Electronic Supporting Information (ESI)

Synthesis of Magnesium Oxide Nanoparticles Fabricated on Graphene Oxide Nanocomposite for CO$_2$ Sequestration at Elevated Temperatures

C. A. Gunathilake,a,* G. G. T. A. Ranathunge,b R. S. Dassanayake,c,d S. D. Illesinghe,f Amanpreet S. Manchanda,f C. S. Kalpage,a R. M. G. Rajapakse,b D. G. G. P. Karunaratne,a

aDepartment of Chemical and Processing Engineering, University of Peradeniya, 20400, Sri Lanka
bDepartment of Chemistry, University of Peradeniya, 20400, Sri Lanka.
cDepartment of Chemistry, Ithaca College, Ithaca, NY, 14850, USA.
dDepartment of Bio System Technology, Faculty of Technology, University of Sri Jayawardhanapura, Gangodawila, Nugegoda, 10250, Sri Lanka
eDepartment of Forestry and Environmental Sciences, University of Sri Jayawardhanapura, Gangodawila, Nugegoda, 10250, Sri Lanka.
fDepartment of Chemistry, California State University Stanislaus, One University Circle, Turlock, California, 95382, USA.

*Corresponding author
Department of Chemical & Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka. Tel.: +94718311117
E-mail address: chamilag@pdn.ac.lk

Characterization.
Nitrogen adsorption isotherms were measured at -196 ºC on an ASAP 2010 volumetric analyzer (Micromeritics, Inc., Norcross, GA). Prior to adsorption measurements, all samples were outgassed under vacuum at 110 ºC for 2 hours.

High resolution thermogravimetric measurements were recorded on TGA Q-500 analyzer (TA Instruments, Inc., New Castle, DE). Thermogravimetric (TG) profiles were recorded from 25 ºC to 700 ºC in flowing nitrogen with a heating rate of 10 ºC / min using a high resolution mode. The weight of each analyzed sample was typically in 5-20 mg range. The TG profiles were used to obtain information about the extent of the template removal.

Room temperature CO$_2$ adsorption measurements (Physisorption). CO$_2$ adsorption on the selected MONP & MONP-GO materials was measured in the pressure range up to 1 atm on ASAP 2020 volumetric adsorption analyzer (Micromeritics, Inc., GA) at 25 ºC using ultrahigh purity (99.99 %) gaseous CO$_2$. Prior to adsorption analysis each sample was outgassed at 110 ºC for 2 h under vacuum.

CO$_2$ chemisorption and TPD measurements.
CO$_2$ chemisorption and TPD experiments were conducted using a Micromeritics Auto Chem II Chemisorption Analyzer (Micromeritics, Inc., GA) equipped with a thermocouple detector (TCD). Approximately 50-100 mg of each sample were loaded in a quartz tube microreactor supported by quartz wool and subjected to pre-treatment by ramping temperature from 25 to 490 ºC before CO$_2$ adsorption, using a heating rate of 10 ºC/min in flowing helium (at a rate of 50 cm3/min) and kept for 10 min at 490 ºC. Next, the sample was cooled to selected temperature (120 /60 ºC) using cooling rate of 10 ºC/min, exposed to pulse of 5 % CO$_2$-He (50 cm3/min) as a loop gas, kept for 3 minutes and allowed for return to baseline. Recording was repeated until peaks are equal or 30 times. Recording was taken every 0.1 seconds and finally post CO$_2$ pulse purge was applied in
flowing helium (50 cm³/min) for 30 min. In the TPD experiments, the samples were heated up to 490 °C using a heating rate of 5 °C/min and kept at this temperature for 90 min. The amounts of desorbed CO₂ were obtained by integration of the desorption profiles and referenced to the TCD signals calibrated for known volumes of analyzed gases.

Calculations.

The Brunauer-Emmett-Teller specific surface areas (S_{BET}) were calculated from the N₂ adsorption isotherms in the relative pressure range of 0.05-0.2 using a cross sectional area of 0.162 nm² per nitrogen molecule. The single-point pore volume (V_{sp}) was estimated from the amount adsorbed at a relative pressure (p/p₀) of ~ 0.98. The pore width (W_{max}) was obtained at the maximum of the PSD curve.