Supplementary Information

Biohybrid Photoheterotrophic Metabolism for Significant Enhancement of Biological Nitrogen Fixation in Pure Microbial Cultures

Bo Wang, Kemeng Xiao, Zhifeng Jiang, Jianfang Wang, Jimmy C. Yu and Po Keung Wong

a Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China. E-mail: jimyu@cuhk.edu.hk

b School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China. E-mail: pkwong@cuhk.edu.hk

c Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China.

d School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, 999077, China.

e Department of Physics, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong, 999077, China. E-mail: jfwang@phy.cuhk.edu.hk

f Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.

* Corresponding authors

‡ These authors contributed equally.
Experimental Section

- **Preparation of the bacterial cell for biohybrid cell construction**

As shown in Fig. S1, The *R. palustris* (ACCC 10649) cells were maintained in 60 mL malate-ammonium (MN) medium (Table S1) in the sealed clear collection vials (60 mL, Thermo Scientific, USA). The bacterial cells were incubated on an orbital incubator (MX-RD-Pro, Scilogex, USA) at 10 revolutions per minute (RPM). All the vials were illuminated by fluorescent tubes with an 80 W/m\(^2\) visible light intensity. The incubating temperature was controlled at 30 ± 1 °C. The bacterial cells were weekly transferred to the fresh prepared MN for maintenance. The maintained *R. palustris* cells were transferred to 60 mL freshly prepared supplemented MN (SMN) medium (Table S1) in the clear collection vials (60 mL, Thermo Scientific, USA) on a rotating incubator (MX-RD-Pro, Scilogex, USA). Light illumination was provided by 80 W/m\(^2\) FTs and the temperature was controlled at 30 ± 1 °C (Fig. S1). The cell density was monitored by measuring the optical density at (OD\(_{680}\)) and calculated by standard curves. The pellets of the rapidly accumulated *R. palustris* cells at mid-exponential growth phase (OD\(_{680}\) at 1.5) were collected and diluted by the modified MN (MMN) medium (Table S1) to an initial OD\(_{680}\) at 0.6.

- **Surface CdS coating**

The as-prepared MMN-*R. palustris* medium (60 mL) was supplemented with 0 - 0.25 mM Cd(NO\(_3\))\(_2\) and 1 mM cysteine as sulfur source. The CdS coating efficiency of *R. palustris* was evaluated by removing the cultured bacterial cells by 0.22 um membrane filtration and quantifying the left Cd\(^{2+}\) concentration in the supernatants via an atomic absorption
spectroscopy (AAS, Hitachi Z2300 flame, Japan). The CdS coating efficiency (CE) was calculated by the equation:

$$CE = \left(1 - \frac{Cd^{2+} \text{ remained in the MMN medium}}{Cd^{2+} \text{ added into the MMN medium}}\right) \times 100\%$$

The optimum Cd$^{2+}$ concentration was further confirmed according to the acceptable CE and remained Cd$^{2+}$ in the culture medium (Table S2). Then the optimum Cd$^{2+}$ concentration is used for surface CdS coating. The as-prepared \textit{R. palustris}-MMN medium was filled in the clear collection vials (60 mL) and incubated on the rotating incubator by the same conditions.

- \textit{Characterization of the R. palustris cells and surface CdS}

The prepared CdS-\textit{R. palustris} culture was collected and fixed by 4 % glutaraldehyde, then sequentially dehydrated by ethanol and deposited on 200-mesh copper grids (Electron Microscopy Sciences, USA). To prepare thin-sectioned samples, a parallel of fixed sample was stained by 1 % OsO$_4$, then sequentially dehydrated by acetone, followed by the sequential infiltration of resin (Spurr’s, Electron Microscopy Sciences, USA). After baking at 80 $^\circ$C overnight, the embedded samples were sectioned to 70 nm by diamond knife (Diatome Ultra 45°, MF277, Switzerland) and deposited on 100-mesh copper grids (Electron Microscopy Sciences, USA). The HRTEM (Tecnai F20, FEI, USA) at an acceleration voltage of 10 kV was performed to observe the morphology of both the original sample and thin-sectioned sample of the biohybrid cells. The HAADF mode of the HRTEM was applied to obtain HAADF-STEM images of the bacterial membrane with coated NPs. The EDX mode of the HRTEM was performed for EDS mapping and analyzing the elemental composition of the surface particles. To isolate the CdS NPs from the cell surface, the cell pellet of the CdS-\textit{R. palustris} culture (10
L) was collect and lysed by QIAGEN Buffer P2 and then ultrasonicated by a ultrasonicator (Branson 2510E, Gemini, USA) overnight. The lysed sample was centrifuged and the pellet in yellowish layer was collected and washed by ethanol and ultra-pure water for multiple times. Finally, the sample was freeze-dried and grinded into power. The UV-vis spectroscopic measurement of the isolated CdS NPs powder was performed on a UV-vis spectrophotometer (BlueStar A Split Beam, LabTech, USA). The valence band (VB) of the isolated CdS NPs powder was measured by the X-ray photoelectron spectroscopy (XPS, ESCALAB MK, Thermo Fisher, USA). To test the photocurrent density under fixed potentials, the isolated CdS NPs (5 mg) was fixed onto fluorine-doped tin oxide (FTO) glass as photocathode and measured by an electrochemical workstation (CHI650E, CH Instruments, USA). A xenon lamp (PLS-SXE300C, PerfectLight, China) with 420 nm filter was used to provide visible light irradiation (1000 W/m²).

N₂ fixation study

The cell pellets of the CdS-coated *R. palustris* and natural cells were collected from the early stationary phase and then diluted by the fresh prepared modified malate-glutamate (MMG) medium (Table S1), supplemented with 1 mM cysteine as hole sacrificial agent. The initial OD₆₈₀ of the CdS-*R. palustris*-MMG medium was adjusted to 1.0 (cell density = 6.5 × 10⁸ cell mL⁻¹, dry weight of biomass = 0.25 g L⁻¹). Parallel groups of 30 mL prepared mediums were aliquoted into the 60 mL clear collection vials. The vials were purged with pure N₂ gas (purity > 99.9 %) at atmospheric pressure and incubated on the orbital incubator at 10 RPM under FT (80 W/m²) (Fig. S1). For comparison, parallel groups of the biohybrid and natural cells purged
with pure Argon gas and under the same light irradiation or in dark condition were added.

- **Measurement of Nitrogenase activity and generated H_2**

The acetylene-ethylene assay4 is employed to measure the nitrogenase activity of the CdS-coated *R. palustris* and the natural cells during the 120 h N_2 fixation study. The gaseous phase in the head space of the parallel groups of the samples collected at difference time points are exchanged by pure acetylene (C_2H_2) at atmospheric pressure. The generated ethylene (C_2H_4) in 2 hours was measured by a gas chromatography (GC-7806, Shiweipx, China) using FID mode in triplicate. The produced ethylene is standardized to the unit of nmol h\(^{-1}\) mg\(^{-1}\) cell. The H_2 evolution in the 30 mL gaseous phase of the parallel vials was detected by the GC (GC-7806, Shiweipx, China) using TCD mode, then quantified by standard curves.

- **Assay of the NADPH level, Ammonium concentration and total L-amino acids.**

At fixed time intervals, the cellular NADPH level, ammonia concentration and total L-amino acid concentration were measured in triplicate by collecting 1 mL sample by a sterile syringe from the reactions. The NADP/NADPH Assay Kit (ab65349, abcam, UK), Ammonia Assay Kit (ab83360, abcam, UK) and L-Amino Acid Quantification Kit (K639-100, BioVision, USA) were used for the corresponding assays following the provided protocols.

- **15-N_2 isotopic labelling study**

The prepared biohybrid and natural cells in the MMN mediums were transferred to the MMG mediums (30 mL) in the 60 mL sealed collection vials as previously described. The gaseous
phase of the biohybrid and natural cells were purged with 15-N labelled N\textsubscript{2} gas (purity > 99.9 \%) and the N\textsubscript{2} fixation study under the same conditions was conducted. At the early stationary phase, the samples in the 30 mL MMN medium were filtered by 0.22 um membranes. The 15N (m/z=29)/14N (m/z=28) ratio was measured by an Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS, Thermo Scientific DELTA V, USA).

- **Measurement of the produced solid biomass**

The pellets of CdS-\textit{R. palustris} and natural cells after 120 h N\textsubscript{2} fixation were collected and heated at 80 °C for 72 h to measure the dry weight of obtained solid biomass. The mass of the pre-weighted centrifuge tube and the solid biomass in the beginning of the experiment are subtracted. For reference, the natural \textit{R. palustris} directly supplied with different levels of ammonium (2.5 to 10 mM) under Ar are also investigated.

- **Calculation of the photosynthetic efficiency (PE)**

The PE was defined as the ratio of the light energy transferred to the biomass to the total received energy from light and organic source. The photosynthetic efficiency (PE) was calculated by the equation:5

\[
PE = \frac{P \times (\Delta H) - \Delta H \times MCE + TLEI}{(\Delta H) \times MCE + TLEI}
\]

Where \(P \) is the biomass productivity;

Biomass productivity of \textit{R. palustris}

\[
= (1.3536 \text{ g L}^{-1} - 0.2 \text{ g L}^{-1}) \times 60 \times 10^{-3} \text{ L} \div 72 \text{ h} = 0.9613 \times 10^{-3} \text{ g h}^{-1};
\]

Biomass productivity of the CdS-coated \textit{R. palustris}
\[(3.4357 \text{ g L}^{-1} - 0.2 \text{ g L}^{-1}) \times 60 \times 10^{-3} \text{ L} \div 72 \text{ h} = 2.6964 \times 10^{-3} \text{ g h}^{-1}; \]

\(\Delta H \) is the heat of combustion of the ash-free biomass, which is calculated according to the following equation:

\[\Delta H = \left(\frac{\%C \times 2.664 + \%H \times 7.936 - \%O}{398.9} \right) \times 13.2586 \text{ (Kcal g}^{-1}) \]

The biomass composition (\% of C, H, O, N) of \textit{R. palustris} and CdS-coated \textit{R. palustris} was analyzed by an elemental analyzer (vario EL III, German) and listed in Table S3.

\(\Delta H' \) is the heat combustion of malate: 2.387 (Kcal g\(^{-1}\));

\(MCE \) is the malate consuming efficiency (g h\(^{-1}\)), which is calculated by the data in Table S4;

\(TLEI \) is the total light energy input, which is estimated by the total solar radiation impinging on horizontal surface per m\(^2\) using the following formula:

\[TLEI = TSR \times 2.75 \times 10^{-3} \times 0.64 \times 0.89 \]
\[= 80 \times 0.85986 \times 2.75 \times 10^{-3} \times 0.64 \times 0.89 \]
\[= 0.10775 \text{ (Kcal h}^{-1}) \]

Where TSR is the total solar radiation impinging on horizontal surface per m\(^2\) (Kcal h\(^{-1}\) m\(^{-2}\)); 80 is the light intensity of the fluorescent tubes (W m\(^{-2}\)); 0.85986 is the conversion factor from W m\(^{-2}\) to Kcal h\(^{-1}\) m\(^{-2}\); 2.75 \times 10^{-3} is the horizontal surface area of the 60 mL clear collection vials; 0.64 is the coefficient factor of the photosynthetic available radiation of \textit{R. palustris} from 400 nm to 900 nm; 0.89 is the glass transmittivity;

The calculated parameter and PE value are concluded in Table S5.

The individual contribution from organic carbon to the PE is calculated as follows:

\[PE(\text{contributed by organic carbon}) = PE_{R.\ palustris} \times \frac{\text{Energy from organic carbon}}{TLEI + \text{Energy from organic carbon}} \]

For the natural cells,

\[PE(\text{contributed by organic carbon alone}) = 2.35\% \times \frac{0.0565 \times 2.387}{0.10775 + 0.0565 \times 2.387} = 1.31\% \]

\[PE(\text{contributed by light alone}) = 2.35\% - 1.31\% = 1.04\% \]
The consuming of organic carbon in the biohybrid and natural cells is similar (Table S4), therefore, the contribution of the organic carbon to the PE$_{CdS-R.\text{ palustris}}$ is roughly evaluated to be equal to that of the natural cells. Therefore, the contribution of the light originated energy including the light alone and light-induced electrons to the PE$_{CdS-R.\text{ palustris}}$ is calculated:

$$PE(\text{contributed by light originated energy}) = 6.73\% - 1.31\% = 5.42\%.$$

In the CdS-coated $R.\text{ palustris}$ cells, the contribution (%) from light originated energy to the biomass is calculated:

$$\text{Contribution from light originated energy} = \frac{5.42\%}{(5.42\% + 1.31\%)} \times 100\% = 80.5\%.$$

The contribution (%) from the organic carbon to the biomass is:

$$\text{Contribution from organic carbon} = 100\% - 80.5\% = 19.5\%.$$

Investigation of the effect of the amount of loaded CdS NPs

To investigate the solid biomass productivity of the $R.\text{ palustris}$ coated with different amount of CdS NPs on the cell surface, the $R.\text{ palustris}$ cells supplemented with different initial Cd$^{2+}$ concentration (0 - 0.25 mM) was prepared. Using the same culture conditions as the N$_2$ fixation study, the biomass productivity both under VL irradiation and in the dark were measured. The pellets from different groups after 120 h N$_2$ fixation were collected and heated at 80 °C for 72 h to measure the dry weight of obtained solid biomass. The variation of intracellular NADPH level in the 0.5 mM, 0.15 mM and 0.25 mM groups was monitored by the NADP/NADPH Assay Kit (ab65349, abcam, UK).

Investigation of the cytotoxicity of CdS NPs

To investigate the cytotoxicity of the CdS NPs, the chemoheterotrophic growth curve of $R.\text{ palustris}$ coated with different amount of CdS NPs was studied in the 60 mL clear collection vials filled with nutrient broth medium (Lab M, Lancashire, UK) in darkness. At fixed time intervals, 1 mL cell sample was collected by the sterile syringe to measure the cell density. The
cell density was monitored by measuring the optical density at \(\text{OD}_{680} \) and calculated by standard curves.

- **Investigation of the role of cysteine**

To investigate the hole sacrificing function and potential nutritional function of the cysteine in the medium, different initial concentration (0 - 1.0 mM) of the cysteine were added in the MMG medium. Using the same culture conditions as the \(\text{N}_2 \) fixation study, the biomass productivity of the biohybrid cells and natural cells under VL irradiation were measured. The pellets from different groups after 120 h \(\text{N}_2 \) fixation were collected and heated at 80 °C for 72 h to measure the dry weight of obtained solid biomass.

- **Investigation of the role of the cross-membrane interface**

To investigate the role of the cross-membrane interface between the CdS NPs and the bacterial membrane, 0.25 mM of the isolated CdS NPs and the chemically synthetic CdS (prepared by mixing 16.2 mmol \(\text{Cd(NO}_3)_2 \cdot 4\text{H}_2\text{O} \) with 48.6 mmol thiourea in 40 mL ethylenediamine, then heating at 160 °C in furnace for 12 h) were simply mixed with the natural cells in the MMG medium. The pellets from different groups after 120 h \(\text{N}_2 \) fixation were collected and heated at 80 °C for 72 h to measure the dry weight of obtained solid biomass.

- **Investigation of the electron transduction**

To investigate the transduction of photo-induced electron, different biosafe concentration of (0.1 and 0.2 mM) Cr(VI) were added into the CdS-coated *R. palustris* in MMG medium. Using
the same culture conditions as the N\textsubscript{2} fixation study, the final productivity of the biohybrid cells under VL irradiation was measured. All the experiments were conducted in triplicates.

- **Investigation of the N\textsubscript{2} fixation in sufficient-ammonium circumstance**

To study the N\textsubscript{2} fixation in ammonium-sufficient environment, the prepared CdS-\textit{R. palustris} and natural cells were collected and diluted by fresh MMN medium (Table S1) with 1 mM cysteine to an initial OD\textsubscript{680} at 1.0. The culturing condition is the same as the study in MMG medium. Parallel groups filled with Ar at atmospheric pressure were conducted. The variation of intracellular ammonia and obtained dry weight of solid biomass were measured. All the experiments were conducted in triplicates.

- **Investigation of the contribution of Calvin cycle to the solid biomass synthesis**

To study the contribution of Calvin cycle, the prepared CdS-\textit{R. palustris} and natural cells were collected and diluted by modified propionate-glutamate medium (MPG, Table S1) with 1 mM cysteine, then adjusted to OD\textsubscript{680} at 1.0. Parallel groups of 30 mL of the prepared solution were aliquoted into the 60 mL clear collection vials filled with pure N\textsubscript{2} or Ar gas at atmospheric pressure and incubated by the same conditions. The dry weight of the obtained solid biomass of all the experimental groups were measured. All the experiments were conducted in triplicates.

- **Investigation of the photoautotrophic growth of the natural and biohybrid cells**

The prepared CdS-coated \textit{R. palustris} cells and the natural cells were collected and diluted by
the photoautotrophic medium (Table S1) with 1mM cysteine, then adjusted to OD$_{680}$ at 1.0. Parallel groups of 30 mL of the prepared solution were aliquoted into the 60 mL clear collection vials filled with N$_2$/Ar and 5 mL pure CO$_2$ in the head space. All the vials were incubated by the same conditions as N$_2$ fixation study. The dry weight of the obtained solid biomass of all the experimental groups were measured. All the experiments were conducted in triplicates.

- **Feasibility study of the CdS-coated R. palustris for practical application**

To investigate the feasibility of the biohybrid cells for practical application, equal molar of carbon of the glycerol and crude glycerol from industry are used to substitute the malate (45 mM) in the MMG medium ((crude) glycerol medium, Table S1). The simulated solar provided by a 300W xenon lamp with solar simulator accessories (Air Mass 1.5 Filters, 100 W m$^{-2}$) is used to substitute the VL irradiation. The combination of VL or solar with the different carbon sources were set. The vials were incubated by the same conditions as N$_2$ fixation study. The dry weight of the obtained solid biomass of all the experimental groups were measured. In addition, a 12h:12h solar/dark cycle was applied to both the CdS-coated *R. palustris* cells and natural cells using crude glycerol as carbon source. The experiment last for 9 days. The variation of cell density in the experimental groups were monitored, and the final dry weight of soli biomass are measured.

- **Investigation of the stability of the biohybrid cells**

The cells at the beginning of the experiment and after 9 days were collected for study. The relative respiration activity of the used biohybrid cells was measured by mixing the sample
with 2,3,5-triphenyl tetrazolium chloride (TTC) and measuring the absorbance at 484 nm by a spectrophotometer (BlueStar A Split Beam, LabTech, USA). Partial sample of the biohybrid cells was also prepared for the observation under HRTEM. To measure the bacterial membrane integrity, LIVE/DEAD BacLight Bacterial Viability Kit (L13152, Life technologies, USA) was applied to stain the cells and observed under a fluorescence microscope (Nikon E80i, Japan). The potential leakage of the Cd²⁺ into the solution after the N2 fixation study was measured by the AAS (Hitachi Z2300 flame, Japan).

For all the experimental results, the means and standard deviations from triplicate experiments were calculated by Microsoft Excel 2016 and Origin Lab 8.5. The Student's t-test in SPSS 20.0 was used to detect significant differences in experiments. A \(p \) value < 0.05 was defined as statistically significant.
Supplementary Figures

Fig. S1 Graphic illustration of cell maintenance, rapid cell accumulation, biohybrid cell preparation and N₂ fixation study.
Fig. S2 The solid biomass productivity of the natural cells supplemented with different concentration of ammonium (2.5-10 mM)
Fig. S3 (a) H₂ production in the head space of the vial and (b) intracellular ammonia concentration of the natural and biohybrid cells in the N₂ fixation study in N-deficient medium without light illumination.
Fig. S4 The chemoheterotrophic growth curves of the biohybrid cells with different amount of CdS NPs in darkness. Nutrient broth is used as the culture medium.
Fig. S5 Hydrogen production (in the head space of the vial) of the biohybrid cells during N\textsubscript{2} fixation study in the N-sufficient medium under Ar and N\textsubscript{2}.
Fig. S6 Biomass production of natural and biohybrid cells using malate/propionate without NH₄⁺ in Ar/N₂ atmosphere.
Fig. S7 (a) Hydrogen production and (b) intracellular NH$_4^+$ variation of the natural and biohybrid cells in the photoautotrophic medium under N$_2$.
Fig. S8 (a) Relative respiration activity (%) test at the 1st day and 9th day of the practical application study using crude glycerol under solar/dark cycle, (b) HRTEM and (c) fluorescent microscope figure of the *R. palustris* coated with CdS NPs at the 9th day of the practical application study. The cells were stained by Syto9/PI dyes. Scale bar in (c): 10 um.
Supplementary Tables

Table S1. Media used in this study.

<table>
<thead>
<tr>
<th>Media Type</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic medium (10 ×)</td>
<td>1000 mL</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>6 g</td>
</tr>
<tr>
<td>K₂HPO₄</td>
<td>9 g</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>2 g</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>750 mg</td>
</tr>
<tr>
<td>FeSO₄·7H₂O</td>
<td>118 mg</td>
</tr>
<tr>
<td>Ultrapure H₂O</td>
<td>to 1000 mL</td>
</tr>
<tr>
<td>Modified Basic medium (10 ×)</td>
<td>1000 mL</td>
</tr>
<tr>
<td>MOPS</td>
<td>83.72 g</td>
</tr>
<tr>
<td>Tricine</td>
<td>7.17 g</td>
</tr>
<tr>
<td>β-glycerophosphate·2Na</td>
<td>3.44 g</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>2 g</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>750 mg</td>
</tr>
<tr>
<td>FeSO₄·7H₂O</td>
<td>118 mg</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>480 mg</td>
</tr>
<tr>
<td>Ultrapure H₂O</td>
<td>to 1000 mL</td>
</tr>
<tr>
<td>Trace element solution</td>
<td>100 mL</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>(\text{H}_3\text{BO}_3)</td>
<td>280 mg</td>
</tr>
<tr>
<td>(\text{MnSO}_4 \cdot \text{4H}_2\text{O})</td>
<td>210 mg</td>
</tr>
<tr>
<td>(\text{Na}_2\text{MoO}_4 \cdot \text{2H}_2\text{O})</td>
<td>75 mg</td>
</tr>
<tr>
<td>(\text{ZnSO}_4 \cdot \text{7H}_2\text{O})</td>
<td>24 mg</td>
</tr>
<tr>
<td>(\text{Cu(NO}_3)_2 \cdot \text{3H}_2\text{O})</td>
<td>4 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MN (malate-ammonium) medium(^1)</th>
<th>1000 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic medium (10 ×)</td>
<td>100 mL</td>
</tr>
<tr>
<td>DL-malic acid</td>
<td>45 mM</td>
</tr>
<tr>
<td>(\text{(NH}_4)_2\text{SO}_4)</td>
<td>10 mM</td>
</tr>
<tr>
<td>Trace element solution</td>
<td>1 mL</td>
</tr>
<tr>
<td>EDTA (2% w/v)</td>
<td>1 mL</td>
</tr>
<tr>
<td>4-Aminobenzoic acid (30 mM)</td>
<td>0.1 mL</td>
</tr>
<tr>
<td>NaOH</td>
<td>Adjust pH to 6.8</td>
</tr>
<tr>
<td>Ultrapure (\text{H}_2\text{O})</td>
<td>to 1000 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SMN (supplemented malate-ammonium) medium</th>
<th>1000 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN medium</td>
<td>1000 mL</td>
</tr>
<tr>
<td>Casein hydrolysate</td>
<td>3 g</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>3 g</td>
</tr>
<tr>
<td>MMN (modified malate-ammonium) medium</td>
<td>1000 mL</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Modified Basic medium (10 ×)</td>
<td>100 mL</td>
</tr>
<tr>
<td>DL-malic acid</td>
<td>45 mM</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>2.5, 5.0, 7.5, 10 mM</td>
</tr>
<tr>
<td>Cysteine</td>
<td>1 mM</td>
</tr>
<tr>
<td>Trace element solution</td>
<td>1 mL</td>
</tr>
<tr>
<td>EDTA (2% w/v)</td>
<td>1 mL</td>
</tr>
<tr>
<td>4-Aminobenzoic acid (30 mM)</td>
<td>0.1 mL</td>
</tr>
<tr>
<td>NaOH</td>
<td>Adjust pH to 6.8</td>
</tr>
<tr>
<td>Ultrapure H₂O</td>
<td>To 1000 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MMG (modified malate-glutamate) medium</th>
<th>1000 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Basic medium (10 ×)</td>
<td>100 mL</td>
</tr>
<tr>
<td>DL-malic acid</td>
<td>45 mM</td>
</tr>
<tr>
<td>DL-glutamic acid</td>
<td>2 g</td>
</tr>
<tr>
<td>Cysteine</td>
<td>1 mM</td>
</tr>
<tr>
<td>Trace element solution</td>
<td>1 mL</td>
</tr>
<tr>
<td>EDTA (2% w/v)</td>
<td>1 mL</td>
</tr>
<tr>
<td>4-Aminobenzoic acid (30 mM)</td>
<td>0.1 mL</td>
</tr>
<tr>
<td>NaOH</td>
<td>Adjust pH to 6.8</td>
</tr>
<tr>
<td>Ultrapure H₂O</td>
<td>To 1000 mL</td>
</tr>
</tbody>
</table>
MPN (modified propionate-ammonium) medium

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Basic medium (10 ×)</td>
<td>100 mL</td>
</tr>
<tr>
<td>Propionic acid</td>
<td>45 mM</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>2.5, 5.0, 7.5, 10 mM</td>
</tr>
<tr>
<td>Cysteine</td>
<td>1 mM</td>
</tr>
<tr>
<td>Trace element solution</td>
<td>1 mL</td>
</tr>
<tr>
<td>EDTA (2% w/v)</td>
<td>1 mL</td>
</tr>
<tr>
<td>4-Aminobenzoic acid (30 mM)</td>
<td>0.1 mL</td>
</tr>
<tr>
<td>NaOH</td>
<td>Adjust pH to 6.8</td>
</tr>
<tr>
<td>Ultrapure H₂O</td>
<td>To 1000 mL</td>
</tr>
</tbody>
</table>

MPG (modified propionate-glutamate) medium

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Basic medium (10 ×)</td>
<td>100 mL</td>
</tr>
<tr>
<td>Propionic acid</td>
<td>45 mM</td>
</tr>
<tr>
<td>DL-glutamic acid</td>
<td>2 g</td>
</tr>
<tr>
<td>Cysteine</td>
<td>1 mM</td>
</tr>
<tr>
<td>Trace element solution</td>
<td>1 mL</td>
</tr>
<tr>
<td>EDTA (2% w/v)</td>
<td>1 mL</td>
</tr>
<tr>
<td>4-Aminobenzoic acid (30 mM)</td>
<td>0.1 mL</td>
</tr>
<tr>
<td>NaOH</td>
<td>Adjust pH to 6.8</td>
</tr>
<tr>
<td>Ultrapure H₂O</td>
<td>To 1000 mL</td>
</tr>
<tr>
<td>Photoautotrophic medium</td>
<td>1000 mL</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Modified Basic medium (10 ×)</td>
<td>100 mL</td>
</tr>
<tr>
<td>DL-glutamic acid</td>
<td>2 g</td>
</tr>
<tr>
<td>Cysteine</td>
<td>1 mM</td>
</tr>
<tr>
<td>Trace element solution</td>
<td>1 mL</td>
</tr>
<tr>
<td>EDTA (2% w/v)</td>
<td>1 mL</td>
</tr>
<tr>
<td>4-Aminobenzoic acid (30 mM)</td>
<td>0.1 mL</td>
</tr>
<tr>
<td>NaOH</td>
<td>Adjust pH to 6.8</td>
</tr>
<tr>
<td>Ultrapure H₂O</td>
<td>To 1000 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Crude) glycerol medium</th>
<th>1000 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Basic medium (10 ×)</td>
<td>100 mL</td>
</tr>
<tr>
<td>(Crude) glycerol</td>
<td>60 mM</td>
</tr>
<tr>
<td>DL-glutamic acid</td>
<td>2 g</td>
</tr>
<tr>
<td>Cysteine</td>
<td>1 mM</td>
</tr>
<tr>
<td>Trace element solution</td>
<td>1 mL</td>
</tr>
<tr>
<td>EDTA (2% w/v)</td>
<td>1 mL</td>
</tr>
<tr>
<td>4-Aminobenzoic acid (30 mM)</td>
<td>0.1 mL</td>
</tr>
<tr>
<td>NaOH</td>
<td>Adjust pH to 6.8</td>
</tr>
<tr>
<td>Ultrapure H₂O</td>
<td>To 1000 mL</td>
</tr>
</tbody>
</table>
Table S2. CdS coating efficiency (CE)

<table>
<thead>
<tr>
<th>Cd(^{2+}) concentration</th>
<th>Remained Cd(^{2+}) in medium</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 mM (5.62 mg/L)</td>
<td>0.06 mg/L</td>
<td>98.93 %</td>
</tr>
<tr>
<td>0.10 mM (11.24 mg/L)</td>
<td>0.28 mg/L</td>
<td>97.51 %</td>
</tr>
<tr>
<td>0.15 mM (16.86 mg/L)</td>
<td>0.93 mg/L</td>
<td>94.48 %</td>
</tr>
<tr>
<td>0.20 mM (22.48 mg/L)</td>
<td>1.41 mg/L</td>
<td>93.75 %</td>
</tr>
<tr>
<td>0.25 mM (28.10 mg/L)</td>
<td>2.74 mg/L</td>
<td>90.26 %</td>
</tr>
<tr>
<td>0.30 mM (33.72 mg/L)</td>
<td>9.02 mg/L</td>
<td>74.23 %</td>
</tr>
<tr>
<td>0.35 mM (39.34 mg/L)</td>
<td>13.21 mg/L</td>
<td>66.41 %</td>
</tr>
<tr>
<td>0.40 mM (44.96 mg/L)</td>
<td>22.24 mg/L</td>
<td>50.54 %</td>
</tr>
</tbody>
</table>
Table S3. Elemental composition and the calculated heat energy of combustion of the natural *R. palustris* cells and CdS-coated *R. palustris*.

<table>
<thead>
<tr>
<th>Biomass composition</th>
<th>R. palustris</th>
<th>CdS-R. palustris</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (%)</td>
<td>51.17</td>
<td>51.89</td>
</tr>
<tr>
<td>H (%)</td>
<td>9.15</td>
<td>10.08</td>
</tr>
<tr>
<td>O (%)</td>
<td>30.12</td>
<td>29.06</td>
</tr>
<tr>
<td>N (%)</td>
<td>9.56</td>
<td>8.97</td>
</tr>
<tr>
<td>Molecular formula</td>
<td>CH${2.13}$N${0.16}$O$_{0.44}$</td>
<td>CH${2.33}$N${0.15}$O$_{0.42}$</td>
</tr>
<tr>
<td>Heat energy of combustion (Kcal g$^{-1}$)</td>
<td>5.9433</td>
<td>6.2876</td>
</tr>
</tbody>
</table>
Table S4. Malate consuming efficiency (MCE) of the biohybrid cells and natural cells.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Malate concentration (mM)</th>
<th>Consuming Efficiency (g h(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Natural cells</td>
</tr>
<tr>
<td>0</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>39.19</td>
<td>40.33</td>
</tr>
<tr>
<td>24</td>
<td>33.16</td>
<td>34.23</td>
</tr>
<tr>
<td>36</td>
<td>27.44</td>
<td>28.69</td>
</tr>
<tr>
<td>48</td>
<td>23.54</td>
<td>23.96</td>
</tr>
<tr>
<td>60</td>
<td>19.18</td>
<td>17.95</td>
</tr>
<tr>
<td>72</td>
<td>14.68</td>
<td>12.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S5. Photosynthetic efficiency (PE) calculation of the untreated *R. palustris* and CdS-coated *R. palustris* cultured in ammonium-insufficient MMG medium.

<table>
<thead>
<tr>
<th></th>
<th>Natural cells</th>
<th>Biohybrid cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass productivity (g h⁻¹)</td>
<td>0.9613 × 10⁻³</td>
<td>2.6964 × 10⁻³</td>
</tr>
<tr>
<td>− ΔH (Kcal g⁻¹)</td>
<td>5.9433</td>
<td>6.2876</td>
</tr>
<tr>
<td>TLEI (Kcal h⁻¹)</td>
<td>0.10775</td>
<td>0.10775</td>
</tr>
<tr>
<td>− ΔH' (Kcal g⁻¹)</td>
<td>2.387</td>
<td>2.387</td>
</tr>
<tr>
<td>MCE (g h⁻¹)</td>
<td>0.0565</td>
<td>0.0604</td>
</tr>
<tr>
<td>PE (%)</td>
<td>2.35</td>
<td>6.73</td>
</tr>
</tbody>
</table>
References: