Supplementary Information (SI)

High-flux nanofiltration membranes tailored by bio-inspired co-deposition of hydrophilic g-C$_3$N$_4$ nanosheets for enhanced selectivity towards organics and salts

Wenyuan Yea, Hongwei Liua, Fang Linb, Jiuyang Lin*,a,b, Shuaifei Zhaoc, Shishi Yangd, Jingwei Houe, Shungui Zhou*,a, Bart Van der Bruggenf

* Corresponding authors. E-mail: linjiuyang@126.com (J. Lin), sgzhou@soil.gd.cn (S. Zhou)

a Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China

b Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, School of Environment and Resources, Fuzhou University, Fuzhou 350116, China

c State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

d Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

e School of Chemical Engineering, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia

f Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
Fig. S1 Chemical structures of the reactive dyes tested in the study. (A): Reactive orange 1; (B): reactive orange 16; (C): reactive blue 19.
Fig. S2 Digital images of the pristine HPAN substrate and the modified membranes through bio-inspired co-deposition of the hydrophilic g-C$_3$N$_4$ nanosheets. (A): Pristine HPAN; (B): M0; (C): M1; (D): M2; (E): M3; (F): M4.
Table S1 Chemical composition of g-C$_3$N$_4$ nanosheets before and after oxygen plasma treatment

<table>
<thead>
<tr>
<th>g-C$_3$N$_4$ sample</th>
<th>Chemical composition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C (%)</td>
</tr>
<tr>
<td>Before treatment</td>
<td>39.6</td>
</tr>
<tr>
<td>After treatment</td>
<td>32.1</td>
</tr>
</tbody>
</table>
Table S2 Performance comparisons between as-prepared membranes in this work and previously reported NF membranes in water permeability, dye retention, and salt permeation

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Permeability (LMH·bar⁻¹)</th>
<th>Dye species</th>
<th>Dye rejection</th>
<th>Salt rejection</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFN-mZIF2 (-)</td>
<td>14.90</td>
<td>Reactive blue 2</td>
<td>99.2%</td>
<td>12.0%</td>
<td>90.0%</td>
</tr>
<tr>
<td>TMC-PEI (511 Da)</td>
<td>9.5</td>
<td>Chromotrope FB</td>
<td>98.8%</td>
<td>49.0%</td>
<td>75.9%</td>
</tr>
<tr>
<td>BHAC-PIP (570 Da)</td>
<td>15.3</td>
<td>Methyl blue</td>
<td>98.9%</td>
<td>59.6%</td>
<td>23.4%</td>
</tr>
<tr>
<td>PA-PP (570 Da)</td>
<td>7.0</td>
<td>Reactive black 5</td>
<td>99.6%</td>
<td>65.0%</td>
<td>98.5%</td>
</tr>
<tr>
<td>VES/AgCl-PEI (681 Da)</td>
<td>10.6</td>
<td>Crystal violet</td>
<td>99.2%</td>
<td>8.3%</td>
<td>12.8%</td>
</tr>
<tr>
<td>SiO₂-PSS/PES (655 Da)</td>
<td>23.3</td>
<td>Reactive black 5</td>
<td>92.0%</td>
<td>3.0%</td>
<td>10.5%</td>
</tr>
<tr>
<td>TMC-Sericin (880 Da)</td>
<td>11.9</td>
<td>Methyl blue</td>
<td>99.5%</td>
<td>40.8%</td>
<td>95.4%</td>
</tr>
<tr>
<td>PEI-g-SBMA/TMC (-)</td>
<td>13.2</td>
<td>Orange GII</td>
<td>90.6%</td>
<td>7.1%</td>
<td>50.4%</td>
</tr>
<tr>
<td>M4 (592 Da)</td>
<td>28.4±1.2</td>
<td>Reactive blue 19</td>
<td>99.8%</td>
<td>2.9%</td>
<td>7.6%</td>
</tr>
</tbody>
</table>
References

