Supplementary Information

Theoretical investigations of the mechanism, kinetics and subsequent degradation products of the NO$_3$ radical initiated oxidation of 4-hydroxy-3-hexanone

Ning Zhanga, Fengyang Baib, Xiumei Pana*

aInstitute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, 130024 Changchun, People’s Republic of China

bInstitute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People’s Republic of China
Fig. S1 Optimized geometries of all reactants (R), reaction complexes (ER/EP), transition states (TS), and products (P) at the BH&HLYP/6-311++G(d,p) level for the reaction of 4-hydroxy-4-methyl-2-pentanone (4H4M2P) with NO$_3$ radical. Bond lengths are in angstroms, and angles are in degrees.

(a)

(b)
Fig. S2 Calculated TST, CVT, and CVT/SCT rate constants as a function of $10^{3/T}$ for title reactions in the temperature range of 260-330 K. (a) For reaction path 2. (b) For reaction path 4. (c) For reaction path 5.
Fig. S3 Classical potential energy curve (V_{MPE}), ground-state vibrational adiabatic energy curve (V^0), and zero-point energy curve (ZPE) as functions of s (amu)$^{1/2}$ bohr at the CCSD(T)//BH&HLYP/6-311++G(d,p) level for the reactions. (d) For reaction path1, (e) For reaction path2. (f) For reaction path4. (g) For reaction path5.
Fig. S4 IRC plots of transition states (TS1-TS5) of title reaction obtained at the BH&HLYP/6-311++G(d,p) level of theory.
<table>
<thead>
<tr>
<th>Species</th>
<th>BH&HLYP/6-311++G(d, p)</th>
<th><s^2></th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃CH₂C(O)CH(OH)C₂H₅</td>
<td>27, 87, 100, 182, 213, 237, 239, 260, 323, 326, 436, 533, 565, 664, 786, 810, 845, 923, 1033, 1039, 1084, 1103, 1126, 1175, 1187, 1213, 1275, 1323, 1339, 1371, 1437, 1438, 1462, 1473, 1481, 1499, 1536, 1545, 1550, 1553, 1562, 1878, 3085, 3103, 3118, 3123, 3126, 3147, 3156, 3181, 3186, 3192, 3199, 4023</td>
<td>0.0</td>
</tr>
<tr>
<td>NO₃</td>
<td>445, 703, 831, 963, 1445, 1756</td>
<td>0.756</td>
</tr>
<tr>
<td>HNO₃</td>
<td>491, 641, 731, 837, 1016, 1409, 1459, 1862, 3899, 1300i, 21, 29, 41, 57, 87, 94, 148, 169, 222, 234, 239, 264, 337, 356, 415, 438, 489, 500, 563, 695, 715, 791, 808, 820, 837, 877, 926, 1018, 1031, 1037, 1080, 1107, 1140, 1166, 1199, 1208, 1248, 1263, 1323, 1339, 1371, 1413, 1441, 1443, 1446, 1464, 1472, 1487, 1503, 1536, 1551, 1562, 1763, 1887, 3067, 3091, 3104, 3127, 3157, 3169, 3182, 3192, 3195, 3197, 3252, 4026</td>
<td>0.0</td>
</tr>
<tr>
<td>TS1</td>
<td>1199, 1208, 1248, 1263, 1288, 1339, 1371, 1413, 1441, 1443, 1446, 1464, 1472, 1487, 1503, 1536, 1551, 1562, 1763, 1887, 3067, 3091, 3104, 3127, 3157, 3169, 3182, 3192, 3195, 3199, 4023</td>
<td>0.765</td>
</tr>
<tr>
<td>TS2</td>
<td>1279i, 30, 51, 54, 67, 91, 103, 139, 178, 193, 211, 238, 249, 277, 321, 342, 450, 469, 525, 597, 687, 716, 784, 809, 816, 840, 882, 922, 1012, 1037, 1055, 1084, 1112, 1125, 1168, 1189, 1204, 1223, 1270, 1341, 1355, 1373, 1420, 1441, 1451, 1464, 1467, 1484, 1533, 1534, 1541, 1552, 1563, 1763, 1865, 3052, 3101, 3116, 3147, 3153, 3179, 3182, 3184, 3197, 3216, 4023</td>
<td>0.775</td>
</tr>
<tr>
<td>TS4</td>
<td>1322i, 17, 30, 51, 64, 87, 100, 128, 170, 205, 214, 231, 258, 278, 321, 343, 367, 467, 536, 586, 685, 713, 778, 799, 837, 853, 871, 936, 1020, 1034, 1078, 1095, 1107, 1132, 1162, 1184, 1209, 1226, 1257, 1326, 1350, 1387, 1434, 1441, 1451, 1459, 1474, 1482, 1502, 1543, 1545, 1553, 1761, 1887, 3105, 3115, 3119, 3127, 3149, 3163, 3176, 3194, 3197, 3202, 4021</td>
<td>0.774</td>
</tr>
<tr>
<td>TS5</td>
<td>953i, 20, 35, 45, 72, 95, 97, 121, 169, 180, 217, 260, 324, 342, 429, 443, 490, 502, 568, 573, 678, 729, 786, 807, 837, 859, 890, 924, 1017, 1033, 1042, 1063, 1106, 1133, 1158, 1195, 1218, 1273, 1281, 1333, 1344, 1376, 1419, 1427, 1440, 1459, 1472, 1478, 1498, 1510, 1522, 1545, 1552, 1762, 1879, 3074, 3088, 3121, 3127, 3148, 3161, 3193, 3194, 3200, 3237, 3991</td>
<td>0.764</td>
</tr>
<tr>
<td>EP3</td>
<td>0.775</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EP4</th>
<th>0.756</th>
</tr>
</thead>
<tbody>
<tr>
<td>22, 34, 41, 53, 77, 85, 95, 105, 120, 162, 197, 221, 251, 262, 336, 341, 354, 504, 527, 599, 672, 749, 792, 850, 853, 919, 939, 1029, 1037, 1068, 1086, 1092, 1113, 1165, 1191, 1198, 1267, 1322, 1343, 1421, 1447, 1458, 1464, 1476, 1489, 1526, 1530, 1539, 1546, 1554, 1829, 3043, 3109, 3125, 3129, 3137, 3147, 3183, 3197, 3202, 3251, 3334, 4016</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EP5</th>
<th>0.755</th>
</tr>
</thead>
<tbody>
<tr>
<td>17, 24, 32, 64, 79, 84, 96, 107, 144, 191, 216, 252, 279, 322, 339, 400, 429, 511, 564, 661, 667, 679, 719, 741, 781, 815, 844, 862, 995, 1036, 1042, 1109, 1124, 1153, 1183, 1216, 1265, 1281, 1333, 1371, 1415, 1438, 1440, 1463, 1470, 1476, 1496, 1508, 1516, 1545, 1552, 1846, 1878, 3044, 3093, 3122, 3126, 3146, 3147, 3191, 3193, 3199, 3203, 3306, 3585, 4003</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CH₂CH₂C(O)CH(OH)C₂H₃</th>
<th>0.755</th>
</tr>
</thead>
<tbody>
<tr>
<td>26, 93, 101, 156, 188, 234, 236, 263, 323, 342, 427, 458, 534, 563, 665, 781, 812, 899, 944, 1034, 1041, 1101, 1124, 1153, 1169, 1211, 1225, 1285, 1338, 1370, 1436, 1438, 1461, 1469, 1482, 1499, 1536, 1550, 1562, 1882, 3079, 3087, 3088, 3104, 3119, 3156, 3182, 3186, 3242, 3358, 4024</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CH₃CHC(O)CH(OH)C₂H₃</th>
<th>0.780</th>
</tr>
</thead>
<tbody>
<tr>
<td>42, 98, 108, 133, 204, 233, 244, 261, 328, 347, 440, 548, 595, 684, 763, 806, 846, 926, 1036, 1037, 1077, 1108, 1147, 1170, 1195, 1227, 1290, 1338, 1371, 1439, 1448, 1458, 1473, 1491, 1531, 1536, 1541, 1550, 1562, 1639, 3087, 3091, 3102, 3119, 3131, 3154, 3180, 3184, 3219, 3302, 4024</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CH₂CH₂C(O)CH(O)C₂H₃</th>
<th>0.776</th>
</tr>
</thead>
<tbody>
<tr>
<td>35, 56, 98, 177, 216, 224, 239, 325, 341, 361, 416, 540, 581, 629, 778, 818, 827, 929, 1024, 1055, 1102, 1119, 1128, 1148, 1231, 1319, 1327, 1371, 1419, 1430, 1468, 1471, 1516, 1529, 1544, 1549, 1550, 1553, 1569, 1675, 3076, 3109, 3115, 3124, 3140, 3169, 3190, 3194, 3199, 3210, 3998</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C₂H₅C(O)CH(OH)CH₂CH₃</th>
<th>0.756</th>
</tr>
</thead>
<tbody>
<tr>
<td>20, 79, 85, 122, 182, 211, 217, 247, 305, 319, 428, 487, 541, 640, 652, 784, 840, 917, 1020, 1034, 1062, 1103, 1118, 1163, 1180, 1221, 1262, 1318, 1340, 1398, 1436, 1450, 1473, 1477, 1500, 1530, 1542, 1545, 1553, 1882, 3013, 3030, 3124, 3126, 3130, 3149, 3189, 3192, 3200, 3278, 4022</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C₂H₅C(O)CH(OH)CH₂CH₂</th>
<th>0.755</th>
</tr>
</thead>
<tbody>
<tr>
<td>26, 88, 117, 151, 185, 220, 246, 313, 326, 343, 429, 521, 547, 574, 674, 786, 848, 870, 919, 1035, 1084, 1101, 1110, 1162, 1174, 1197, 1271, 1291, 1325, 1356, 1430, 1436, 1470, 1477, 1498, 1511, 1523, 1546, 1553, 1877, 3079, 3084, 3123, 3126, 3146, 3147, 3192, 3199, 3217, 3326, 3989</td>
<td></td>
</tr>
</tbody>
</table>
Table S2 The relative energy (ΔE), enthalpy (ΔH), and Gibbs free energy (ΔG) of the H-abstraction reaction of 4H4M2P with the NO$_3$ radical calculated at CCSD(T)//BH&HLYP/6–311++G(d,p) levels (kcal/mol).

<table>
<thead>
<tr>
<th>Pathways</th>
<th>Stationary points</th>
<th>ΔE</th>
<th>ΔH</th>
<th>ΔG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4H4M2P+NO$_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Path1</td>
<td>ER1</td>
<td>-1.06</td>
<td>-1.26</td>
<td>10.29</td>
</tr>
<tr>
<td></td>
<td>TS1</td>
<td>5.97</td>
<td>6.03</td>
<td>15.72</td>
</tr>
<tr>
<td></td>
<td>EP1</td>
<td>-7.49</td>
<td>-6.85</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>-1.47</td>
<td>-1.18</td>
<td>-1.86</td>
</tr>
<tr>
<td></td>
<td>ER2</td>
<td>-0.63</td>
<td>-1.04</td>
<td>9.87</td>
</tr>
<tr>
<td>Path2</td>
<td>TS2</td>
<td>8.34</td>
<td>8.22</td>
<td>18.94</td>
</tr>
<tr>
<td></td>
<td>EP2</td>
<td>-17.09</td>
<td>-16.84</td>
<td>-7.31</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>-6.91</td>
<td>-7.08</td>
<td>-6.77</td>
</tr>
<tr>
<td></td>
<td>ER3</td>
<td>-1.25</td>
<td>-1.50</td>
<td>7.68</td>
</tr>
<tr>
<td>Path3</td>
<td>TS3</td>
<td>4.72</td>
<td>4.79</td>
<td>15.68</td>
</tr>
<tr>
<td></td>
<td>EP3</td>
<td>-20.23</td>
<td>-19.76</td>
<td>-10.75</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>-9.57</td>
<td>-9.39</td>
<td>-10.52</td>
</tr>
<tr>
<td></td>
<td>ER4</td>
<td>-0.58</td>
<td>-0.87</td>
<td>10.03</td>
</tr>
<tr>
<td>Path4</td>
<td>TS4</td>
<td>7.63</td>
<td>7.74</td>
<td>17.42</td>
</tr>
<tr>
<td></td>
<td>EP4</td>
<td>-15.24</td>
<td>-14.71</td>
<td>-5.30</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>-1.03</td>
<td>-0.65</td>
<td>-1.65</td>
</tr>
</tbody>
</table>
Table S3 Calculated CVT/SCT rate constant values (in cm3 molecule$^{-1}$ s$^{-1}$) for the H atom abstraction reaction of 4H4M2P with the NO$_3$ radical at BH&HLYP/6-311++G(d,p) level of theory.

<table>
<thead>
<tr>
<th>Temperature(K)</th>
<th>k_{path1} ($\times 10^{-17}$)</th>
<th>k_{path2} ($\times 10^{-18}$)</th>
<th>k_{path3} ($\times 10^{-16}$)</th>
<th>k_{path4} ($\times 10^{-18}$)</th>
<th>k_{total} ($\times 10^{-16}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>0.79</td>
<td>1.33</td>
<td>3.03</td>
<td>0.67</td>
<td>3.13</td>
</tr>
<tr>
<td>270</td>
<td>1.46</td>
<td>1.88</td>
<td>3.42</td>
<td>1.18</td>
<td>3.60</td>
</tr>
<tr>
<td>280</td>
<td>2.60</td>
<td>2.60</td>
<td>3.88</td>
<td>2.02</td>
<td>4.19</td>
</tr>
<tr>
<td>290</td>
<td>4.47</td>
<td>3.55</td>
<td>4.41</td>
<td>3.38</td>
<td>4.93</td>
</tr>
<tr>
<td>298</td>
<td>6.76</td>
<td>4.51</td>
<td>4.89</td>
<td>5.02</td>
<td>5.66</td>
</tr>
<tr>
<td>300</td>
<td>7.48</td>
<td>4.78</td>
<td>5.02</td>
<td>5.53</td>
<td>5.87</td>
</tr>
<tr>
<td>310</td>
<td>12.20</td>
<td>6.35</td>
<td>5.72</td>
<td>8.87</td>
<td>7.09</td>
</tr>
<tr>
<td>320</td>
<td>19.30</td>
<td>8.34</td>
<td>6.52</td>
<td>14.00</td>
<td>8.67</td>
</tr>
<tr>
<td>330</td>
<td>29.90</td>
<td>10.80</td>
<td>7.43</td>
<td>21.60</td>
<td>10.74</td>
</tr>
</tbody>
</table>

Table S4 The T1 diagnostic and $<s^2>$ values of the main species for the reaction of CH$_3$CH$_2$C(O)(OO•)(OH)CH$_2$CH$_3$ with NO radical on the singlet surface at the CCSD(T)/BH&HLYP/6-311++G(d,p) level of theory.

<table>
<thead>
<tr>
<th>Species</th>
<th>A</th>
<th>NO</th>
<th>IM1</th>
<th>IM2</th>
<th>IM3</th>
<th>Propionic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.020</td>
<td>0.022</td>
<td>0.017</td>
<td>0.017</td>
<td>0.016</td>
<td>0.014</td>
</tr>
<tr>
<td>$<s^2>$</td>
<td>0.758</td>
<td>0.755</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>TS6</th>
<th>TS7</th>
<th>TS8</th>
<th>TS9</th>
<th>NO$_2$</th>
<th>Propionyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.015</td>
<td>0.022</td>
<td>0.040</td>
<td>0.028</td>
<td>0.024</td>
<td>0.018</td>
</tr>
<tr>
<td>$<s^2>$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.757</td>
<td>0.750</td>
</tr>
</tbody>
</table>