Supporting Information

Electrical decoupling of microbial electrochemical reactions enables spontaneous H\textsubscript{2} evolution

Xi Chen1, Fernanda Leite Lobo2, Yanhong Bian,1 Lu Lu1, Xiaowen Chen3, Melvin P. Tucker3, Yuxi Wang4, Zhiyong Jason Ren 1*

1 Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, United States
2 Departamento de Engenharia Hidráulica e Ambiental, Universidade Federal do Ceará, Brazil
3 National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, United States
4 The Earth Institute and School of International and Public Affairs, Columbia University, New York, NY 10027, United States

*Correspondence: zjren@princeton.edu
Figure S1 Time-course voltage (A) and current (B) of the energy generation part output (EG output) and hydrogen evolution input (HE input) during multiple cycles of operation.
Figure S2 Picture of the system. PMS: power management system.