Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supplementary Material (ESI) for Dalton Trans.

This journal is © The Royal Society of Chemistry

Various Anderson-type polyoxometalate-based metalorganic complexes induced by diverse solvents: Assembly, structures and selective adsorption for organic dyes

Jia-Hui Li, Xiu-Li Wang,* Ge Song, Hong-Yan Lin, Xiang Wang, Guo-Cheng Liu

Complex 1				
Cu(1)-O(3)	1.946(15)	Cu(1)-N(1)	1.96(2)	
Cu(1)-O(3)#2	1.946(15)	O(3)#2-Cu(1)-O(3)	179.998(13)	
Cu(1)-N(1)#2	1.96(2)	O(3)#2-Cu(1)-N(1)	96.7(7)	
O(3)-Cu(1)-N(1)#2	96.7(7)	N(1)#2-Cu(1)-N(1)	179.999(8)	
O(3)#2-Cu(1)-N(1)#2	83.3(7)	O(3)-Cu(1)-N(1)	83.3(7)	
Symmetry code:#1-x+1,	-y+1,-z+1;#2 -x+2,-y+	1,-z+2		
	Cor	mplex 2		
Zn(1)-O(4W)	2.061(8)	Zn(2)-O(2W)	2.130(10)	
Zn(1)-O(6W)	2.064(8)	Zn(2)-O(12)#2	2.141(7)	
Zn(1)-O(2)	2.104(7)	Zn(2)-O(3W)	2.175(10)	
Zn(1)-N(1)	2.113(8)	Zn(2)-O(27)	2.243(9)	
Zn(1)-O(5W)	2.136(8)	O(5W)-Zn(1)-O(3)#1	169.5(3)	

Table S1 Selected bond distances (Å) and angles (°) for complexes 1–6.

This journal is © The Royal Society of Chemistry

Zn(1)-O(3)#1	2.238(8)	O(1W)-Zn(2)-O(2W)	175.4(5)
O(4W)-Zn(1)-O(6W)	94.6(3)	O(1W)-Zn(2)-O(12)#2	90.2(5)
O(4W)-Zn(1)-O(2)	173.2(3)	O(2W)-Zn(2)-O(12)#2	93.0(3)
O(6W)-Zn(1)-O(2)	91.6(3)	O(1W)-Zn(2)-O(3W)	88.4(5)
O(4W)-Zn(1)-N(1)	97.1(3)	O(2W)-Zn(2)-O(3W)	95.0(4)
O(6W)-Zn(1)-N(1)	162.5(3)	O(12)#2-Zn(2)-O(3W)	88.9(3)
O(2)-Zn(1)-N(1)	77.5(3)	O(1W)-Zn(2)-O(27)	85.4(5)
O(4W)-Zn(1)-O(5W)	90.7(3)	O(2W)-Zn(2)-O(27)	91.6(3)
O(6W)-Zn(1)-O(5W)	90.7(3)	O(12)#2-Zn(2)-O(27)	174.1(3)
O(2)-Zn(1)-O(5W)	86.4(3)	O(3W)-Zn(2)-O(27)	87.2(3)
N(1)-Zn(1)-O(5W)	102.1(3)	O(2)-Zn(1)-O(3)#1	101.3(3)
O(4W)-Zn(1)-O(3)#1	82.4(3)	N(1)-Zn(1)-O(3)#1	86.5(3)
O(6W)-Zn(1)-O(3)#1	82.1(3)		

Symmetry code:#1-x,-y+1,-z+1;#2 -x+1,-y+1,-z+1

Complex 3

Zn(1)-N(3)#1	2.098(4)	O(1W)-Zn(2)	2.067(4)
Zn(1)-N(3)	2.098(4)	Zn(2)-O(2W)	2.085(4)
Zn(1)-O(13)	2.117(3)	Zn(2)-O(12)	2.150(3)
Zn(1)-O(13)#1	2.117(3)	Zn(2)-O(3)#3	2.186(4)

This journal is © The Royal Society of Chemistry

Zn(1)-O(3W)	2.159(7)	O(1)-Zn(2)	2.097(4)
Zn(1)-O(4W)	2.174(6)	O(1W)-Zn(2)-O(2W)	92.78(17)
N(3)#1-Zn(1)-N(3)	176.1(2)	O(1W)-Zn(2)-O(1)	92.41(14)
N(3)#1-Zn(1)-O(13)	89.71(14)	O(2W)-Zn(2)-O(1)	174.27(16)
N(3)-Zn(1)-O(13)	90.58(14)	O(1W)-Zn(2)-N(1)	169.46(15)
N(3)#1-Zn(1)-O(13)#1	90.59(14)	O(2W)-Zn(2)-N(1)	95.93(17)
N(3)-Zn(1)-O(13)#1	89.70(14)	O(1)-Zn(2)-N(1)	78.66(15)
O(13)-Zn(1)-O(13)#1	171.4(2)	O(1W)-Zn(2)-O(12)	88.71(14)
N(3)#1-Zn(1)-O(3W)	91.94(12)	O(2W)-Zn(2)-O(12)	91.42(16)
N(3)-Zn(1)-O(3W)	91.94(12)	O(1)-Zn(2)-O(12)	91.12(13)
O(13)-Zn(1)-O(3W)	85.71(11)	N(1)-Zn(2)-O(12)	96.98(15)
O(13)#1-Zn(1)-O(3W)	85.71(11)	O(1W)-Zn(2)-O(3)#3	82.43(14)
N(3)#1-Zn(1)-O(4W)	88.06(12)	O(2W)-Zn(2)-O(3)#3	83.81(16)
N(3)-Zn(1)-O(4W)	88.06(12)	O(1)-Zn(2)-O(3)#3	94.48(14)
O(13)-Zn(1)-O(4W)	94.29(11)	N(1)-Zn(2)-O(3)#3	92.59(15)
O(13)#1-Zn(1)-O(4W)	94.29(11)	O(12)-Zn(2)-O(3)#3	169.70(14)
O(3W)-Zn(1)-O(4W)	180.000(4)		

Symmetry code:#1-x+1,y,-z+3/2;#2 -x+1,-y+1,-z+1;#3 -x+1/2,-y+3/2,-z+1

Complex 4

Ni(1)-O(3)#1	2.026(10)	Ni(3)-O(24)#4	2.017(10)
Ni(1)-O(2W)	2.068(11)	Ni(3)-O(3W)	2.103(17)

This journal is © The Royal Society of Chemistry

Ni(1)-N(3)#1	2.069(13)	Ni(3)-O(4W)	2.073(18)
Ni(1)-O(1)	2.087(11)	Ni(3)-N(1)#5	2.099(13)
Ni(1)-O(14)	2.089(10)	N(1)-Ni(3)	2.099(13)
Ni(1)-O(1W)	2.092(11)	O(24)#3-Ni(3)-O(24)#4	175.9(6)
O(3)#1-Ni(1)-O(2W)	178.1(4)	O(24)#3-Ni(3)-O(3W)	92.1(3)
O(3)#1-Ni(1)-N(3)#1	80.7(5)	O(24)#4-Ni(3)-O(3W)	92.1(3)
O(2W)-Ni(1)-N(3)#1	97.4(5)	O(24)#3-Ni(3)-O(4W)	87.9(3)
O(3)#1-Ni(1)-O(1)	94.8(4)	O(24)#4-Ni(3)-O(4W)	87.9(3)
O(2W)-Ni(1)-O(1)	84.9(4)	O(3W)-Ni(3)-O(4W)	180.000(6)
N(3)#1-Ni(1)-O(1)	92.9(5)	O(24)#3-Ni(3)-N(1)#5	91.2(5)
O(3)#1-Ni(1)-O(14)	90.3(4)	O(24)#4-Ni(3)-N(1)#5	88.8(5)
O(2W)-Ni(1)-O(14)	90.3(4)	O(3W)-Ni(3)-N(1)#5	88.9(4)
N(3)#1-Ni(1)-O(14)	94.7(5)	O(4W)-Ni(3)-N(1)#5	91.1(4)
O(1)-Ni(1)-O(14)	171.4(4)	O(24)#3-Ni(3)-N(1)	88.8(5)
O(3)#1-Ni(1)-O(1W)	91.1(4)	O(24)#4-Ni(3)-N(1)	91.2(5)
O(2W)-Ni(1)-O(1W)	90.7(4)	O(3W)-Ni(3)-N(1)	88.9(4)
N(3)#1-Ni(1)-O(1W)	171.2(5)	O(4W)-Ni(3)-N(1)	91.1(4)
O(1)-Ni(1)-O(1W)	84.5(4)	N(1)#5-Ni(3)-N(1)	177.7(7)
O(14)-Ni(1)-O(1W)	88.5(4)		

Symmetry code:#1-x+1/2,-y+1/2 ,-z;#2 -x,-y,-z;#3 -x+1/2,y+1/2,-z+1/2;#4 x+1/2,y+1/2,z;#5 - x+1,y,-z+1/2

Complex 5				
Cu(1)-O(1)	1.956(5)	Cu(2)-N(2)#3	2.010(6)	
Cu(1)-O(1W)	1.987(6)	Cu(2)-O(2W)	2.093(9)	
Cu(1)-O(4W)	1.988(5)	Cu(2)-O(3W)	2.284(5)	
Cu(1)-N(1)	1.996(6)	Cu(2)-O(13)#3	2.312(5)	
Cu(1)-O(8)#1	2.344(5)	Cu(2)-O(13)	2.312(5)	
Cu(1)-O(10)	2.418(5)	N(2)-Cu(2)-N(2)#3	178.7(4)	
O(1)-Cu(1)-O(1W)	179.1(2)	N(2)-Cu(2)-O(2W)	89.34(19)	
O(1)-Cu(1)-O(4W)	91.1(2)	N(2)#3-Cu(2)-O(2W)	89.34(19)	
O(1W)-Cu(1)-O(4W)	89.8(2)	N(2)-Cu(2)-O(3W)	90.66(19)	
O(1)-Cu(1)-N(1)	83.0(2)	N(2)#3-Cu(2)-O(3W)	90.66(19)	
O(1W)-Cu(1)-N(1)	96.1(3)	O(2W)-Cu(2)-O(3W)	180.000(1)	
O(4W)-Cu(1)-N(1)	174.0(2)	N(2)-Cu(2)-O(13)#3	89.7(2)	
O(1)-Cu(1)-O(8)#1	94.3(2)	N(2)#3-Cu(2)-O(13)#3	90.1(2)	
O(1W)-Cu(1)-O(8)#1	85.5(2)	O(2W)-Cu(2)-O(13)#3	83.90(14)	
O(4W)-Cu(1)-O(8)#1	82.1(2)	O(3W)-Cu(2)-O(13)#3	96.10(14)	
N(1)-Cu(1)-O(8)#1	97.2(2)	N(2)-Cu(2)-O(13)	90.1(2)	
O(1)-Cu(1)-O(10)	90.1(2)	N(2)#3-Cu(2)-O(13)	89.7(2)	
O(1W)-Cu(1)-O(10)	90.3(2)	O(2W)-Cu(2)-O(13)	83.90(14)	
O(4W)-Cu(1)-O(10)	86.7(2)	O(3W)-Cu(2)-O(13)	96.10(14)	
N(1)-Cu(1)-O(10)	94.4(2)			

Symmetry code:#1-x-1/	2,-y-1/2 ,-z;#2 -x,-y,-z	;#3 -x,y,-z+1/2	
	Co	omplex 6	
O(1W)-Co(2)	2.115(6)	Co(1)-O(2W)	2.021(5)
Co(1)-O(4W)	2.026(5)	Co(2)-O(5W)	2.041(5)
Co(1)-O(1)	2.078(4)	Co(2)-O(5W)#3	2.041(5)
Co(1)-N(1)	2.135(5)	Co(2)-O(4)#3	2.088(5)
Co(1)-O(3)#1	2.193(5)	Co(2)-O(4)	2.088(5)
Co(1)-O(3W)	2.235(5)	Co(2)-O(1W)#3	2.115(6)
O(2W)-Co(1)-O(4W)	96.7(2)	O(5W)-Co(2)-O(5W)#3	180.000(2)
O(2W)-Co(1)-O(1)	167.4(2)	O(5W)-Co(2)-O(4)#3	89.7(2)
O(4W)-Co(1)-O(1)	92.7(2)	O(5W)#3-Co(2)-O(4)#3	90.3(2)
O(2W)-Co(1)-N(1)	95.7(2)	O(5W)-Co(2)-O(4)	90.3(2)
O(4W)-Co(1)-N(1)	162.9(2)	O(5W)#3-Co(2)-O(4)	89.7(2)
O(1)-Co(1)-N(1)	76.99(18)	O(4)#3-Co(2)-O(4)	180.0(3)
O(2W)-Co(1)-O(3)#1	84.4(2)	O(5W)-Co(2)-O(1W)	91.8(2)
O(4W)-Co(1)-O(3)#1	83.1(2)	O(5W)#3-Co(2)-O(1W)	88.2(2)
O(1)-Co(1)-O(3)#1	105.14(19)	O(4)#3-Co(2)-O(1W)	90.3(2)
N(1)-Co(1)-O(3)#1	86.44(19)	O(4)-Co(2)-O(1W)	89.7(2)
O(2W)-Co(1)-O(3W)	87.3(2)	O(5W)-Co(2)-O(1W)#3	88.2(2)
O(4W)-Co(1)-O(3W)	89.0(2)	O(5W)#3-Co(2)-O(1W)#3	91.8(2)
O(1)-Co(1)-O(3W)	84.50(19)	O(4)#3-Co(2)-O(1W)#3	89.7(2)

This journal is © The Royal Society of Chemistry

N(1)-Co(1)-O(3W)	103.4(2)	O(4)-Co(2)-O(1W)#3	90.3(2)
O(3)#1-Co(1)-O(3W)	167.71(18)	O(1W)-Co(2)-O(1W)#3	179.999(1)
0 1 11	. 1. // 2 1 2.		+ 2

Symmetry code:#1 -x,-y,-z+1;#2 -x,-y+1,-z+2;#3 -x,-y,-z+2;#4 -x+1,-y+2,-z+3

Complex	D–H····A	D–H	Н•••А	D•••A	D–H•••A
1	N(2)–H(2A)···O(11)	0.86	2.41	3.2252	158
2	C(5)–H(5A)····O(2W)	0.93	2.56	3.3277	140
	N(2)-H(2A)-O(16)	0.86	2.25	2.7942	121
	N(3)–H(3B)•••O(16)	0.86	2.64	3.2165	126
6	C(2)–H(2A)•••O(5W)	0.93	3.39	3.1778	69
	C(12)-H(12)-O(25)	0.93	2.64	2.8941	97

Table S2. Selected hydrogen-bonding geometry (Å, °) for complexes 1–6

 Table S3 Molecular weight and dimensions of different dyesmolecules.

Abbr.	MB	МО	GV
M_{W}	284.40	304.33	372.53
x(Å)	4.00	5.31	4.00
y(Å)	7.93	7.25	16.32

Scheme S1 Chemical structures of MO, MB and GV

This journal is © The Royal Society of Chemistry

Fig. S1The [M₂(PCAP)₂] metal-organic loop of (a) 2, (b) 5 and (c) 6.

Fig. S2 (a)The coordination environment of the Zn^{II} ions in **3**. (b) View of the 1D chain in **3**. (c) View of the 2D layer in **3**. (d). The 3D CrMo₆-based metal organic framework in **3**.

Fig. S3 (a) The coordination environment of the Ni^{II} ions in 4. (b) View of the 1D chain in 4. (c) View of the 2D layer in 4. (d) The wave chain consists of 3D $CrMo_6$ -based metal organic framework in 4.

Fig. S4 The IR spectra of complexes 1–6.

Fig. S5 The PXRD patterns of complexes 1-6.

Fig. S6 The TG curves of complexes 1–6.

Fig. S7 (a) Cyclic voltammograms of the1-CPE and (c) 4-CPE in 0.1 M $H_2SO_4 + 0.5M Na_2SO_4$ aqueous solution at different scan rates (from inner to outer: 40, 80, 120, 160, 200, 250, 300, 350, 400, 450, 500mV·s⁻¹); Inset: The plots of peak currents vs. scan rates for 1- and 4-CPE. Cyclic voltammograms of (c) 1- and (d) 4-CPE in 0.1 M $H_2SO_4 + 0.5M Na_2SO_4$ aqueous solution containing 0.0–12.0 mM KNO₂. Scan rate: 30 mV·s⁻¹.

Fig. S8 Absorption spectra of the MO aqueous solution during adsorption with complexes 1, 4 and 5, respectively.