Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Bis(alkyl) Scandium and Yttrium Complexes Coordinated by an Amidopyridinate Ligand: Synthesis, Characterization and Catalytic Performance in Isoprene Polymerization, Hydroelementation and Carbon Dioxide Hydrosilylation

G. A. Gurina,^a A. A. Kissel,^{a,b} D. M. Lyubov,^a L. Luconi,^c A. Rossin,^c G. Tuci,^c A. V. Cherkasov,^a

K. A. Lyssenko,^a A. S. Shavyrin,^a A. M. Ob'edkov,^a G. Giambastiani^{*c, d, e} and A. A. Trifonov ^{*a, b}

- ^{a.} Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, GSP–445, 603950 Nizhny Novgorod, Russia
- ^{b.} Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, 119334 Moscow, Russia
- ^{c.} Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10 – 50019, Sesto F.no, Florence, Italy
- ^{d.} Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS- University of Strasbourg (UdS), 25, rue Becquerel, 67087 Strasbourg Cedex 02, France
- e. Kazan Federal University, 420008 Kazan, Russian Federation

Contents:

Table S1. Crystal data and structures refinement details for complexes 1_{sc} , 1_{Y} and 1_{Y}^{THF}	S2
Fig. S1. ¹ H NMR spectrum of Sc(κ^3 -N,N ^{py} ,N ⁻)(CH ₂ SiMe ₃) ₂ 1 _{Sc}	S 3
Fig. S2. ¹³ C{ ¹ H}-NMR spectrum $Sc(\kappa^3-N, N^{py}, N^-)(CH_2SiMe_3)_2 1_{Sc}$	S 4
Fig. S3. ¹ H NMR spectrum of $Y(\kappa^3-N,N^{py},N^-)(CH_2SiMe_3)_2 1_Y$	S 4
Fig. S4. ¹³ C{ ¹ H}-NMR spectrum $Y(\kappa^3-N, N^{py}, N^-)(CH_2SiMe_3)_2 1_Y$	S5
Fig. S5. ¹ H NMR spectrum of $Y(\kappa^3-N,N^{py},N^-)(CH_2SiMe_3)_2THF 1_Y^{THF}$	S5
Fig. S6. ¹³ C{ ¹ H}-NMR spectrum $Y(\kappa^3-N, N^{py}, N^-)(CH_2SiMe_3)_2THF 1_Y^{THF}$	S6
Fig. S7. 2D Y-H g-HMQC NMR spectrum of $1_{\rm Y}$ and $1_{\rm Y}^{\rm THF}$	S6
Fig. S8. ¹ H NMR spectrum (400 MHz, CDCl ₃ , 293 K) of PIP prepared by catalysis with	
$1_{sc}/[PhNHMe_2][B(C_6F_5)_4]/Al^iBu_3$ ternary system (from Table 2, entry 5)	S7
Fig. S9. ¹³ C{ ¹ H } NMR spectrum (100 MHz, CDCl ₃ , 293 K) of PIP prepared by catalysis with	
$1_{sc}/[PhNHMe_2][B(C_6F_5)_4]/Al^iBu_3$ ternary system (from Table 2, entry 5)	S7
Fig. S10. ¹ H NMR spectrum (400 MHz, CDCl ₃ , 293 K) of PIP prepared by catalysis with	
$1_{Y}/[Ph_{3}C][B(C_{6}F_{5})_{4}]/Al'Bu_{3}$ ternary system (from Table 2, entry 9)	S 8
Fig. S11. ¹³ C{ ¹ H } NMR spectrum (100 MHz, CDCl ₃ , 293 K) of PIP prepared by catalysis with	
$1_{Y}/[Ph_{3}C][B(C_{6}F_{5})_{4}]/Al^{i}Bu_{3}$ ternary system (from Table 2, entry 9)	S 8

Fig. S12. ¹ H NMR spectrum (400 MHz, CDCl ₃ , 293 K) of PIP prepared by catalysis with	
$1_{Y}^{THF}/[PhNHMe_2][B(C_6F_5)_4]/Al^{i}Bu_3$ ternary system (from Table 2, entry 11)	S 9
Fig. S13. ¹³ C{ ¹ H } NMR spectrum (100 MHz, CDCl ₃ , 293 K) of PIP prepared by catalysis with	
$1_{Y}^{THF}/[PhNHMe_2][B(C_6F_5)_4]/Al^{i}Bu_3$ ternary system (from Table 2, entry 1)	S 9
Fig. S14. ¹ H NMR spectrum (400 MHz, CDCl ₃ , 293 K) of PIP prepared by catalysis with	
$1_Y^{\text{THF}}/[Ph_3C][B(C_6F_5)_4]/Al^2Bu_3$ ternary system (from Table 2, entry 13)	S10
Fig. S15. ¹³ C{ ¹ H } NMR spectrum (100 MHz, CDCl ₃ , 293 K) of PIP prepared by catalysis with	
$1_Y^{\text{THF}}/[Ph_3C][B(C_6F_5)_4]/Al^iBu_3$ ternary system (from Table 2, entry 1)	S10
Fig. S16. ¹ H and ¹³ C{ ¹ H} NMR spectra recorded at variable time of ${}^{13}CO_2$ hydrosilylation	
reaction using $PhSiH_3$ as reductant catalyzed by 1_{Y}^*	S11

	1 _{Sc}	1 _Y	1 _Y ^{THF}
Formula	C ₃₆ H ₅₅ N ₄ OScSi ₂ ,	C ₃₆ H ₅₅ N ₄ OSi ₂ Y,	$C_{40}H_{63}N_4O_2Si_2Y,$
	C_7H_8	11/2C7H8	¹ / ₂ C ₆ H ₁₄
М	753.11	843.13	820.12
<i>Т</i> , К	120	100	120
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P2_{1}/c$	C2/c	P-1
<i>a</i> , Å	19.191(2)	22.2860(10)	11.6694(6)
b, Å	16.3197(18)	15.6506(7)	13.2058(7)
<i>c</i> , Å	14.8442(16)	26.8173(12)	17.2330(9)
α, deg	90	90	112.2250(10)
β , deg	108.715(3)	90.9180(10)	104.7190(10)
γ, deg	90	90	91.7040(10)
<i>V</i> , Å ³	4403.3(8)	9352.4(7)	2354.1(2)
Ζ	4	8	2
d_{calc} , g/cm ³	1.136	1.198	1.157
μ , mm ⁻¹	0.257	1.335	1.325
F000	1624	3592	878
Crystal	0.35×0.25×0.18	0.34×0.18×0.10	0.31×0.12×0.07
dimensions, mm			
θ range for data	1.12-26.02	1.77–29.13	1.68–30.03
collection, deg			

Table S1. Crystal data and structure refinement details for 1_{Sc} , 1_{Y} and 1_{Y}^{THF} .

	1		
HKL indices	$-23 \le h \le 23$	$-30 \le h \le 30$	$-16 \le h \le 16$
	$-20 \le k \le 20$	$-21 \le k \le 21$	$-18 \le k \le 18$
	$-18 \le l \le 18$	$-36 \le l \le 36$	$-24 \le l \le 24$
Reflns. collected	56077	50513	31664
Reflns. unique	8683	12580	13779
Rint	0.1155	0.0822	0.0508
Data / restraints /	56077 / 99 / 513	12580 / 291 / 552	13779 / 42 / 500
parameters			
$S(F^2)$	1.010	1.056	1.007
R_1/wR_2	0.0535 / 0.1280	0.0590 / 0.1200	0.0474 / 0.0981
$(I > 2\sigma(I))$			
R_1/wR_2 (all data)	0.0876 / 0.1490	0.1029 / 0.1383	0.0845 / 0.1101
Largest diff. peak	1.12 / -0.45	1.10 / -0.58	0.97 / -0.63
and hole, $e/Å^3$			

Fig. S1. ¹H NMR spectrum (400 MHz, C₆D₆, 293 K) of 1sc. *signal of toluene solvate.

Fig. S2. ¹³C 1H NMR spectrum (100 MHz, C₆D₆, 293 K) of 1sc. *signal of toluene solvate.

Fig. S3. ¹H NMR spectrum (400 MHz, C₆D₆, 293 K) of 1_Y. *signal of toluene solvate.

Fig. S4. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, C₆D₆, 293 K) of 1_{Y} . *signal of toluene solvate.

Fig. S5. ¹H NMR spectrum (400 MHz, C_6D_6 , 293 K) of 1_Y^{THF} .

Fig. S6. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, C₆D₆, 293 K) of 1_Y^{THF} .

Fig. S7. 2D ⁸⁹Y-¹H *g*-HMQC NMR spectrum (400; 19.6 MHz, C₆D₆, 293 K) of 1_Y (red) and 1_Y^{THF} (blue).

Fig. S8. ¹H NMR spectrum (400 MHz, CDCl₃, 293 K) of PIP prepared by catalysis with 1_{sc} /[PhNHMe₂] [B(C₆F₅)₄]/Al^{*i*}Bu₃ ternary system (from Table 2, entry 5).

Fig. S9. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 293 K) of PIP prepared by catalysis with $1s_c/[PhNHMe_2]$ [B(C₆F₅)₄]/Al^{*i*}Bu₃ ternary system (from Table 2, entry 5).

Fig. S10. ¹H NMR spectrum (400 MHz, CDCl₃, 293 K) of PIP prepared by catalysis with $1_{Y}/[Ph_{3}C][B(C_{6}F_{5})_{4}]/Al^{i}Bu_{3}$ ternary system (from Table 2, entry 9).

Fig. S11. ¹³C{¹H } NMR spectrum (100 MHz, CDCl₃, 293 K) of PIP prepared by catalysis with $1_{Y}/[Ph_{3}C][B(C_{6}F_{5})_{4}]/Al^{i}Bu_{3}$ ternary system (from Table 2, entry 9).

Fig. S12. ¹H NMR spectrum (400 MHz, CDCl₃, 293 K) of PIP prepared by catalysis with 1_Y^{THF} /[PhNHMe₂][B(C₆F₅)₄]/Al^{*i*}Bu₃ ternary system (from Table 2, entry 11).

Fig. S13. ¹³C{¹H } NMR spectrum (100 MHz, CDCl₃, 293 K) of PIP prepared by catalysis with $1y^{THF}/[PhNHMe_2][B(C_6F_5)_4]/Al^iBu_3$ ternary system (from Table 2, entry 11).

Fig. S14. ¹H NMR spectrum (400 MHz, CDCl₃, 293 K) of PIP prepared by catalysis with $1_Y^{THF}/[Ph_3C][B(C_6F_5)_4]/Al^iBu_3$ ternary system (from Table 2, entry 13).

Fig. S15. ¹³C{¹H } NMR spectrum (100 MHz, CDCl₃, 293 K) of PIP prepared by catalysis with $1_Y^{THF}/[Ph_3C][B(C_6F_5)_4]/Al^iBu_3$ ternary system (from Table 2, entry 13).

Fig. S16. ¹H and ¹³C{¹H} NMR spectra (400 MHz, C₆D₆, 298 K) recorded at variable time for the ¹³CO₂ hydrosilylation reaction, using PhSiH₃ as reductant. Conditions: r.t., 1_{Y} * (1.5 mol % vs. PhSiH₃); (Y/B = 1/1.1). green inset ¹³C NMR spectrum