A novel self-assembly Na{ $Cu_{12}Zn_4$ } as a multifunctional material: First report of a discrete coordination compound for detection of Ca^{2+} ion and selective adsorption of cationic dye in water

Khushboo Iman^a, M. Shahid^a, Musheer Ahmad^b

^aDepartment of Chemistry, Aligarh Muslim University, Aligarh-202002, India.

^aDepartment of Applied Chemistry, Aligarh Muslim University, Aligarh-202002, India.

[†]Corresponding author, E-mail: <u>shahid81chem@gmail.com</u>

Formula for calculating the percentage of Nitrobenzene fluorescence intensity quenching:

(*I*_o-*I*)/*I*_o x 100%

Where, I_0 = initial fluorescence intensity,

I = intensity of 1 containing Ca²⁺ solution.

Stern-Volmer equation:

 $I_0/I = K_{\rm SV}[A] + 1$

Where, I_0 = fluorescent intensity of 1 before the addition of the analyte

I = fluorescent intensity after the addition of the respective analyte

 $K_{\rm SV}$ = Stern-Volmer constant

[A] = molar concentration of the analyte (M⁻¹).

Fig. S1: Asymmetric unit of 1.

Atom	Atom	Bond length(Å)
Zn1	O3	1.938(3)
Zn1	09	1.930(3)
Zn1	O13	1.964(3)
Zn1	O14	1.971(3)
Cu1	O3	1.919(3)
Cu1	O6	1.956(3)
Cu1	N1	2.018(4)
Cu1	N2	2.005(4)
Cu2	O6	1.927(3)
Cu2	O12	1.945(3)
Cu2	O13	1.972(3)
Cu2	O14	1.959(3)
Cu3	09	1.955(3)
Cu3	O12	1.916(3)
Cu3	N3	2.011(4)
Cu3	N4	2.016(4)

Table S1: Selected bond lengths (\AA) for 1

Table S	52: Sel	lected	bond	angles	for	1
---------	---------	--------	------	--------	-----	---

Atom	Atom	Atom	Bond angle
O9	Zn1	O3	(degree)
013	Zn1	O3	112.81(12)
013	Zn1	09	95.22(12)
O14	Zn1	O3	119.02(12)
O14	Zn1	09	115.08(12)
O14	Zn1	O13	109.02(12)
O6	Cu1	O3	105.23(12)
N1	Cu1	O3	91.28(12)

N1	Cu1	O6	85.13(14)
N2	Cu1	O3	175.08(14)
N2	Cu1	O6	172.12(14)
N2	Cu1	N1	84.50(13)
012	Cu2	O6	99.46(15)
013	Cu2	O6	111.54(12)
013	Cu2	O12	109.64(12)
D14	Cu2	O6	114.45(12)
D14	Cu2	O12	118.37(12)
014	Cu2	O13	96.19(12)
012	Cu3	09	106.22(13)
N3	Cu3	09	90.78(12)
N3	Cu3	O12	84.92(14)
N4	Cu3	09	173.08(14)
N4	Cu3	O12	175.21(13)
N4	Cu3	N3	85.22(13)
Cu1	03	Zn1	99.31(15)
24	03	Zn1	118.56(14)
24	03	Cu1	124.0(3)
Cu2	O6	Cu1	111.3(2)
211	O6	Cu1	126.88(15)
C11	O6	Cu2	111.9(2)
Cu3	09	Zn1	118.8(2)
C12	09	Zn1	125.92(15)
C12	09	Cu3	119.0(3)
Cu3	O12	Cu2	111.9(3)
C20	O12	Cu2	117.53(14)
C20	O12	Cu3	122.9(2)
Cu2	O13	Zn1	111.4(2)
Cu2	O14	Zn1	107.09(13)
			107.29(14)

Fig. S2: Emission spectra of 1 dispersed in different solvents upon excitation at 260 nm.

Fig. S3: Changes in fluorescence intensity of 1 upon addition of (a) Mg^{2+} , (b) K^+ , (c) Sr^{2+} , (d) Ba^{2+} and (e) Cd^{2+} cationic solutions.

Fig. S4: (a), (b) and (c) Luminescent intensities for 1 immersed in the individual aqueous solutions of MCl_2 (1 mM) and mixed metal ions including Ca^{2+} ions (1 μ M). (d) 3D representation of Stern-Volmer (SV) plots of 1 for various light metal ions.

Calculation of standard deviation:

 Table S4: Standard deviation for 1.

Blank Readings (only probe)	FL Intensity of 1
Reading 1	16.66
Reading 2	18.00
Reading 3	17.32
Reading 4	18.05
Reading 5	16.50
Standard Deviation (σ)	2.10

Fig. S5 (a): Plot to calculate LOD for 1 towards Ca²⁺.

Fig. S5 (b): Plots to calculate LOD for 1 toward multiple S-block cations.

Calculation of Detection Limit:

Table S5: Detection limit calculation of 1 for Cations

Cations	Slope from Graph	Detection limit
	(m)	$(3\sigma/m)$ (nM)
Ca ²⁺	1384.30034	4.5
Mg ²⁺	395.01077	15.9
K ⁺	195.75951	32.2
Sr ²⁺	166.12766	37.9
Ba ²⁺	135.25680	46.6

Fig. S6: The quenching and recyclability test of 1, the upper dots represent the initial luminescence intensity and the lower dots represent the intensity upon addition of Ca^{2+} solution.

Fig. S7: (a) PXRD patterns of 1 before and after the adsorption of Rh-B and MB. (b) and (c) desorption plot of MB from 1 for four cycles.