Field deployable reactors for investigating the interaction of nanoparticles with natural organic matter under field conditions

* Corresponding author

Authors: Narjes Tayyebi Sabet Khomami ^a, Allan Philippe ^{a*}, Abd Alaziz Abu Quba ^a, Oliver J. Lechtenfeld ^{b,c}, Jean-Michel Guigner ^d, Stefan Heissler ^e, Gabriele E. Schaumann ^a

^a iES Landau, Institute for Environmental Sciences, Fortstrasse 7, 76829 Landau, Germany. ^b UFZ - Helmholtz-Centre for Environmental Research, Department Analytical Chemistry, Research Group BioGeoOmics, 04318 Leipzig, Germany. ^c ProVIS – Centre for Chemical Microscopy, UFZ – Helmholtz-Centre for Environmental Research, 04318 Leipzig, Germany. ^d IMPMC, Sorbonne University, CNRS – UMR 7590, MNHN, Paris, France. ^e Institute of Functional Interfaces IFG, Karlsruhe Institute of Technology KIT, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.

Table S1: Properties of the river water used for the laboratory and field experiments (May-September 2018).

Date	Conductivity (µs/cm)	рН	DOC (mg/l)	Stream flow rate (cm/s) ¹	Temp. C	Dissolved oxygen (mg/l)
Late May	271	7.2	$6.1(\pm 0.16)^2$	-	-	-
Mid Jun	301	7.1	$8.2(\pm 0.42)^2$	-	-	-
Mid July	280	7.1	$6.1(\pm 0.37)^2$	-	-	-
Late July	293	7.4	$6.7(\pm 0.21)^2$	-	-	-
Late September	272	7.2	$6.5(\pm 0.15)^2$	$32.3(\pm 7.5)^2$	21	$8.79(\pm 1.23)^2$
(field experiment)						

¹One meter from the river bank

²Standard deviation

Elements	Concentration	LOD (µg/l)	Standard
	(µg/l)		deviation (%)
Al	16.5	1	1.20
Ba	43.5	0.5	3.02
Ca	5246.0	1	0.35
Cu	< LOD	0.5	-
Fe	20.3	1	2.80
Ti	< LOD	0.05	-
Κ	509.4	2.5	0.80
Mg	1030.2	0.5	0.15
Mn	2.7	0.3	0.01
Na	3227.1	25	0.33
Sr	93.4	0.5	0.13
Zn	1.6	0.5	6.25

Table S2: Total concentration of selected elements in the river water determined using ICP-OES (September 2018). LOD: limit of detection.

Table S3: Anions concentrations of the river water using ion chromatography (September 2018).LOD: limit of detection.

Anions	Concentration	LOD (mg/l)	Standard
	(mg/l)		deviation (%)
Fluoride	0.04	0.02	4.0
Chloride	10.11	0.65	4.5
Nitrate	4.94	0.67	3.0
Phosphate	0.148	0.08	3.5
Sulphate	20.98	1.61	5.4

Figure S1: The cellulose ester dialysis bag (cylindrical design) used in this study.

Figure S2: The dialysis bags in plastic canisters deployed in the river Queich.

Figure S3: Assessment of the instrumental variability based on replicate measurements of SRFA (n = 6). Normalized intensity values were used to calculate the relative standard deviation (RSD). 95 % of the RSD values were below 0.303.

Figure S4: AFM height image of the dialysis bag in river water, and river water exposed to n-TiO₂.

Figure S5: AFM phase image of the dialysis bag in river water, and river water exposed to n-TiO₂.

Figure S6: Fluorescence EEMs of the samples carried out in the field C) river water inside the dialysis bags with $n-TiO_2$ (the color scale depicts the intensity a.u).

Figure S7: Euler diagram depicting the distribution of molecular formulas detected by FT-ICR-MS in all three samples (outside the dialysis bag, and inside the dialysis bag with and without $n-TiO_2$) deployed on the field.

Sample	СНО	CHNO	CHOS	CHNOS	Other
River water (inside)	2677	1777	472	91	5
%	53.3	35.4	9.4	1.8	0.1
River water (outside)	2443	1565	537	116	7
%	52.3	33.5	11.5	2.5	0.1
n-TiO ₂ (inside)	2906	1927	534	138	4
%	52.8	35.0	9.7	2.5	0.1

Table S4: Major compound class distribution of all three samples deployed on the field based on the molecular formulas determined using FT-ICR-MS.

Figure S8: Van Krevelen diagram with intensity differences for river water inside the dialysis bags with n-TiO₂ vs without n-TiO₂. Δ RI values below 0.43 (blue) indicate the respective compound is depleted in the river water inside the dialysis bag with n-TiO₂ compared to without n-TiO₂.

Figure S9: DOC and Dissolved oxygen of the river water inside dialysis bags (DB) with and without n-TiO₂, and the river water as control with and without n-TiO₂ at room temperature (Nov. 2019).

Figure S10: ATR-FTIR spectrum of the river water (freeze-dried sample).