Supporting information for

A Novel Mg(OH)\textsubscript{2} Binding Layer-based DGT Technique for Measuring Phosphorus in Waters and Sediment

Fazhi Xie a,1, Lu LI b,1, Xiaoyan Sun b,1, Tingting Hu a, Kang Song b,*, John P. Giesy c,d, Qilin Wang e,*

a School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei, China

b State Key Lab of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China

c Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada

d Department of Zoology and Centre for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States

e Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia

* Corresponding authors:

E-mail: sk@ihb.ac.cn (K.Song);

E-mail: Qilin.Wang@uts.edu.au (Q. Wang)
Fig. S1. Mass of PO$_4$ accumulated by Mg(OH)$_2$ binding gel with time in well-stirred solution containing 20mg P L$^{-1}$ at pH 7, ionic strength = 0.03 mol L$^{-1}$ and T = 25 °C.

Fig. S2. Mass of PO$_4$ accumulated by Mg(OH)$_2$ binding gel with pH in well-stirred solution containing 20 mg P L$^{-1}$ at time = 4 h, ionic strength = 0.03 mol L$^{-1}$ and T = 25 °C.

Fig. S3. The ratio of C$_{DGT}$ (i.e. the concentrations of PO$_4$ determined by the Mg(OH)$_2$-DGT) to C$_{soln}$ (i.e. the concentration of PO$_4$ measured directly in solution by the molybdenum-blue method) at different pH levels in well-stirred solution containing 2 mgP L$^{-1}$ at time = 4 h, ionic strength = 0.03 mol L$^{-1}$ and T = 25 °C. The vertical axis represents the ratio of DGT-measured concentration of P (C$_{DGT}$) to P concentration in well-stirred solution (C$_{soln}$), with the line showing the value at 1.0.

Fig. S4. The ratio of C$_{DGT}$ (i.e. PO$_4$ concentration calculated through the results from Mg(OH)$_2$-DGT) to C$_{solu}$ (i.e. PO$_4$ concentration measured in solution) at different ionic strengths in well-stirred solution containing 2 mg P L$^{-1}$ at time = 4 h, T = 25 °C, pH =7. The vertical axis represents the ratio of DGT-measured concentration of P (C$_{DGT}$) to P concentration in well-stirred solution (C$_{soln}$), with the line showing the value at 1.0.
Fig. S1. Mass of PO₄ accumulated by Mg(OH)₂ binding gel with time in well-stirred solution containing 20mg P L⁻¹ at pH 7, ionic strength = 0.03 mol L⁻¹ and T = 25 °C.
Fig. S2. Mass of PO$_4$ accumulated by Mg(OH)$_2$ binding gel with pH in well-stirred solution containing 20 mg P L$^{-1}$ at time = 4 h, ionic strength = 0.03 mol L$^{-1}$ and T = 25 °C.
Fig. S3. The ratio of C_{DGT} (i.e. the concentrations of PO_4 determined by the Mg(OH)$_2$-DGT) to C_{soln} (i.e. the concentration of PO_4 measured directly in solution by the molybdenum-blue method) at different pH levels in well-stirred solution containing 2 mgP L$^{-1}$ at time = 4 h, ionic strength = 0.03 mol L$^{-1}$ and $T = 25$ °C. The vertical axis represents the ratio of DGT-measured concentration of P (C_{DGT}) to P concentration in well-stirred solution (C_{soln}), with the line showing the value at 1.0.
Fig. S4. The ratio of C_{DGT} (i.e. PO$_4$ concentration calculated through the results from Mg(OH)$_2$-DGT) to C_{solv} (i.e. PO$_4$ concentration measured in solution) at different ionic strengths in well-stirred solution containing 2 mg P L$^{-1}$ at time = 4 h, $T = 25$ °C, pH = 7. The vertical axis represents the ratio of DGT-measured concentration of P (C_{DGT}) to P concentration in well-stirred solution (C_{solv}), with the line showing the value at 1.0.