Supporting Information for:

Permanent porosity and role of sulfonate groups in coordination networks constructed from a new polyfunctional phosphonato-sulfonate linker molecule

Stephan Wöhlbrandt^a, Angela Igeska^a, Erik Svensson Grape^b, Sigurd Øien-Ødegaard^c, A. Ken Inge^b and Norbert Stock

a: Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany. E-Mail: stock@ac.uni-kiel.de

b: Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden.

c: Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315 Oslo, Norway.

Content

1.	Phase purity of title compounds2
2.	High-Throughput Investigations4
3.	Asymmetric units of the title compounds
4.	NMR spectra and elemental analysis of H₅L and title compounds14
5.	Selected bond lengths and hydrogen bonds of the title compounds19
7.	TG residues
8.	IR spectroscopy25
9.	VT PXRD studies
10.	Table of literature compounds containing linker molecules of similar geometry28
11.	References

1. Phase purity of title compounds

Figure S1: Measured and calculated PXRD pattern of **1** ($[Mg(H_3L)(H_2O)_2]$ · H_2O).

Figure S2: Measured and calculated PXRD pattern of **2** ([Mg₂(HL)(H₂O)₆] · 2H₂O).

Figure S3: Measured and calculated PXRD pattern of **3** ($[Ba(H_3L)(H_2O)] \cdot H_2O$).

Figure S4: Measured and calculated PXRD pattern of **4** (Pb₂(HL)·H₂O).

2. High-Throughput Investigations

To screen for suitable metal ions, a metal screening was carried out in high-throughput reactors with a volume of 250 μ l. From this very first high-throughput experiment using H₅L, title compound **3**

Figure S5: Setup of the first metal screening.

could be isolated.

To further investigate the influence of the metal cation on the product formation, the following reactions were carried out in high-throughput reactors with a maximum volume of 2 ml. The syntheses highlighted in green led reproducibly to crystalline, phase-pure products, which are presented as title compounds **2** and **4**.

L:M	M = Metal source	L/µmol	H₂O/µl	EtOH/µl
1:2	BaCl ₂ ·2H ₂ O	25	0 1000	
1:4	BaCl ₂ ·2H ₂ O 25 0		0	1000
1:6	BaCl ₂ ·2H ₂ O	25	0	1000
1:2	SnCl₂·2H₂O	25	1000	0
1:4	SnCl₂·2H₂O	25	1000	0
1:6	SnCl₂·2H₂O	25	1000	0
1:2	SnCl ₂ ·2H ₂ O	25	500	500
1:4	SnCl ₂ ·2H ₂ O	25	500	500
1:6	SnCl ₂ ·2H ₂ O	25	500	500
1:2	SnCl ₂ ·2H ₂ O	25	0	1000
1:4	SnCl₂·2H₂O	25	0	1000
1:6	SnCl₂·2H₂O	25	0	1000
1:2	Zn(NO ₃) ₂ ·2H ₂ O	25	1000	0
1:4	$Zn(NO_3)_2 \cdot 2H_2O$	25	1000	0
1:6	$Zn(NO_3)_2 \cdot 2H_2O$	25	1000	0
1:2	$Zn(NO_3)_2 \cdot 2H_2O$	25	500	500
1:4	$Zn(NO_3)_2 \cdot 2H_2O$	25	500	500
1:6	$Zn(NO_3)_2 \cdot 2H_2O$	25	500	500
1:2	$Zn(NO_3)_2 \cdot 2H_2O$	25	0	1000
1:4	$Zn(NO_3)_2 \cdot 2H_2O$	25	0	1000
1:6	$Zn(NO_3)_2 \cdot 2H_2O$	25	0	1000
1:2	$Ni(NO_3)_2 \cdot 6H_2O$	25	1000	0
1:4	$Ni(NO_3)_2 \cdot 6H_2O$	25	1000	0
1:6	$Ni(NO_3)_2 \cdot 6H_2O$	25	1000	0
1:2	$Ni(NO_3)_2 \cdot 6H_2O$	25	500	500
1:4	$Ni(NO_3)_2 \cdot 6H_2O$	25	500	500
1:6	$Ni(NO_3)_2 \cdot 6H_2O$	25	500	500
1:2	Ni(NO ₃) ₂ ·6H ₂ O	25	0	1000
1:4	Ni(NO ₃) ₂ ·6H ₂ O	25	0	1000
1:6	Ni(NO ₃) ₂ ·6H ₂ O	25	0	1000
1:2	$Cd(NO_3)_2 \cdot 4H_2O$	25	1000	0
1:4	$Cd(NO_3)_2 \cdot 4H_2O$	25	1000	0
1:6	$Cd(NO_3)_2 \cdot 4H_2O$	25	1000	0
1:2	$Cd(NO_3)_2 \cdot 4H_2O$	25	500	500
1:4	$Cd(NO_3)_2 \cdot 4H_2O$	25	500	500
1:6	$Cd(NO_3)_2 \cdot 4H_2O$	25	500	500
1:2	$Cd(NO_3)_2 \cdot 4H_2O$	25	0	1000
1:4	$Cd(NO_3)_2 \cdot 4H_2O$	25	0	1000
1:6	$Cd(NO_3)_2 \cdot 4H_2O$	25	0	1000

Table S1: High-throughput experiments carried out in autoclaves with a volume of 2 ml. Syntheses highlighted in green represent title compounds (L = ligand).

L:M	M = Metal source	L/µmol	H₂O/μl	EtOH/µl
1:2	MgCl₂·6H₂O	25	1000	0
1:4	MgCl₂·6H₂O	25	1000	0
1:6	MgCl ₂ ·6H ₂ O	MgCl ₂ ·6H ₂ O 25 1000		0
1:2	MgCl ₂ ·6H ₂ O	25	500	500
1:4	MgCl ₂ ·6H ₂ O	25	500	500
1:6	MgCl ₂ ·6H ₂ O	25	500	500
1:2	MgCl ₂ ·6H ₂ O	25	0	1000
1:4	MgCl ₂ ·6H ₂ O	25	0	1000
1:6	MgCl ₂ ·6H ₂ O	25	0	1000
1:2		25	1000	0
1:4	CaCl ₂ ·6H ₂ O	25	1000	0
1:6	CaCl ₂ ·6H ₂ O	25	1000	0
1:2		25	500	500
1:4	CaCl ₂ ·6H ₂ O	25	500	500
1:6		25	500	500
1:2		25	0	1000
1:4		25	0	1000
1:6		25	0	1000
1:2	SrCl ₂ ·6H ₂ O	25	1000	0
1:4	SrCl ₂ ·6H ₂ O	25	1000	0
1:6	SrCl ₂ ·6H ₂ O	25	1000	0
1:2	SrCl ₂ ·6H ₂ O	25	500	500
1.2	SrCl ₂ .6H ₂ O	25	500	500
1:6	SrCl ₂ ·6H ₂ O	25	500	500
1:2	SrCl ₂ ·6H ₂ O	25	0	1000
1:4	SrCl ₂ ·6H ₂ O	25	0	1000
1.6	SrCl ₂ ·6H ₂ O	25	0	1000
1:2	SnSQ4	25	1000	0
1:4	SnSO4	25	1000	0
1:6	SnSO₄	25	1000	0
1:2	SnSO4	25	500	500
1:4	SnSO₄	25	500	500
1:6	SnSO₄	25	500	500
1:2	SnSO₄	25	0	1000
1:4	SnSO₄	25	0	1000
1:6	SnSO4	25	0	1000
1:1	Cu(NO ₂) ₂ ·3H ₂ O	25	1000	0
1:2	$Cu(NO_3)_2 \cdot 3H_2O$	25	1000	0
1:3	$Cu(NO_3)_2 \cdot 3H_2O$	25	1000	0
1:1	$Cu(NO_3)_2 \cdot 3H_2O$	25	500	500
1:2	$Cu(NO_3)_3 \cdot 3H_3O$	25	500	500
1:3	$Cu(NO_3)_2 \cdot 3H_2O$	25	500	500
1:4	Cu(NO ₃) ₂ ·3H ₂ O	25	500	500
2:1	$Cu(NO_3)_3 \cdot 3H_3O$	25	500	500
3:1	$Cu(NO_2)_2 \cdot 3H_2O$	25	500	500
4:1	$Cu(NO_3)_3 \cdot 3H_3O$	25	500	500
2:4	$Cu(NO_3)_3 \cdot 3H_3O$	25	500	500
4:8	$Cu(NO_3)_3 \cdot 3H_3O$	25	500	500
1:1	$Cu(NO_{3})_{3} \cdot 3H_{3}O$	25	0	1000
1:2	$Cu(NO_3)_2 \cdot 3H_2O$	25	0	1000
1:3	$Cu(NO_3)_2 \cdot 3H_2O$	25	0	1000

L:M	M = Metal source	L/µmol	H₂O/µl	EtOH/µl
1:2	NiCl ₂ ·6H ₂ O	25	1000	0
1:4	NiCl ₂ ·6H ₂ O	25	1000	0
1:6	NiCl ₂ ·6H ₂ O	25	1000	0
1:2	NiCl ₂ ·6H ₂ O	25	500	500
1:4	NiCl ₂ ·6H ₂ O	25	500	500
1:6	NiCl ₂ ·6H ₂ O	25	500	500
1:2	NiCl ₂ ·6H ₂ O	25	0	1000
1:4	NiCl ₂ ·6H ₂ O	25	0	1000
1:6	NiCl ₂ ·6H ₂ O	25	0	1000
1:2	Mn(NO₃)₂·4H₂O	25	1000	0
1:4	Mn(NO₃)₂·4H₂O	25	1000	0
1:6	Mn(NO₃)₂·4H₂O	25	1000	0
1:2	Mn(NO₃)₂·4H₂O	25	500	500
1:4	Mn(NO₃)₂·4H₂O	25	500	500
1:6	Mn(NO₃)₂·4H₂O	25	500	500
1:2	Mn(NO₃)₂·4H₂O	25	0	1000
1:4	Mn(NO₃)₂·4H₂O	25	0	1000
1:6	Mn(NO₃)₂·4H₂O	25	0	1000
1:2	Mg(OAc) ₂ ·4H ₂ O	25	1000	0
1:4	Mg(OAc) ₂ ·4H ₂ O	25	1000	0
1:6	Mg(OAc) ₂ ·4H ₂ O	25	1000	0
1:2	Mg(OAc) ₂ ·4H ₂ O	25	500	500
4.4		25	F00	E 0 0
1:4	Mg(UAC) ₂ ·4H ₂ U	25	500	500
1:4 1:6	$Mg(OAC)_2 \cdot 4H_2O$ $Mg(OAC)_2 \cdot 4H_2O$	25 25	500	500 500
1:4 1:6 1:2	$Mg(OAC)_2 \cdot 4H_2O$ $Mg(OAC)_2 \cdot 4H_2O$ $Mg(OAC)_2 \cdot 4H_2O$	25 25 25	500 500 0	500 500 1000
1:4 1:6 1:2 1:4	Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O	25 25 25 25	500 500 0 0	500 500 1000 1000
1:4 1:6 1:2 1:4 1:6	$Mg(OAC)_{2} \cdot 4H_{2}O$	25 25 25 25 25	500 500 0 0 0	500 500 1000 1000 1000
1:4 1:6 1:2 1:4 1:6 1:2	$Mg(OAC)_{2} \cdot 4H_{2}O$ $Fe(OAC)_{3} \cdot 3H_{2}O$	25 25 25 25 25 25 25	500 500 0 0 0 1000	500 500 1000 1000 1000 0
1:4 1:6 1:2 1:4 1:6 1:2 1:4	Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Fe(OAC) ₃ ·3H ₂ O Fe(OAC) ₃ ·3H ₂ O	25 25 25 25 25 25 25 25	500 500 0 0 1000 1000	500 500 1000 1000 1000 0 0
1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6	$Mg(OAC)_{2} \cdot 4H_{2}O$ $Fe(OAC)_{3} \cdot 3H_{2}O$ $Fe(OAC)_{3} \cdot 3H_{2}O$ $Fe(OAC)_{3} \cdot 3H_{2}O$	25 25 25 25 25 25 25 25 25 25	500 500 0 0 1000 1000 1000	500 500 1000 1000 1000 0 0 0
1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2	Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Fe(OAC) ₃ ·3H ₂ O Fe(OAC) ₃ ·3H ₂ O Fe(OAC) ₃ ·3H ₂ O Fe(OAC) ₃ ·3H ₂ O	25 25 25 25 25 25 25 25 25 25 25	500 500 0 0 1000 1000 1000 500	500 500 1000 1000 1000 0 0 0 500
1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4	Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Fe(OAC) ₃ ·3H ₂ O	25 25 25 25 25 25 25 25 25 25 25 25 25	500 500 0 0 1000 1000 1000 500 500	500 500 1000 1000 1000 0 0 0 500 500
1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4	Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Fe(OAC) ₃ ·3H ₂ O	25 25 25 25 25 25 25 25 25 25 25 25 25	500 500 0 0 1000 1000 1000 500 500 500	500 500 1000 1000 0 0 0 500 500 500
1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4	Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Fe(OAC) ₃ ·3H ₂ O	25 25 25 25 25 25 25 25 25 25 25 25 25 2	500 500 0 0 1000 1000 1000 500 500 500 0	500 500 1000 1000 0 0 0 500 500 500 500
1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4	Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Fe(OAC) ₃ ·3H ₂ O	25 25 25 25 25 25 25 25 25 25 25 25 25 2	500 500 0 0 1000 1000 1000 500 500 500 5	500 500 1000 1000 0 0 0 500 500 500 500
1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6	Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Fe(OAC) ₃ ·3H ₂ O	25 25 25 25 25 25 25 25 25 25 25 25 25 2	500 500 0 0 1000 1000 1000 500 5	500 500 1000 1000 0 0 0 500 500
1:4 1:6 1:2 1:4 1:6 1:2	Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Mg(OAC) ₂ ·4H ₂ O Fe(OAC) ₃ ·3H ₂ O	25 25 25 25 25 25 25 25 25 25 25 25 25 2	500 500 0 0 1000 1000 1000 500 5	500 500 1000 1000 0 0 0 500 500 500 500
1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4 1:6 1:2 1:4	$Mg(OAC)_{2} \cdot 4H_{2}O$ $Fe(OAC)_{3} \cdot 3H_{2}O$ $Fe(OAC)_{2} \cdot 2H_{2}O$ $Ca(OAC)_{2} \cdot 2H_{2}O$	25 25 25 25 25 25 25 25 25 25 25 25 25 2	500 500 0 0 1000 1000 1000 500 5	500 500 1000 1000 0 0 0 500 500
1:4 1:6 1:2 1:4	$Mg(OAC)_{2} \cdot 4H_{2}O$ $Fe(OAC)_{3} \cdot 3H_{2}O$ $Ca(OAC)_{2} \cdot 2H_{2}O$ $Ca(OAC)_{2} \cdot 2H_{2}O$	25 25 25 25 25 25 25 25 25 25 25 25 25 2	500 500 0 0 1000 1000 1000 500 5	500 500 1000 1000 0 0 0 500 500
1:4 1:6 1:2 1:4	$Mg(OAC)_{2} \cdot 4H_{2}O$ $Fe(OAC)_{3} \cdot 3H_{2}O$ $Ca(OAC)_{2} \cdot 2H_{2}O$ $Ca(OAC)_{2} \cdot 2H_{2}O$ $Ca(OAC)_{2} \cdot 2H_{2}O$	25 25 25 25 25 25 25 25 25 25 25 25 25 2	500 500 0 0 1000 1000 1000 500 5	500 500 1000 1000 0 0 0 500 500
1:4 1:6 1:2 1:4	$Mg(OAC)_{2} \cdot 4H_{2}O$ $Fe(OAC)_{3} \cdot 3H_{2}O$ $Fe(OAC)_{2} \cdot 2H_{2}O$ $Ca(OAC)_{2} \cdot 2H_{2}O$	25 25 25 25 25 25 25 25 25 25 25 25 25 2	500 500 0 0 1000 1000 500 500 500 500 500 500 500 500 500 0 0 1000 1000 1000 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500	500 500 1000 1000 0 0 0 500 500
1:4 1:6 1:2 1:4	$Mg(OAC)_{2} \cdot 4H_{2}O$ $Fe(OAC)_{3} \cdot 3H_{2}O$ $Ca(OAC)_{2} \cdot 2H_{2}O$	25 25 25 25 25 25 25 25 25 25 25 25 25 2	500 500 0 0 1000 1000 1000 500 500 500 500 500 500 500 0 0 1000 1000 1000 500 500 500 500 500 500 500 500 500	500 500 1000 1000 0 0 0 500 500
1:4 1:6 1:2 1:4	$Mg(OAC)_{2} \cdot 4H_{2}O$ $Fe(OAC)_{3} \cdot 3H_{2}O$ $Fe(OAC)_{2} \cdot 2H_{2}O$ $Ca(OAC)_{2} \cdot 2H_{2}O$	25 25 25 25 25 25 25 25 25 25 25 25 25 2	500 500 0 0 1000 1000 1000 500 500 500 500 500 500 500 500 0 0 1000 1000 1000 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500	500 500 1000 1000 0 0 0 500 500
1:4 1:6 1:2 1:4	$Mg(OAC)_{2} \cdot 4H_{2}O$ $Fe(OAC)_{3} \cdot 3H_{2}O$ $Ca(OAC)_{2} \cdot 2H_{2}O$	25 25	500 500 0 0 1000 1000 1000 500 500 500 500 500 500 500 500 500 0 0 1000 1000 1000 500 500 500 500 500 500 500 0 0 0 0 0 0 0 0 0 0 0 0 0	500 500 1000 1000 0 0 0 500 500

L:M	M = Metal source	L/µmol	H₂O/µl	EtOH/μl
1:2	Al(OAc) ₂ (OH)	25	1000	0
1:4	Al(OAc) ₂ (OH)	25	1000	0
1:6	Al(OAc)₂(OH)	25	1000	0
1:2	Al(OAc)₂(OH)	25	500	500
1:4	Al(OAc)₂(OH)	25	500	500
1:6	Al(OAc)₂(OH)	25	500	500
1:2	Al(OAc) ₂ (OH)	25	0	1000
1:4	Al(OAc) ₂ (OH)	25	0	1000
1:6	Al(OAc) ₂ (OH)	25	0	1000
1:2	Cr ₃ (OAc) ₇ (OH) ₂	25	1000	0
1:4	Cr ₃ (OAc) ₇ (OH) ₂	25	1000	0
1:6	Cr ₃ (OAc) ₇ (OH) ₂	25	1000	0
1:2	Cr ₃ (OAc) ₇ (OH) ₂	25	500	500
1:4	Cr ₃ (OAc) ₇ (OH) ₂	25	500	500
1:6	Cr ₃ (OAc) ₇ (OH) ₂	25	500	500
1:2	Cr ₃ (OAc) ₇ (OH) ₂	25	0	1000
1:4	Cr ₃ (OAc) ₇ (OH) ₂	25	0	1000
1:6	Cr ₃ (OAc) ₇ (OH) ₂	25	0	1000
1:2	FeCl₃·6H₂O	25	1000	0
1:4	FeCl ₃ ·6H₂O	25	1000	0
1:6	FeCl₃·6H₂O	25	1000	0
1:2	FeCl ₃ ·6H ₂ O	25	500	500
1:4	FeCl ₃ ·6H ₂ O	25	500	500
1:6	FeCl ₃ ·6H ₂ O	25	500	500
1:2	FeCl ₃ ·6H ₂ O	25	0	1000
1:4	FeCl ₃ ·6H ₂ O	25	0	1000
1:6	FeCl ₃ ·6H ₂ O	25	0	1000
1:4	Pb(NO ₃) ₂	25	1000	0
1:6	$Pb(NO_3)_2$	25	1000	0
1:8	$Pb(NO_3)_2$	25	1000	0
1:4	$Pb(NO_3)_2$	25	500	500
1:6	Pb(NO ₃) ₂	25	500	500
1:8	Pb(NO ₃) ₂	25	500	500
1:2	Pb(NO ₃) ₂	25	0	1000
1:4	$Pb(NO_3)_2$	25	0	1000
1:6	$Pb(NO_3)_2$	25	0	1000
1:0,5	Pb(OAc) ₂ ·3H ₂ O	25	500	500
1:1	Pb(OAc) ₂ ·3H ₂ O	25	500	500
1:2	Pb(OAc) ₂ ·3H ₂ O	25	500	500
1:4	Pb(OAc)₂·3H₂O	25	500	500

Table S2: Synthesis optimization of 1 in high-throughput reactors with a maximum
volume of 2 ml. Syntheses highlighted in green led to the formation of title compound
1 (L = ligand).

L:M:NaOH	M = Metal source	L/µmol	H₂O/µl	EtOH/μl
1:2:1	MgCl ₂ ·6H ₂ O	25	500	500
1:2:2	MgCl ₂ ·6H ₂ O	25	500	500
1:2:3	MgCl ₂ ·6H ₂ O	25	500	500
1:4:1	MgCl ₂ ·6H ₂ O	25	500	500
1:4:2	MgCl ₂ ·6H ₂ O	25	500	500
1:4:3	MgCl ₂ ·6H ₂ O	25	500	500
1:6:1	MgCl ₂ ·6H ₂ O	25	500	500
1:6:2	MgCl ₂ ·6H ₂ O	25	500	500
1:6:3	MgCl ₂ ·6H ₂ O	25	500	500
2:8:4	MgCl ₂ ·6H ₂ O	50	500	500
3:12:6	MgCl ₂ ·6H ₂ O	75	500	500

Figure S6: Results of the acid/base-screening for 1 and 2.

3. Asymmetric units and coordination mode of the title compounds

Figure S7: Asymmetric unit of **1** ($[Mg(H_3L)(H_2O)_2]$ · H_2O). Ellipsoids drawn at the 50% probability level. Detailed bond lengths are provided in Table S3.

Figure S8: Asymmetric unit of **2** ($[Mg_2(HL)(H_2O)_6] \cdot 2H_2O$). Ellipsoids drawn at the 50% probability level. Detailed bond lengths are provided in Table S5.

Figure S9: Asymmetric unit of **3** ($[Ba(H_3L)(H_2O)] \cdot H_2O$). Ellipsoids drawn at the 50% probability level. Detailed bond lengths are provided in Table S7.

Figure S10: Asymmetric unit of 4 (Pb₂(HL)·H₂O). Ellipsoids drawn at the 50%

Figure S11: Coordination mode of the linker molecule without polyhedra, a) **1** ($[Mg(H_3L)(H_2O)_2]$ H_2O), b) **2** ($[Mg_2(HL)(H_2O)_6]$ $2H_2O$), c) **3** ($[Ba(H_3L)(H_2O)] \cdot H_2O$), d) **4** ($Pb_2(HL) \cdot H_2O$).

probability level. Detailed bond lengths are provided in Table S9.

4. NMR spectra and elemental analysis of H_5L and title compounds

¹H-NMR (400 MHz, D₂O, TMS, 300K): δ=7.74 (d, 2H, Ar-*H*), 7.57 (d, 2H, Ar-*H*), 4.64 (s, 2H, Ar-C*H*₂-N), 3.35 (d, 4H, N-C*H*₂-P) ppm.

Elemental analysis, calculated for C₉H₁₅O₉NSP₂:

C=28.61%, H=4.03%, N=3.73%, S=8.55%

found:

C=28.55%, H=4.13%, N=3.61%, S=8.29%

Figure S13: ¹H-NMR-spectrum of **1** ($[Mg(H_3L)(H_2O)_2]$ · H_2O).

¹H-NMR (400 MHz, D₂O/NaOD 10%, TMS, 300K): δ=7.45 (d, 2H, Ar-*H*), 7.3 (d, 2H, Ar-*H*), 3.65 (s, 2H, Ar-C*H*₂-N), 2.28 (d, 4H, N-C*H*₂-P) ppm.

Elemental analysis, calculated for [Mg(C₉H₁₃O₉NSP₂)]·3H₂O:

C=23.94%, H=4.24%, N=3.10%, S=7.10%

found:

C=23.94%, H=4.17%, N=3.12%, S=7.71%

Figure S14: ¹H-NMR-spectrum of **2** ($[Mg_2(HL)(H_2O)_6]$ · 2H₂O).

¹H-NMR (400 MHz, D₂O/NaOD 10%, TMS, 300K): δ=7.76 (d, 2H, Ar-*H*), 7.63 (d, 2H, Ar-*H*), 4.19 (s, 2H, Ar-*CH*₂-N), 2.72 (d, 4H, N-*CH*₂-P) ppm.

Elemental analysis, calculated for [Mg₂(C₉H₁₃O₉NSP₂)]·8H₂O:

C=19.17%, H=4.83%, N=2.48%, S=5.69%

found:

C=17.48%, H=4.90%, N=2.11%, S=4.88%

¹H-NMR (400 MHz, D₂O/NaOD 10%, TMS, 300K): δ=7.61 (d, 2H, Ar-*H*), 7.45 (d, 2H, Ar-*H*), 3.85 (s, 2H, Ar-C*H*₂-N), 2.46 (d, 4H, N-C*H*₂-P) ppm.

Elemental analysis, calculated for [Ba(C₉H₁₃O₉NSP₂)]·2H₂O:

C=19.70%, H=3.49%, N=2.55%, S=5.85%

found:

C=20.07%, H=3.04%, N=2.44%, S=5.71%

Figure S16: ¹H-NMR-spectrum of **4** (Pb₂(HL)·H₂O).

¹H-NMR (400 MHz, D₂O/NaOD 10%, TMS, 300K): δ=7.54 (d, 2H, Ar-*H*), 7.40 (d, 2H, Ar-*H*), 3.75 (s, 2H, Ar-*CH*₂-N), 2.39 (d, 4H, N-*CH*₂-P) ppm.

Elemental analysis, calculated for $[Pb_2(C_9H_{13}O_9NSP_2)] \cdot H_2O$:

C=13.45%, H=1.63%, N=1.74%, S=3.99%

found:

C=13.70%, H=1.82%, N=1.80%, S=3.54%

5. Selected bond lengths and hydrogen bonds of the title compounds

Atom 1	Atom 2	d [Å]	Atom 1	Atom 2	d [Å]
Mg1	01	2.099(1)	P1	011	1.484(1)
	O2	2.068(1)		O12	1.589(1)
	O11	2.026(1)		O13	1.501(1)
	O13	2.102(1)		C9	1.814(2)
	O21	2.061(1)	P2	O21	1.491(1)
	O22	2.071(1)		O22	1.499(1)
				O23	1.569(1)
				C8	1.841(2)
			S3	O31	1.444(2)
				O32	1.466(2)
				O32	1.449(1)
				C1	1.773(2)

Table S3: Selected bond lengths [Å] for **1** ($[Mg(H_3L)(H_2O)_2]$ · H_2O).

Table S4: Hydrogen bonds in **1** ($[Mg(H_3L)(H_2O)_2]$ · H_2O).

Donor	Acceptor	D-H [Å]	D…A [Å]	D-H…A [°]
01	O33	0.89(3)	2.848(2)	170(3)
02	O3	0.85(3)	2.755(2)	170(3)
02	O31	0.78(3)	2.728(2)	174(3)
O3	O32	0.88(3)	2.625(2)	171(3)
012	O3	0.89(3)	2.702(2)	171(3)
N1	022	0.86(2)	2.747(2)	160(2)

Table S5: Selected bond lengths [Å] for **2** ($[Mg_2(HL)(H_2O)_6]$ · $2H_2O$)

Atom 1	Atom 2	d [Å]	Atom 1	Atom 2	d [Å]
Mg1	01	2.095(2)	P1	011	1.504(2)
	02	2.047(2)		012	1.535(2)
	O11	2.071(2)		O13	1.508(2)
	O12	2.121(2)		C8	1.817(3)
	012	2.118(2)	P2	O21	1.502(2)
	O22	2.102(2)		022	1.515(2)
Mg2	O3	2.115(2)		O23	1.513(2)
	O4	2.013(2)		C9	1.831(3)
	O5	2.100(3)	S3	O31	1.451(2)
	O6	2.099(2)		O32	1.449(2)
	O21	1.997(2)		O33	1.442(2)
	O23	2.002(2)		C1	1.775(3)

Donor	Acceptor	D-H [Å]	D…A [Å]	D-H…A [°]
01	O13	0.96(3)	2.613(3)	161(2)
02	O23	0.876(17)	2.661(2)	167(3)
02	O22	0.863(18)	2.746(2)	162(3)
06	O32	0.87(2)	2.769(3)	167(3)
04	O32	0.873(19)	2.739(3)	176(4)
04	O6	0.875(19)	2.862(3)	135(3)
O3	O31	0.82(4)	2.785(3)	173(3)
N1	O11	0.933(31)	3.045(3)	162(2)
01	07	0.890(18)	2.789(6)	169(3)
07	O13	0.85	2.594(5)	158.1

Table S6: Hydrogen bonds in **2** ($[Mg_2(HL)(H_2O)_6] \cdot 2H_2O$).

Table S7: Selected bond lengths [Å] for **3** ($[Ba(H_3L)(H_2O)] \cdot H_2O$).

Atom 1	Atom 2	d [Å]	Atom 1	Atom 2	d [Å]
Ba1	01	2.781(10)	P1	011	1.487(9)
	O1	2.999(11)		012	1.487(9)
	O11	2.758(9)		O13	1.551(10)
	O11	3.033(9)		C12	1.827(11)
	O12	2.910(9)	P2	O21	1.482(9)
	O21	2.843(9)		022	1.485(9)
	O22	2.746(9)		O23	1.554(10)
	O32	2.778(11)		C10	1.813(11)
	O42	2.756(8)	S3	O31	1.439(15)
				O32	1.389(11)
				O32	1.389(11)
				C1	1.778(18)
			S4	O41	1.473(12)
				O42	1.441(8)
				O42	1.441(8)
				C5	1.763(18)

Table S8: Possible hydrogen bonds based on donor-acceptor distances for **3** ($[Ba(H_3L)(H_2O)] \cdot H_2O$).

Donor	Acceptor	D…A [Å]
O23	O12	2.562(14)
O13	O21	2.637(14)
N1	O2	2.74(2)

Atom 1	Atom 2	d [Å]	Atom 1	Atom 2	d [Å]
Pb1	01	3.090	P1	01	1.430
	O2	2.339		02	1.562
	O3	2.537		O3	1.483
	O4	2.317		C1	1.864
	O5	2.610	P2	O4	1.532
	O8	3.065		O5	1.484
	O9	2.964		O6	1.572
Pb2	01	2.253		C2	1.764
	O5	2.453	S3	07	1.394
	O6	2.358		O8	1.399
	07	2.517		O9	1.384
	08	2.914		C7	1.790

Table S9: Selected bond lengths [Å] for **4** (Pb₂(HL)·H₂O).

Table S10: Possible hydrogen bonds based on donor-acceptor distances for **4** ($Pb_2(HL)$ · H_2O).

Donor	Acceptor	D…A [Å]
N1	O3	2.591

6. Details on the Hirshfeld surface analysis

In Figure 16, the sections of the crystal structures of **1** and **2** which were used for the generation of the Hirshfeld surfaces are shown. These sections had to be artificially cut off from the rest of the structure, resulting in regions containing no sensible information in terms of Hirshfeld surface analysis. The respective regions are marked

Figure S17: Section of the crystal structures of **1** and **2** which were used for the generation of the Hirshfeld surface, a) Crystal structure of $[Mg(H_3L)(H_2O)_2] H_2O(1)$, b) Crystal structure of $[Mg_2(HL)(H_2O)_6] 2H_2O(2)$,c) Hirshfeld surface of **1**, view along [100], d) Hirshfeld surface of **2**, view along [010].

with a black rectangle.

7. PXRD measurements of the TG residues

Figure S18: PXRD pattern of **1** after the TG experiment (blue) and calculated PXRD pattern of $Mg_2P_4O_{12}$ (black).

Figure S19: PXRD pattern of **2** after the TG experiment (blue) and calculated PXRD pattern of $Mg_2P_2O_7$ (black).

Figure S20: PXRD pattern of **3** after the TG experiment (blue) and calculated PXRD pattern of $Ba(PO_3)_2$ (black).

Figure S21: PXRD pattern of **4** after the TG experiment.

8. IR spectroscopy

Vibration ${}^{\widehat{artheta}}$ IR [cm $^{-1}$]	H₅L	1	2	3	4
v (OH)	-	3660-	3360-	3535-	3605-
δ (OH)	-	1658- 1645	1678- 1618	1653	3094 1630
v (P-O <i>H</i>)	3000-2000	3000- 2000	-	3000- 2000	-
v (<i>P</i> = <i>O</i>)	1000-1300	1000- 1300	1000- 1300	1000- 1300	-
δ (P-C <i>H</i> 2-R)		1414, 1454	1414, 1454	1413, 1431	1426
v (S-O)	1000-1300	1000- 1300	1000- 1300	1000- 1300	1000- 1300
v (S- <i>OH</i>)	3000-2000	-	-	-	-

Table S11: Assignment of the bands occurring in the IR spectra of the title compounds in comparison to the linker molecule.

9. VT PXRD studies

Figure S22: Results of the VT-PXRD study of **1** measured in an open quartz capillary (0.5mm) under atmospheric conditions.

Figure S23: Results of the VT-PXRD study of **2** measured in an open quartz capillary (0.5mm) under atmospheric conditions.

Figure S24: Results of the VT-PXRD study of **3** measured in an open quartz capillary (0.5mm) under atmospheric conditions.

Figure S25: Results of the VT-PXRD study of **4** measured in an open quartz capillary (0.5mm) under atmospheric conditions.

10. Table of literature compounds containing linker molecules of similar geometry

Table S12: Overview of compounds containing {[bis(phosphonomethyl)amino]methyl}benzene derivatives as linker molecules. **X** equals the respective substituent in *para*-position.

X =	Compound	Structure dimensionality	Space group
Н			
	$Co(H_2L)(H_2O)^{[1]}$	1D	Cc
	[Ln(H ₃ L)(C ₂ O ₄)]·2H ₂ O (Ln=La-Dy, Er and Y) ^[2]	2D	C2/c
	$[Pb_{5}(H_{2}L)_{2}(HL)_{2}]\cdot 2H_{2}O^{[3]}$	2D	<i>P</i> bca
	[Pb ₃ (H ₂ L) ₂ Cl(H ₂ O) ₃ Cl]·2H ₂ O ^[3]	2D	l2/a
	(NH ₄) ₃ [Co ₂ (HL) ₂ (HCOO)(H ₂ O) ₂] ^[5]	1D	C2/c
	$[Co(H_2L)(H_2O)_2] \cdot 2H_2O^{[5]}$	1D	P2 ₁ /c
	$[Co(H_2L)(H_2O)_2] \cdot H_2O^{[5]}$	1D	P2 ₁ /c
	$[Pb_{3}L(H_{2}L)] \cdot 1.5H_{2}O^{[4]}$	2D	P2 ₁ /c
	$[Pb_3(HL)_2] \cdot 2H_3 BTC \cdot 2H_2 O^{[4]}$	2D	P ¹
	Mn(H ₂ L) ^[6]	2D	P2 ₁ /n
	Mn(H ₃ L) ₂ ^[6]	1D	C2/c
	Ln(H ₂ L)(H ₃ L) (Ln=La, Pr, Nd, Sm, Eu, Gd) ^[7]	1D	PĪ

	Ln(H ₂ L)(H ₃ L) (Ln=Gd, Tb) ^[7]	1D	P2 ₁ 2 ₁ 2 ₁
	ZrF(HL) ^[8]	2D	Pbca
	Cd(H ₃ L) ₂ ^[9]	1D	C2/c
	[Zr(HPO ₄)(L) _{0.5}]·2H ₂ O ^[10]	2D	n/a
CH ₃			
	[Mn ₂ (H ₂ L) ₂ (H ₂ O)] ^[6]	2D	l2/a
	Cd(H ₃ L) ₂ ^[9]	1D	C2/c
F			
	$[Co_3(HL)_2(H_2O)_4] \cdot 2H_2O^{[11]}$	2D	P2 ₁ /c
	[Cu(H ₂ L)(H ₂ O)] ^[11]	2D	P2 ₁ /c
	$[Fe_3(L)_2(H_2O)_3OH] \cdot 2H_2O^{[11]}$	2D	l2/a
	[Cu ₂ (L)(4,4'-bipy) _{1.5}]·5H ₂ O ^[11]	3D	<u>P21/c</u>
	Co(H ₂ L)(4,4'-bipy) _{0.5} ^[11]	3D	PĪ
	Ni(H ₂ L)(4,4'-bipy) _{0.5} ^[11]	3D	C2/m
	[Ni ₃ (HL) ₂ (H ₂ O) ₁₀] ·4H ₂ O ^[15]	1D	P2 ₁ /c
СООН			
	[Sn ₂ (HL)(H ₂ O) ₂] ^[12]	2D	C2/c
	$[Pb_2Cl(H_2L)]^{[12]}$	3D	Сс
	[Zn(H ₃ L)]·2H ₂ O ^[17]	1D	Pba2
	[Pb(H ₃ L)(H ₂ O) ₂] ^[17]	2D	PĪ
	Fe ₂ (HL)(H ₂ O) ^[13]	2D	P2 ₁ /c
	Fe(H ₄ L) ₂ ^[13]	2D	P2 ₁ /c
	$Zn(H_3L)^{[13]}$	1D	Pccn
	Zn ₂ (HL) ^[13]	2D	P2 ₁ /c
	Ca(H ₃ L)(H ₂ O) ^[18]	2D	PĪ
	Sr(H ₃ L)(H ₂ O) ₂ ^[18]	2D	P ¹
	Ba(H ₃ L)(H ₂ O) ^[18]	2D	P ¹
	Ni ₃ (H ₂ L) ₂ (4,4'-bipy)(H ₂ O) ₄ ^[19]	3D	C2/c
	$[Co_2(HL)] \cdot H_2O^{[14]}$	2D	P2 ₁ /a
	$[Cd_{3}(H_{2}O)_{3}((H_{2}L)_{2}] \cdot 11H_{2}O^{[16]}$	2D	PĪ
	$[La(H_4L)(H_3L)(H_2O)] \cdot 2H_2O^{[20]}$	2D	PĪ
	$Er(H_3L)(H_4L)^{[20]}$	1D	P ¹

11. References

- [1] Z.-S. Cai, M. Ren, S.-S. Bao, N. Hoshino, T. Akutagawa, L.-M. Zheng, Inorg. Chem. 2014, 53, 12546.
- [2] Y.-Y. Zhu, Z.-G. Sun, F. Tong, Z.-M. Liu, C.-Y. Huang, W.-N. Wang, C.-Q. Jiao, C.-L. Wang, C. Li, K. Chen, *Dalton Trans.* 2011, 40, 5584.
- [3] Z.-M. Sun, J.-G. Mao, Y.-Q. Sun, H.-Y. Zeng, A. Clearfield, New J. Chem. 2003, 27, 1326.
- [4] Z.-M. Sun, J.-G. Mao, B.-P. Yang, S.-M. Ying, Solid State Sci. 2004, 6, 295.
- [5] Z.-S. Cai, S.-S. Bao, X.-Z. Wang, Z. Hu, L.-M. Zheng, Inorg. Chem. 2016, 55, 3706.
- [6] Z.-M. Sun, J.-G. Mao, Z.-C. Dong, Polyhedron 2005, 24, 571.
- [7] Y.-Q. Guo, S.-F. Tang, B.-P. Yang, J.-G. Mao, J. Solid State Chem. 2008, 181, 2713.
- [8] R. Vivani, F. Costantino, M. Nocchetti, G. D. Gatta, J. Solid State Chem. 2004, 177, 4013.

- [9] Z.-M. Sun, B.-P. Yang, Y.-Q. Sun, J.-G. Mao, A. Clearfield, J. Solid State Chem. 2003, 176, 62.
- [10] R. Zeng, X. Fu, Y. Sui, X. Yang, M. Sun, J. Chen, J. Organomet. Chem. 2008, 693, 2666.
- [11] H. Xu, H. Zhou, L. Feng, Q. Wang, R. Chen, W. Huang, X. Wu, Dalton Trans. 2018, 47, 11226.
- [12] W. Zhou, J. Zhang, Z.-G. Sun, Y.-Y. Zhu, C.-Q. Jiao, S.-P. Shi, L.-L. Dai, T. Sun, W.-Z. Li, M.-X. Ma, *Inorg. Chem. Commun.* 2014, 47, 37.
- [13] W. Zhou, Y.-Y. Zhu, C.-Q. Jiao, Z.-G. Sun, S.-P. Shi, L.-L. Dai, T. Sun, W.-Z. Li, M.-X. Ma, H. Luo, *CrystEngComm* **2014**, *16*, 1174.
- [14] S. Bauer, T. Bein, N. Stock, Inorg. Chem. 2005, 44, 5882.
- [15] H. Xu, L. Feng, W. Huang, Q. Wang, H. Zhou, New J. Chem. 2019, 43, 807.
- [16] S. Bauer, J. Marrot, T. Devic, G. Férey, N. Stock, Inorg. Chem. 2007, 46, 9998.
- [17] J.-L. Song, J.-G. Mao, J. Mol. Struct. 2005, 740, 181.
- [18] H. Luo, C. Ma, C.-Q. Jiao, Z.-G. Sun, T. Sun, M.-X. Ma, Y.-Y. Zhu, W.-Z. Li, M.-L. Wang, X.-W. Zhang, New J. Chem. 2015, 39, 6611.
- [19] H. Luo, Y.-Y. Zhu, Z.-G. Sun, C.-Q. Jiao, G.-N. Zhang, T. Sun, M.-X. Ma, W.-Z. Li, *RSC Adv.* **2014**, *4*, 49892.
- [20] S.-F. Tang, J.-L. Song, J.-G. Mao, Eur. J. Inorg. Chem. 2006, 2006, 2011.