Cosolvent-free synthesis and characterisation of poly(phenyl-co-n-alkylsilsesquioxane) and poly(phenyl-co-vinylsilsesquioxane) glasses with low melting temperatures

Ryosuke Seto, a Kiyoshi Kanamura, a Satoshi Yoshida b and Koichi Kajihara a *

a Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
* E-mail: kkaji@tmu.ac.jp

b Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
Fig. S1 Magnified liquid-state 1H single-pulse NMR spectra of poly(Ph-co-R-SQ) with $R = \text{Me, Et, Pr, and Vi}$ (300 MHz, CDCl$_3$) normalized to the maximum value.
Fig. S2 Results of least-squares fitting of 1H NMR spectra shown in Figs. 3 and S1. Solid and dashed lines denote observed and simulated spectra, respectively, and dotted lines indicate spectra of decomposed peaks. Each peak was expressed by one or two pseudo-Voigt functions, and its intensity (area) was assumed to be proportional to the number of 1H nuclei attributed to the peak.
Fig. S3 Full-width at half-maximum (FWHM) and centroid of peaks for alkyl and vinyl groups (top) and phenyl groups (bottom), evaluated by the peak fitting and decomposition of 1H NMR spectra shown in Fig. S2. Centroid is plotted as the shift from the peak position of corresponding trimethoxide (monomer).

Fig. S4 Variation of average number of bridging oxygen atoms, $<m>$, with the fraction of R-SQ units, f_R, in poly(Ph-co-R-SQ).