Electronic Supplementary Information (ESI) for:

A heat-set lanthanide metallogel capable of emitting stable luminescence under thermal, mechanical and water stimuli

Binbin Zhanga, Xuelin Dong,ab Yuxing Xiongb, Qi Zhou,a Shan Lu,a Yonggui Liao,a Yajiang Yanga and Hong Wanga

Additional data

1. 1H-NMR spectra of H$_6$L

1H-NMR spectrum of H$_6$L in DMSO-d_6 was recorded on a Bruker Avance III spectrometer operating at 400 MHz. 13.03 (6H), 9.70 (3H), 8.46 (6H), 8.11 (3H).

![Fig. S1 1H NMR spectra of H$_6$L in DMSO-d_6.](image)

2. ESI-MS spectra of H$_6$L

H$_6$L was dissolved in DMF and diluted to 10^{-5} M with acetonitrile, and its ESI mass spectrum was recorded on a Bruker UltiMate 3000-microTOFII in positive-ion mode. MS m/z: calcd. For C$_{27}$H$_{18}$N$_6$O$_{12}$ [H$_6$L+H]$^+$: 619.1062; found: 619.1042.
3. Preparation of H₆L/Tb gel in varied solvents

H₆L (7.4 mg, 0.012 mmol) and TbCl₃·6H₂O (4.5 mg, 0.012 mmol) were dissolved in a predetermined volume of DMF or DMSO (mL) after which CH₃OH, H₂O or CH₃CH₂OH (predetermined volume, mL) was added with vortex blending. A total mixed solution of 1 mL was then placed in a closed vessel (5 mL) and heated for 2 h at 85°C to achieve gelation.

Tab. S1 Gelation tests of H₆L and Tb³⁺ in different mixed solvents

<table>
<thead>
<tr>
<th>Solvents</th>
<th>V/V</th>
<th>9:1</th>
<th>8:2</th>
<th>7:3</th>
<th>6:4</th>
<th>5:5</th>
<th>4:6</th>
<th>3:7</th>
<th>2:8</th>
<th>1:9</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMF/CH₃OH</td>
<td>S</td>
<td>S</td>
<td>TS</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>TS</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>DMF/H₂O</td>
<td>P</td>
<td>P</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>DMSO/H₂O</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DMF/CH₃CH₂OH</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>TS</td>
<td>TS</td>
<td></td>
</tr>
<tr>
<td>DMSO/CH₃OH</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>TS</td>
<td>TS</td>
<td></td>
</tr>
<tr>
<td>DMSO/CH₃CH₂OH</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>TS</td>
<td>TS</td>
<td>P</td>
</tr>
</tbody>
</table>

S = solution; G = gel; TS = turbid solution; P = precipitation.

4. Preparation of H₆L/Tb gel with different H₆L or Tb³⁺ concentration

H₆L (predetermined weight, mg) and TbCl₃·6H₂O (4.5 mg, 0.012 mmol) were dissolved in DMF (0.5 mL) after which CH₃OH (0.5 mL) was added with vortex blending. The solution was then placed in a closed vessel (5 mL) and heated for 2 h at 85°C to achieve gelation.

Tab. S2 Gelation tests of H₆L at a constant Tb³⁺ concentration
<table>
<thead>
<tr>
<th>H₆L (mg)</th>
<th>0.0</th>
<th>3.7</th>
<th>7.4</th>
<th>11.1</th>
<th>14:8</th>
<th>18.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td>S</td>
<td>P</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>TS</td>
</tr>
</tbody>
</table>

S = solution; G = gel; TS = turbid solution; P = precipitation.

H₆L (7.4 mg, 0.012 mmol, the minimum gelation weight of H₆L) and TbCl₃·6H₂O (predetermined molar weight) were dissolved in DMF (0.5 mL) after which CH₃OH (0.5 mL) was added with vortex blending. The solution was then placed in a closed vessel (5 mL) and heated for 2 h at 85°C to achieve gelation.

Tab. S3 Gelation tests with different H₆L/Tb³⁺ molar ratio

<table>
<thead>
<tr>
<th>H₆L: Tb³⁺</th>
<th>1.0: 0.0</th>
<th>1.0: 0.5</th>
<th>1.0:1.0</th>
<th>1.0: 1.5</th>
<th>1.0: 2.0</th>
<th>1.0: 2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td>P</td>
<td>P</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>TS</td>
</tr>
</tbody>
</table>

P = precipitation; G = gel; TS = turbid solution.

5. **FT-IR spectra of H₆L and H₆L/Tb³⁺ powder**

![Fig. S3 FT-IR spectra of H₆L (1) and H₆L/Tb³⁺ powder prepared from H₆L/Tb³⁺ solutions heated for various times: 0 min (2), 10 min (3), 30 min (4), 60 min (5), 90 min (6), and 120 min (7) at 85°C.](image)

6. **Schematic illustration of self-assembly of H₆L/Tb complex.**
7. The effect of solvents and H₆L/Tb³⁺ ratios on the luminescent intensity of H₆L/Tb gel

![Fig. S5](image)

Fig. S5 Effect of solvents on luminescent intensity of H₆L/Tb gel (λ_{ex}=333 nm) formation in 1/1 (v/v) solvent/solvent.

![Fig. S6](image)

Fig. S6 The effect of the H₆L/Tb³⁺ ratios on luminescent intensity of H₆L/Tb gel (H₆L = 7.4 mg, λ_{ex}=333 nm) formation in 1/1 (v/v) DMF/CH₃OH.

8. Thermal stability of H₆L/Tb gel
The H₆L/Tb gel was placed in the thermostat (DHG-9035AE) and maintained at 1 h for each temperature, and the gel was found stable in 0 and 100 °C.

Fig. S7 Photographs of H₆L/Tb gel appearance in 0 and 100 °C.

Fig. S8 Luminescence stability performance of collapsed H₆L/Tb gels by manual shaking treated by varied sonication time, where the ratio of I/I₀ is the luminescence intensities of the collapsed H₆L/Tb gel before and after sonication.

10. Luminescence decay curves
Fig. S9 Luminescence decay curves of $^5D_4 \rightarrow ^7F_5$ (544 nm) from H$_6$L/Tb gel (red) and H$_6$L/Tb gel after manual shaking (blue).

11. **FT-IR spectra of H$_6$L/Tb xerogel and the powder of H$_6$L/Tb gel after manual shaking**

The powder of H$_6$L/Tb gel after shaking was prepared by centrifugally separating the H$_6$L/Tb gel after manual shaking and then drying at 40°C under vacuum for 24 hours.

Fig. S10 FT-IR spectra of H$_6$L/Tb xerogel and the powder of H$_6$L/Tb gel after manual shaking.

12. **XRD pattern of powder of H$_6$L/Tb gel after manual shaking**

The powder of H$_6$L/Tb gel after shaking was prepared by centrifugally separating the H$_6$L/Tb gel after manual shaking and then drying at 40°C under vacuum for 24 hours.
13. FT-IR spectra of H₆L/Tb xerogel and the powder of H₆L/Tb xerogel after soaking in water

The solid powder of H₆L/Tb xerogel after soaking in water was prepared by centrifugally separating the H₆L/Tb xerogel after soaking in water of 18 h and then drying at 40°C under vacuum for 24 hours.

14. XRD pattern of solid powder of H₆L/Tb xerogel after soaking in water

The solid powder of H₆L/Tb xerogel after soaking in water was prepared by centrifugally separating the H₆L/Tb xerogel after soaking in water of 18 h and then by drying at 40°C under vacuum for 24 hours.
hours.

Fig. S13 XRD pattern of H₆L/Tb xerogel after soaking in water.