Supplementary Information

Prospects for finding Junge variability-lifetime relationships for micropollutants in the Danube river.

Claudia Coll*, Michael D. Sohn †, Claudia Lindim †, Anna Sobek †, Matthew MacLeod* †

†Department of Environmental Sciences and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden
‡Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS70-108B, Berkeley, California 94720, United States
*Corresponding authors

Contents

14 Monitoring stations in the Danube river as used for STREAM-EU ...2
15 Properties of the monitored micropollutants that were used in the empirical Junge relationship2
16 Method used to fit measured concentrations of JDS3-CW to log-normal distributions and to estimate the measurements below LOQ. ..3
17 Evaluation of sorption of cationic compounds to soil and sediment (K_d calculation).5
18 STREAM-EU concentration predictions for the JDS3 monitoring campaign ...7
19 Junge relationships from STREAM-EU synthetic data ..8
20 Relative standard deviation and half-lives of micropollutants ...9
21 Concentrations of micropollutants in the JDS3 vs predicted concentrations for hypothetical chemicals in STREAM-EU ...10
22 REFERENCES ...19

References
Monitoring stations in the Danube river as used for STREAM-EU

Figure S1. Map used in Lindim, et. al.1 displaying the 68 sampling points along the Danube river that were modeled in STREAM-EU1,2. The daily concentrations of 4 hypothetical micropollutants were modeled in these stations for the year 2013 and used to calculate spatial and temporal Junge variability-lifetime relationships.

Properties of the monitored micropollutants that were used in the empirical Junge relationship

Table S1. Micropollutants monitored by Croatian Waters in the third Joint Danube Survey (JDS3-CW) and their relevant properties.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CAS</th>
<th>Chemical group and function</th>
<th>Structure</th>
<th>log D_{OW}</th>
<th>Main ionic form at pH 6.5-8.5</th>
<th>log K_{AW}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitriptyline</td>
<td>50-48-6</td>
<td>Pharmaceutical: Antidepressant</td>
<td></td>
<td>2.48</td>
<td>Cationic</td>
<td>−5.55</td>
</tr>
<tr>
<td>Caffeine</td>
<td>58-08-2</td>
<td>Stimulant</td>
<td></td>
<td>−0.55</td>
<td>Neutral</td>
<td>−8.83</td>
</tr>
</tbody>
</table>
| **Compound** | **CAS Number** | **Pharmaceutical:** | **pKᵢ** | **Main Ionic Form** | **pKᵢ**
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine</td>
<td>298-46-4</td>
<td>Anti-epileptic</td>
<td>2.77</td>
<td>Neutral</td>
<td>-8.35</td>
</tr>
<tr>
<td>Codeine</td>
<td>76-57-3</td>
<td>Analgesic/opioid</td>
<td>-0.45</td>
<td>Cationic</td>
<td>-11.51</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>125-29-1</td>
<td>Analgesic</td>
<td>0.73</td>
<td>Cationic</td>
<td>-9.58</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>137-58-6</td>
<td>Anesthetic</td>
<td>2.33</td>
<td>Cationic</td>
<td>-8.27</td>
</tr>
<tr>
<td>Nicotine</td>
<td>54-11-5</td>
<td>Stimulant</td>
<td>-0.04</td>
<td>Cationic</td>
<td>-6.91</td>
</tr>
<tr>
<td>Tramadol</td>
<td>27203-92-5</td>
<td>Analgesic/opioid</td>
<td>0.62</td>
<td>Cationic</td>
<td>-9.20</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>93413-69-5</td>
<td>Antidepressant</td>
<td>1.22</td>
<td>Cationic</td>
<td>-9.08</td>
</tr>
</tbody>
</table>

Note: ‡ obtained from ChemSpider. * Obtained from ChemAxon Chemicalize web-based software (www.chemicalize.com). Distribution coefficient (log D_{ow}) was obtained at pH 7.4, main ionic form was deduced from the software-estimated strongest acidic or basic pKa. † Calculated from Henry’s Law constant at 25°C obtained from EPI Suite V4.11.

Method used to fit measured concentrations of JDS3-CW to log-normal distributions and to estimate the measurements below LOQ.

The empirical relative standard deviation (σ/μ) for spatial variability was calculated for the nine micropollutants measured in the JDS3 (Table S1). To avoid bias in the estimation of means and standard deviations calculated only from measurements above LOQ, we imputed values below LOQ by fitting the concentration measurements to log-normal distributions and extrapolating values in the lower tail (as recommended for censored data 4, 5) and not from the parameters of the fitted log-normal distribution.

Concentrations in (ng/L) obtained for compounds measured in the JDS3-CW were first log-transformed and then inverse-ranked from highest to smallest, meaning that if N concentrations were below LOQ, then the
highest concentration corresponding to rank 68 and the lowest to 68-N. An empirical cumulative probability \(Y \) was calculated for each log-concentration with Equation S1.

\[
Y = \frac{\text{rank}}{68}
\]

A modeled cumulative probability \(Y' \) according to a normal distribution was calculated with initial estimated values for the mean \(\mu \) and standard deviation of \(Y \).

Based on a method described in Reference 3, the squared error between each \(Y \) and \(Y' \) was calculated and summed. Using the “Solver” tool in Excel, the first estimates of \(\mu_{\text{fit-lognorm}} \) and \(\sigma_{\text{fit-lognorm}} \) were changed in order to minimize the sum of squared errors.

The \(N \) concentrations below LOQ were then calculated using the optimized \(\mu_{\text{fit-lognorm}} \) and \(\sigma_{\text{fit-lognorm}} \) and combined with the original concentration measurements for the subsequent calculation of \(\sigma / \mu \) intended for the calibration of the empirical Junge relationship. The \(\mu_{\text{fit-lognorm}} \) and \(\sigma_{\text{fit-lognorm}} \) were not back-transformed and used directly for the calculation of \(\sigma / \mu \), because this is known to cause bias in the estimation of central-tendency and dispersion parameters of small skewed samples.

Figure S2 shows the graphical visualization of the fitting.

Figure S2. Cumulative distribution function for the log-normal concentrations measured in the JDS3-CW (in blue), the fitted normal distribution (in orange) and the imputed concentrations below LOQ (in yellow).
A single arithmetic mean, standard deviation and subsequently the relative standard deviation σ/μ, were calculated for each micropollutant using the concentrations measurements above the LOQ (in blue) combined with the imputed data below the LOQ (in yellow) (as recommended for censored data $^4,^5$) and not from the parameters of the fitted log-normal distribution (in orange).

Compounds where all concentrations were close to LOQ (i.e. sulfamethoxazole) were excluded for this part of analysis due to the low resolution and measurement error.

Evaluation of sorption of cationic compounds to soil and sediment (K_d calculation).

Seven of the compounds used in the empirical Junge relationship (shown in Tables S1 and S6) occur mainly as cationic species in freshwater. Sorption of cationic pharmaceuticals to soil and sediment is higher compared to neutral pharmaceuticals with similar K_{ow}, and thus sorption might be underestimated by a criteria based only on D_{ow}. Therefore sediment-water partition coefficients (K_d) were calculated according to Droge 7 to assess degree of sorption to sediment and dissolved matter from the distribution coefficient D_{ow}. The estimated K_d of the seven cationic compounds is lower than the K_d calculated with the sorption criteria we used (i.e., log $D_{ow} < 4$, see S1), so therefore we decided these chemicals meet our criteria and can be included in this study.

The distribution coefficient (K_d) was calculated using two approaches:

1) Using a refined sorption model for organic cations to soil and clay (Eq. S4), by calculating D_{OC} (Eq. S2)7

\[
\log D_{OC} = 1.53V_x + 0.32NA_i - 0.27
\]

and K_{CEC} (Eq. S3) from the micropollutant molecule volume V_x and surface area NA_i.7

\[
\log K_{CEC,clay} = 1.22V_x + 0.22NA_i + 1.09
\]

\[
K_d = K_{CEC,clay} \cdot (CEC_{soil} - 3.4f_{OC}) + f_{OC} \cdot D_{OC}
\]

2) Using a calculated from a traditional linear regression between D_{OC} and D_{ow} (Eq. S5)8, and then using this D_{OC} for calculation of K_d as in Equation S4.

\[
D_{OC} = 10^{0.31 \log D_{ow} + 2.78}
\]

The average and maximum concentrations of dissolved organic carbon (DOC) measurements from JDS3-CW were taken into account for the calculations of K_d and since the exact composition of the DOC in the Danube river is unknown, the properties of standard Eurosoils ES-1 and ES-57 were used.
Table S2. Average and maximum dissolved organic matter (DOM) parameters obtained from the JDS3-CW data.9

| DOM | average | 2.98 mg/L |
| | maximum | 5.50 mg/L |

Table S3. Standard Eurosoil 1 and 5 (ES-1 and ES-5) characteristics used on the K_d calculations according to Reference 6. ES-1 is the standard soil with highest content of clay and lowest f_{OC}, and ES5 the one with highest f_{OC} and lowest clay content.7

<table>
<thead>
<tr>
<th>Soil type</th>
<th>f_{OC}</th>
<th>CEC$_{soil}$</th>
<th>CEC$_{clay}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-1</td>
<td>0.013</td>
<td>0.299 mmol/kg</td>
<td>0.2548 mol/kg</td>
</tr>
<tr>
<td>ES-5</td>
<td>0.0925</td>
<td>0.327 mmol/kg</td>
<td>0.0125 mol/kg</td>
</tr>
</tbody>
</table>

Table S4. Calculation of K_d for two different types of soil (ES-1 and ES-5) and average or maximum dissolved organic matter (DOM) measured in the Danube during the JDS3. The K_d of the compounds in the empirical Junge relationship do not exceed the K_d of the theoretical D_{OW} limit chosen.

<table>
<thead>
<tr>
<th>Compound</th>
<th>log D_{OW}</th>
<th>log D_{OC}</th>
<th>log K_CEC</th>
<th>log K_d</th>
<th>log K_d</th>
<th>log K_d</th>
<th>log K_d</th>
<th>log K_d</th>
<th>log K_d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Eq S5)</td>
<td>(Eq S2)</td>
<td>(Eq S3)</td>
<td>(Eq S5+S4)</td>
<td>(Eq S2+S4)</td>
<td>(Eq S5+S4)</td>
<td>(Eq S2+S4)</td>
<td>(Eq S5+S4)</td>
<td>(Eq S2+S4)</td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>2.48</td>
<td>3.55</td>
<td>3.82</td>
<td>4.88</td>
<td>-1.23</td>
<td>-1.23</td>
<td>-2.42</td>
<td>-2.33</td>
<td>-0.97</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>2.77</td>
<td>3.64</td>
<td>2.50</td>
<td>4.30</td>
<td>-1.79</td>
<td>-1.82</td>
<td>-2.71</td>
<td>-3.08</td>
<td>-1.52</td>
</tr>
<tr>
<td>Codeine</td>
<td>-0.45</td>
<td>2.64</td>
<td>3.63</td>
<td>4.72</td>
<td>-1.40</td>
<td>-1.39</td>
<td>-2.68</td>
<td>-2.50</td>
<td>-1.13</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>0.73</td>
<td>3.01</td>
<td>3.63</td>
<td>4.72</td>
<td>-1.40</td>
<td>-1.39</td>
<td>-2.65</td>
<td>-2.50</td>
<td>-1.13</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>2.33</td>
<td>3.50</td>
<td>3.20</td>
<td>4.38</td>
<td>-1.72</td>
<td>-1.73</td>
<td>-2.75</td>
<td>-2.87</td>
<td>-1.45</td>
</tr>
<tr>
<td>Nicotine</td>
<td>-0.04</td>
<td>2.77</td>
<td>2.15</td>
<td>3.54</td>
<td>-2.55</td>
<td>-2.57</td>
<td>-3.54</td>
<td>-3.77</td>
<td>-2.29</td>
</tr>
<tr>
<td>Tramadol</td>
<td>0.62</td>
<td>2.97</td>
<td>3.77</td>
<td>4.84</td>
<td>-1.28</td>
<td>-1.27</td>
<td>-2.55</td>
<td>-2.38</td>
<td>-1.02</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>1.22</td>
<td>3.16</td>
<td>3.68</td>
<td>4.77</td>
<td>-1.35</td>
<td>-1.34</td>
<td>-2.59</td>
<td>-2.45</td>
<td>-1.08</td>
</tr>
<tr>
<td>Theoretical sorption limit</td>
<td>4</td>
<td>4.02</td>
<td>3.82</td>
<td>4.88</td>
<td>-1.22</td>
<td>-1.23</td>
<td>-2.24</td>
<td>-2.33</td>
<td>-0.95</td>
</tr>
</tbody>
</table>
STREAM-EU concentration predictions for the JDS3 monitoring campaign

Figure S3. Normalized concentrations predicted for the corresponding date and station sampled during the third Joint Danube Survey (JDS3). The normalization was relative to the concentration of the compound in the first station (S1).

The normalized modeled concentrations ($C/C_{\text{station 1}}$) have more variation for compounds with shorter half-life (i.e. C07 with $\tau = 7$ days), than for longer half-lives (i.e. C360 with $\tau = 360$ days). Variation is similar for the three most persistent hypothetical compounds with half-lives of 90, 180 and 360 days.
Figure S4. Junge relationship of STREAM-EU concentrations predicted for dates and location of measurements performed in the Joint Danube Survey (JDS3). Only the four compounds with shortest half-lives (7, 15, 30 and 90 days) were used to derive this relationship.

Junge relationships from STREAM-EU synthetic data

Table S5. Summary of Junge relationships for four hypothetical chemicals with concentrations modeled by STREAM-EU. The parameter \(a \) represents the intercept, and \(b \) the slope of the Junge relationships. The temporal relationships were calculated for 67 monitoring stations along the Danube river, the spatial relationships were calculated daily for the year 2013.

<table>
<thead>
<tr>
<th></th>
<th>Temporal relationships Mean (5th, 95th percentiles)</th>
<th>Spatial relationship Mean (5th, 95th percentiles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number</td>
<td>67</td>
<td>365</td>
</tr>
<tr>
<td>(a)</td>
<td>1.33 (0.62, 2.98)</td>
<td>1.32 (0.99, 1.89)</td>
</tr>
<tr>
<td>(b)</td>
<td>(-0.327 (-0.651, -0.088))</td>
<td>(-0.154 (-0.212, -0.103))</td>
</tr>
<tr>
<td>p-value (slope)</td>
<td>0.027 (0.002, 0.085)</td>
<td>0.079 (0.024, 0.181)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.95 (0.84, 0.99)</td>
<td>0.85 (0.67, 0.95)</td>
</tr>
</tbody>
</table>
Note: the 5th and 95th percentiles are shown instead of a confidence interval.

Relative standard deviation and half-lives of micropollutants

Table S6. Relative Standard Deviations (σ/μ) and half-lives (τ) of micropollutants used to generate an empirical spatial Junge relationship. σ/μ were calculated from concentrations measured in the JDS3-CW, imputing measurements below limits of quantification (LOQ). In cases where there were two or more half-lives reported in the literature τ is the geometric mean, and the 95% confidence factor (Cf) is reported as described in reference 10.

<table>
<thead>
<tr>
<th>Micropollutant</th>
<th>Empirical σ/μ in the Danube river</th>
<th>Literature τ (days)</th>
<th>Cf in τ</th>
<th>References for τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>amitriptyline</td>
<td>0.8034</td>
<td>5.0</td>
<td>NA</td>
<td>11</td>
</tr>
<tr>
<td>caffeine</td>
<td>1.3448</td>
<td>5.7</td>
<td>3.39</td>
<td>11-19</td>
</tr>
<tr>
<td>carbamazepine</td>
<td>0.5461</td>
<td>181.8</td>
<td>2.37</td>
<td>12, 14-20</td>
</tr>
<tr>
<td>codeine</td>
<td>0.7877</td>
<td>34.6</td>
<td>1.03</td>
<td>12, 21</td>
</tr>
<tr>
<td>hydrocodone</td>
<td>0.7811</td>
<td>18.5</td>
<td>NA</td>
<td>12</td>
</tr>
<tr>
<td>lidocaine</td>
<td>1.0447</td>
<td>100.6</td>
<td>NA</td>
<td>22</td>
</tr>
<tr>
<td>nicotine</td>
<td>0.7773</td>
<td>3.2</td>
<td>NA</td>
<td>12</td>
</tr>
<tr>
<td>tramadol</td>
<td>1.0067</td>
<td>81.4</td>
<td>1.84</td>
<td>22, 23</td>
</tr>
<tr>
<td>venlafaxine</td>
<td>0.8945</td>
<td>44.7</td>
<td>3.43</td>
<td>22, 24</td>
</tr>
</tbody>
</table>

Several studies have experimental designs with replicates at different conditions (i.e. comparing different study sites) and report more than one half-life for each compound. If this was the case, then the compiled half-lives were first averaged per compound and per study as the geometric mean. Second, all studies for each compound were pooled in order to compute a broad geometric mean for each micropollutant, this geometric mean is reported in the “literature τ”.
Concentrations of micropollutants in the JDS3 vs predicted concentrations for hypothetical chemicals in STREAM-EU

Figure S5. Normalized concentrations measured for amitriptyline in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot’s title, the experimental half-life is shown in brackets.
Figure S6. Normalized concentrations measured for caffeine in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot’s title, the experimental half-life is shown in brackets.
Figure S7. Normalized concentrations measured for carbamazepine in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot’s title, the experimental half-life is shown in brackets.
Figure S8. Normalized concentrations measured for codeine in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot’s title, the experimental half-life is shown in brackets.
Figure S9. Normalized concentrations measured for hydrocodone in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot’s title, the experimental half-life is shown in brackets.
Figure S10. Normalized concentrations measured for lidocaine in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot’s title, the experimental half-life is shown in brackets.
Figure S11. Normalized concentrations measured for nicotine in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180, and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot’s title, the experimental half-life is shown in brackets.
Tramadol (81 days)

\[y = -0.077 + 0.29x \]
\[R^2 = 0.104, \ p-value = 0.00922 \]

\[y = -0.11 + 0.31x \]
\[R^2 = 0.042, \ p-value = 0.104 \]

\[y = -0.16 + -0.039x \]
\[R^2 = 0.00373, \ p-value = 0.88 \]

\[y = -0.22 + -0.5x \]
\[R^2 = 0.0646, \ p-value = 0.0427 \]

\[y = -0.24 + -0.58x \]
\[R^2 = 0.0941, \ p-value = 0.0137 \]

\[y = -0.25 + -0.6x \]
\[R^2 = 0.11, \ p-value = 0.00756 \]
Figure S12. Normalized concentrations measured for tramadol in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot’s title, the experimental half-life is shown in brackets.

Figure S13. Normalized concentrations measured for venlafaxine in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot’s title, the experimental half-life is shown in brackets.
REFERENCES

23. Z. Li, A. Sobek and M. Radke, Flume experiments to investigate the environmental fate of pharmaceuticals and their transformation products in streams, *Environmental Science & Technology*, 2015, **49**, 6009-6017.