Electronic Supplementary Information

Degradation of Ibuprofen and Acetylsulfamethoxazole by multi-walled Carbon Nanotube Catalytic Ozonation: Surface properties, kinetics and modeling

Mao-Shu Du¹, Kuan-Po Chen¹ and Yi-Pin Lin¹,² *

¹Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan
²NTU Research Center for Future Earth, National Taiwan University, Taipei 10673, Taiwan

* Corresponding author
E-mail address: yipinlin@ntu.edu.tw; Tel.: 02-33664380
Text S1: Method for the determination of rate constants for a macromolecule simultaneously reacting with ozone and serving as the initiator, promoter and inhibitor in the OH· chain reactions in water ozonation

The approach described by Yong and Lin1, 2 integrated the following three classical models for water ozonation:

1. The transient steady-state concentration of OH·:

$$[ext{OH}]=\frac{2k_1[ext{OH}^-]+\sum k_{i,i}[M_{I,i}]}{\sum k_{S,i}[M_{S,i}]}[O_3]$$ (S1)

where $[\cdot\text{OH}]$ represents the transient steady-state concentration of OH·; k_1 represents the 2nd-order rate constant between OH$^-$ and ozone; $[M_{I,i}]$ and $k_{I,i}$ represent the concentration of the initiator and its 2nd-order rate constant with O$_3$; $[M_{S,i}]$ and $k_{S,i}$ represent the concentration of the inhibitor and its 2nd-order rate constant with OH·, respectively.

2. The R_{ct} concept:4

$$R_{ct} = \frac{\int [\cdot\text{OH}] dt}{\int [O_3] dt} = -\frac{\ln \frac{[\text{pCBA}]_t}{[\text{pCBA}]_0}}{k_{OH/pCBA} \int [O_3] dt}$$ (S2)

3. Pseudo-1st order ozone decomposition kinetics:3

$$-\frac{d[O_3]}{dt} = k_{obs}$$

$$= 3k_1[\cdot\text{OH}]+k_D[M_{D,i}]+k_I[M_{I,i}]+k_p[M_{P,i}]=\left(\frac{2k_1[\cdot\text{OH}]+\sum k_{i,i}[M_{I,i}]}{\sum k_{S,i}[M_{S,i}]}\right)$$ (S3)

Eq (S1) can be substituted to Eq (S2) to yield Eq (S4) assuming that pH value (or $[\cdot\text{OH}]$) and the concentrations of initiator ($[M_{I,i}]$) and inhibitor ($[M_{S,i}]$) do not change during the ozonation.

$$R_{ct} = \frac{\int \left(\frac{2k_1[\cdot\text{OH}]+\sum k_{i,i}[M_{I,i}]}{\sum k_{S,i}[M_{S,i}]}\right)[O_3] dt}{\int [O_3] dt} = \frac{2k_1[\cdot\text{OH}]+\sum k_{i,i}[M_{I,i}]}{\sum k_{S,i}[M_{S,i}]}$$ (S4)

Assuming that MWCNT can simultaneously react with ozone and serve as the initiator, promoter and inhibitor in the OH· chain reactions, Eq (S4) can be rewritten as Eq (S5) with the addition of tert-butanol as an external inhibitor (denoted as S with a rate constant of k_{SS} with OH·) in the system1.

$$R_{ct} = \frac{2k_1[\cdot\text{OH}]+k_I[M_{\text{MWCNT}}]}{k_{SS}[S]+k_S[M_{\text{MWCNT}}]}$$ (S5)

where k_1 represents the initiation rate constant of MWCNT (unit: L/(mg CNT)$^{-1}$s$^{-1}$), k_S represents the inhibition rate constant of MWCNT (unit: L/(mg CNT)$^{-1}$s$^{-1}$), k_{SS} represents the 2nd-order rate constant between tert-butanol and OH· ($k_{SS}=6.0\times10^8$).
The reciprocal of Eq (S5) gives Eq (S6).

\[\frac{1}{R_{ct}} = \frac{k_{SS}[S]+k_S[MWCNT]}{2k_1[OH^-]+k_I[MWCNT]} \]

(S6)

Ideally, a linear relationship exists between \(\frac{1}{R_{ct}} \) and \(k_{SS}[S] \) as shown below. \(k_I \) and \(k_S \) can then be determined from the slope and intercept, respectively.

```
\text{Intercept} = \frac{k_S[MWCNT]}{2k_1[OH^-]+k_I[MWCNT]}
```

```
\text{Slope} = \frac{1}{2k_1[OH^-]+k_I[MWCNT]}
```

In the same system, substituting Eq (S3) to Eq (S1) gives Eq (S7):

\[\frac{d[O_3]}{dt} = \frac{1}{[O_3]} = k_{obs} = 3k_1[OH^-]+k_D[MWCNT]+k_I[MWCNT]+k_p[MWCNT]R_{ct} \]

(S7)

where \(k_D \) represented the direct reaction rate constant of MWCNT, \(k_p \) represented the promotion rate constants of MWCNT (unit: L(mg CNT)^{-1}s^{-1}).

A linear relationship should exist between \(k_{obs} \) and \(R_{ct} \) as shown below. \(k_p \) and \(k_D \) can then be determined from the slope and intercept, respectively.

```
\text{Intercept} = 3k_1[OH^-]+k_p[MWCNT]+k_I[MWCNT]
```

```
\text{Slope} = k_p[MWCNT]
```
Figure S1. Schematic diagram of ozone experiments
Figure S2. EDS spectra of (a) p-MWCNT, (b) 20-MWCNT, (c) 40-MWCNT and (d) 70-MWCNT.
Figure S3. Adsorption of pCBA onto the 4 MWCNTs. Experimental condition: [pCBA]₀ = 0.5 μM, [B₄O₇²⁻] = 5 mM, MWCNT dosage = 20 mg/L, pH = 7.

References

