298 K	S-7
Figure S10. ¹³ C NMR spectrum of H_2 TPP(TPA) ₂ CHO in CDCl ₃ at 298 K	S-8
Figure S11. ¹³ C NMR spectrum of NiTPP(TPA) ₂ CHO in CDCl ₃ at 298 K	S-8
Figure S12. ¹³ C NMR spectrum of ZnTPP(TPA) ₂ CHO in CDCl ₃ at 298 K	S-9
Figure S13. MALDI-TOF mass spectrum of H_2 TPP(TPA) ₂ NO ₂ .	S-9
Figure S14. MALDI-TOF mass spectrum of CoTPP(TPA) ₂ NO ₂ .	S-10
Figure S15. MALDI-TOF mass spectrum of NiTPP(TPA) ₂ NO ₂ .	S-10
Figure S16. MALDI-TOF mass spectrum of CuTPP(TPA) ₂ NO ₂ .	S-11
Figure S17. MALDI-TOF mass spectrum of ZnTPP(TPA) ₂ NO ₂ .	S-11
Figure S18. MALDI-TOF mass spectrum of H ₂ TPP(TPA) ₂ CHO.	S-12

Figure S19. MALDI-TOF mass spectrum of CoTPP(TPA) ₂ CHO.	S-12
Figure S20. MALDI-TOF mass spectrum of NiTPP(TPA) ₂ CHO.	S-13
Figure S21. MALDI-TOF mass spectrum of CuTPP(TPA) ₂ CHO.	S-13
Figure S22. MALDI-TOF mass spectrum of ZnTPP(TPA) ₂ CHO.	S-14
Figure S23. IR spectra of (a) H_2 TPP(TPA) ₂ CHO and (b) ZnTPP(TPA) ₂ CHO.	S-15
Figure S24. IR spectra of (a) $H_2TPP(TPA)_2NO_2$ and (b) $ZnTPP(TPA)_2NO_2$.	S-15
Table S1. Photophysical data of MTPP(TPA) ₂ NO ₂ and MTPP(TPA) ₂ CHO (2H, Co ^{II} , Ni ^{II} , Cu ^{II} ,	S16
Zn") in CH ₂ Cl ₂ at 298 K	
Table S2. Redox Potential Data of all Synthesized Porphyrins with Comparative Porphyrins	S-17
containing 0.1 M TBAPF ₆ with scan rate 0.1 Vs ⁻¹ at 298K.	
Figure S25. Cyclic Voltammograms of Porphyrins (a) MTPP(TPA) ₂ NO ₂ and MTPP(TPA) ₂ CHO	S-18
(M = 2H, Co(II), Cu(II), Ni(II), Zn(II)) and in CH_2CI_2 with a Scan Rate of 0.1 V/s at 298 K.	
Table S3. Selected average bond lengths and bond angles for B3LYP/LANL2DZ optimized	S-19
geometry of $H_2TPP(TPA)_2NO_2/CHO$ and $ZnTPP(TPA)_2NO_2/CHO$.	
Figure S26. Optimized gas phase geometries of (a) $ZnTPP(TPA)_2NO_2$ and (b)	S-20
ZnTPP(TPA) ₂ CHO.	
Figure S27. Theoretically calculated dipole moment direction of (a) ZnTPP(TPA) ₂ NO ₂ and	S-20
(b) ZnTPP(TPA) ₂ CHO.	
Figure S28: Experimental and theoretically fitted Z-scan data for sample Zn(TPA) ₂ NO ₂ in	S-21
OA mode at (a) 680 nm (b) 700 nm (c) 750 nm (d) 800 nm (e) 850 nm and CA mode at (f)	
080 mm (g) 700 mm (n) 750 mm (i) 800 mm (j) 850 mm.	
Figure S29: Experimental and theoretically fitted Z-scan data for sample Zn(TPA) ₂ CHO in	S-22
OA mode at (a) 680 nm (b) 700 nm (c) 750 nm (d) 800 nm (e) 850 nm and CA mode at (f) 680 nm (g) 700 nm (h) 750 nm (i) 800 nm (i) 850 nm	

Figure S1. ¹H NMR spectrum of $H_2TPP(TPA)_2NO_2$ in $CDCl_3$ at 298 K.

Figure S2. ¹H NMR spectrum of NiTPP(TPA)₂NO₂ in CDCl₃ at 298 K.

Figure S3. ¹H NMR spectrum of ZnTPP(TPA)₂NO₂ in CDCl₃ at 298 K.

Figure S4. ¹H NMR spectrum of H₂TPP(TPA)₂CHO in CDCl₃ at 298 K.

Figure S5. ¹H NMR spectrum of NiTPP(TPA)₂CHO in CDCl₃ at 298 K.

Figure S6. ¹H NMR spectrum of ZnTPP(TPA)₂CHO in CDCl₃ at 298 K.

Figure S7. ¹³C NMR spectrum of H₂TPP(TPA)₂NO₂ in CDCl₃ at 298 K

Figure S8. ¹³C NMR spectrum of NiTPP(TPA)₂NO₂ in CDCl₃ at 298 K

Figure S9. ¹³C NMR spectrum of ZnTPP(TPA)₂NO₂ in CDCl₃ at 298 K

Figure S10. ¹³C NMR spectrum of H_2 TPP(TPA)₂CHO in CDCl₃ at 298 K

Figure S11. ¹³C NMR spectrum of NiTPP(TPA)₂CHO in CDCl₃ at 298 K

Figure S12. ¹³C NMR spectrum of ZnTPP(TPA)₂CHO in CDCl₃ at 298 K

Figure S13. MALDI-TOF mass spectrum of H₂TPP(TPA)₂NO₂.

Figure S14. MALDI-TOF mass spectrum of CoTPP(TPA)₂NO₂.

Figure S15. MALDI-TOF mass spectrum of NiTPP(TPA)₂NO₂.

Figure S16. MALDI-TOF mass spectrum of CuTPP(TPA)₂NO₂.

Figure S17. MALDI-TOF mass spectrum of ZnTPP(TPA)₂NO₂.

Figure S18. MALDI-TOF mass spectrum of H₂TPP(TPA)₂CHO.

Figure S19. MALDI-TOF mass spectrum of CoTPP(TPA)₂CHO.

Figure S20. MALDI-TOF mass spectrum of NiTPP(TPA)₂CHO.

Figure S21. MALDI-TOF mass spectrum of CuTPP(TPA)₂CHO.

Figure S22. MALDI-TOF mass spectrum of ZnTPP(TPA)₂CHO.

Figure S23. IR spectra of (a) H₂TPP(TPA)₂CHO and (b) ZnTPP(TPA)₂CHO.

Figure S24. IR spectra of (a) H₂TPP(TPA)₂NO₂ and (b) ZnTPP(TPA)₂NO₂.

Porphyrin	$\lambda_{\text{excitation,}}$ nm	$\lambda_{\text{emission},}$ nm	${oldsymbol{\Phi}}_{f}$	FWHM	τ [ns]
H ₂ TPP(TPA) ₂ NO ₂	308(4.65), 438(5.13),	754	0.0019	40	0.52
	539(4.12), 690(3.83)				
H ₂ TPP(TPA) ₂ CHO	308(4.69), 438(5.24),	701	0.019	29	4.88
	535(4.06), 576(3.88),				
	612(3.72), 678(3.61)				
CoTPP(TPA) ₂ NO ₂	308(4.76), 432(5.01),			60	
	551(4.11), 597(4.10)				
CoTPP(TPA) ₂ CHO	308(4.70), 434(5.11),			45	
	555(4.16), 593(4.09)				
NiTPP(TPA) ₂ NO ₂	309(4.77), 438(5.11),			44	
	553(4.17), 602(4.14)				
NITPP(TPA) ₂ CHO	309(4.76), 437(5.34),			32	
	554(4.11), 598(4.08)				
CuTPP(TPA) ₂ NO ₂	309(4.73), 432(5.17),			41	
	559(4.16), 606(4.10)				
CuTPP(TPA) ₂ CHO	309(4.81), 434(5.46),			25	
	559(4.25), 600(4.20)				
ZnTPP(TPA) ₂ NO ₂	309(4.85), 434(5.50),	698	0.003	37	0.58
	560(4.47), 609(4.36)				
ZnTPP(TPA) ₂ CHO	311(4.42), 434(5.16),	647	0.009	23	0.89
	562(3.91), 603(3.83)				

Table S1. Photophysical data of MTPP(TPA)₂NO₂ and MTPP(TPA)₂CHO (2H, Co^{II}, Ni^{II}, Cu^{II}, Zn^{II}) in CH_2Cl_2 at 298 K

	Oxidation		Δ	ΔE (V)		Reduction		M ^{11/111}	M ^{11/1}	
Porphyrin	I	II	Ш	IV			II			
H ₂ TPP	1.00	1.34			2.23	-1.23	-1.54			
$H_2TPPBr_2NO_2$	1.11	1.21			1.87	-0.75	-0.82			
$H_2TPP(TPA)_2NO_2$	1.02	1.62			1.85	-0.83	-0.98			
H ₂ TPPBr ₂ CHO	1.11	1.22			2.00	-0.89				
H ₂ TPP(TPA) ₂ CHO	1.10				2.05	-0.94				
Сотрр	1.06	1.31			2.44	-1.38			0.85	-0.86
$CoTPPBr_2NO_2$	1.22	1.44			2.43	-1.20			0.92	-0.51
CoTPP(TPA) ₂ NO ₂	1.22	1.51			2.47	-1.25			0.96	-0.60
CoTPPBr ₂ CHO	1.26	1.41			2.28	-1.02	-1.49		0.95	-0.57
CoTPP(TPA) ₂ CHO	1.23	1.45			2.36	-1.13			0.98	-0.67
NiTPP	1.02	1.32			2.30	-1.28	-1.72			
$NiTPPBr_2NO_2$	1.24				2.07	-0.83	-1.06			
NiTPP(TPA) ₂ NO ₂	0.95	1.23			1.82	-0.87	-1.14	-1.4		
NiTPPBr ₂ CHO	1.14				2.09	-0.95	-1.21			
NiTPP(TPA)₂CHO	1.03	1.26	1.5	2.0	2.09	-1.05	-1.05			
CuTPP	0.97	1.35			2.30	-1.33	-1.70			
CuTPPBr ₂ NO ₂	1.07	1.49			1.92	-0.85	-1.07			
CuTPP(TPA) ₂ NO ₂	1.00	1.50			1.89	-0.89	-1.14	-1.3		
CuTPPBr ₂ CHO	1.08	1.47			2.02	-0.94	-1.20			
CuTPP(TPA) ₂ CHO	1.06	1.47			2.03	-0.97	-1.34			
ZnTPP	0.84	1.15			2.20	-1.36	-1.77			
$ZnTPPBr_2NO_2$	0.94	1.18			1.88	-0.93	-1.08			
ZnTPP(TPA) ₂ NO ₂	0.98	1.23			2.05	-1.07	-1.30			
ZnTPPBr ₂ CHO	0.97	1.22			2.02	-1.05	-1.20			
ZnTPP(TPA) ₂ CHO	1.04	1.55			2.16	-1.11	-1.36			

Table S2. Redox Potential Data of all Synthesized Porphyrins with Comparative Porphyrinscontaining 0.1 M TBAPF_6 with scan rate 0.1 Vs^{-1} at 298K.

Figure S25. Cyclic Voltammograms of Porphyrins (a) MTPP(TPA)₂NO₂ and MTPP(TPA)₂CHO (M = 2H, Co(II), Cu(II), Ni(II), Zn(II)) and in CH₂Cl₂ with a Scan Rate of 0.1 V/s at 298 K.

Table S3. Selected Average Bond Lengths (Å) and Bond Angles (°) for the B3LYP/LANL2DZ Optimized Geometry								
of H_2 TPP(TPA) ₂ NO ₂ /CHO and ZnTPP(TPA) ₂ NO ₂ /CHO.								
	H ₂ TPPBr ₂ CHO	H ₂ TPP(TPA) ₂ CHO	H ₂ TPPBr ₂	H ₂ TPP(TPA) ₂ NO ₂	ZnTPP(TPA) ₂	ZnTPP(TPA) ₂ NO ₂		
NO ₂ CHO								
			Bond Lengtr	1 (A)	2 000	2.000		
M-N					2.080	2.090		
M-N'					2.040	2.050		
<u>Ν-C_α</u>	1.363	1.390	1.388	1.391	1.395	1.394		
Ν΄-C _{α΄}	1.375	1.390	1.392	1.390	1.396	1.395		
C _β	1.462	1.450	1.460	1.440	1.462	1.459		
$C_{\alpha'}-C_{\beta'}$	1.433	1.471	1.394	1.472	1.458	1.457		
$C_{\beta}-C_{\beta}$	1.363	1.399	1.375	1.394	1.390	1.386		
$C_{\beta} - C_{\beta}$	1.365	1.367	1.380	1.366	1.375	1.372		
C_{α} - C_{m}	1.414	1.417	1.420	1.417	1.422	1.422		
$C_{\alpha'}$ - C_m	1.403	1.419	1.413	1.418	1.417	1.416		
ΔC _β (Å)	0.575	0.636	0.667	0.642	0.593	0.580		
∆24 (Å)	0.266	0.312	0.315	0.317	0.282	0.275		
ΔMetal (Å)					0.011	0.033		
			Bond Angle (deg)				
N-C _α -C _m	124.52	124.97	124.70	125.12	124.57	124.71		
$N'-C_{\alpha'}-C_m$	127.19	126.37	127.00	126.33	126.40	126.26		
$N-C_{\alpha}-C_{\beta}$	109.91	106.33	109.20	110.28	108.91	108.81		
Ν'-C _{α'} -C _{β'}	106.29	110.26	106.40	106.11	108.86	108.95		
$C_{\beta}-C_{\alpha}-C_{m}$	125.47	123.33	125.90	123.34	126.41	126.45		
$C_{\beta'}-C_{\alpha'}-C_m$	126.46	128.56	126.60	128.58	124.90	124.36		
$C_{\alpha}-C_{m}-C_{\alpha'}$	124.73	124.13	123.80	123.95	124.13	124.70		
$C_{\alpha}-C_{\beta}-C_{\beta}$	106.46	106.80	107.00	106.78	107.09	106.96		
$C_{\alpha'} - C_{\beta'} - C_{\beta'}$	108.26	107.96	108.20	108.12	107.42	107.45		
C_{α} -N- C_{α}	107.00	105.76	107.20	110.95	107.58	107.74		
$C_{\alpha'}$ -N'- $C_{\alpha'}$	110.83	111.11	110.60	110.73	107.30	107.22		
M-N-C _α					125.18	125.27		
M-Ν'-C _{α'}					125.49	125.36		
N-M-N					177.54	179.75		
N'-M-N'					178.70	177.23		

Figure S26. Optimized gas phase geometries of (a) ZnTPP(TPA)₂NO₂ and (b) ZnTPP(TPA)₂CHO.

Figure S27. Theoretically calculated dipole moment direction of (a) ZnTPP(TPA)₂NO₂ and (b) ZnTPP(TPA)₂CHO.

Figure S28: Experimental and theoretically fitted Z-scan data for sample **Zn(TPA)₂NO₂** in OA mode at (a) 680 nm (b) 700 nm (c) 750 nm (d) 800 nm (e) 850 nm and CA mode at (f) 680 nm (g) 700 nm (h) 750 nm (i) 800 nm (j) 850 nm. Open symbols are the experimental data points while the solid lines are the theoretical fits.

Figure S29: Experimental and theoretically fitted Z-scan data for sample **Zn(TPA)₂CHO** in OA mode at (a) 680 nm (b) 700 nm (c) 750 nm (d) 800 nm (e) 850 nm and CA mode at (f) 680 nm (g) 700 nm (h) 750 nm (i) 800 nm (j) 850 nm. Open symbols are the experimental data points while the solid lines are the theoretical fits.