Supporting Information

NH₄V₄O₁₀/rGO Composite as High Performance Electrode Material for Hybrid Capacitive Deionization

Chengxu Liᵃ, Shiyong Wangᵃ, Gang Wangᵇ*, Shuaifeng Wangᵃ, Xiaoping Cheᵃ, Duanzheng Liᵃ, Jieshan Qiuᵃ*

ᵃState Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China. E-mail: jqiu@dlut.edu.cn(J. S. Qiu), Tel: 0086-411-84986080.
bResearch Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China. E-mail: wghy1979@163.com (G Wang).
Fig. S1 Crystal structure diagram of NH$_4$V$_4$O$_{10}$.

Fig. S2 (a, b) SEM images and (c, d) TEM images of NHVO.
Fig. S3 (a) Raman spectra of NHVO/rGO composite and pure GO; (b) TGA curve of NHVO/rGO composite.

Fig. S4 (a) N 1s and (b) V 2p XPS spectrum of NHVO.

Fig. S5 (a) Nitrogen adsorption-desorption isotherm and (b) pore-size distribution of
The BET surface area of AC used in our CDI system is $2153.7 \text{ m}^2/\text{g}$. The pore size distribution is mainly microporous.

Fig. S6 (a) conductivity change curves of effluent and (b) NaCl removal capacity of rGO//AC cell (rGO as the cathode and AC as the anode) in 500 mg/L NaCl solution at different cell voltages. (The mass of active material (containing AC and rGO) is 45.0 mg. The thickness of AC electrode, and rGO electrode is about 255.2 μm and 326.1 μm, respectively.)

Fig. S7 (a) relationship between conductivity and concentration of CaCl$_2$; (b) relationship between conductivity and concentration of MgCl$_2$
Fig. S8 (a) the effluent conductivity variation and (b) effluent pH changes of NHVO/rGO cell during 100 cycles of charging and discharging process in 500 mg/L NaCl solution at the cell voltage of 0.8 V.

Fig. S9 (a, b) SEM images of NHVO/rGO composite after 100 cycles in 500 mg/L NaCl solution at the cell voltage of 0.8 V.

Fig. S10 (a) atomic ratio of C and O on the surface of AC after 100 cycles; (b) C 1S XPS spectrum of AC before cycling; (c) C 1s XPS spectrum of AC after 100 cycles.
Table S1 Comparison of desalting performance among different capacitive deionization systems

<table>
<thead>
<tr>
<th>Material</th>
<th>Voltage or Current density</th>
<th>NaCl concentration</th>
<th>SAC</th>
<th>Electrode Mass</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₃V₂(PO₄)₃@C</td>
<td>1.0 V</td>
<td>100 mM</td>
<td>137.2 mg/g</td>
<td>10-20 mg</td>
<td>¹</td>
</tr>
<tr>
<td>hV₂O₅-MWCNT</td>
<td>166 mA/g</td>
<td>600 mM</td>
<td>23.6±2.2 mg/g</td>
<td>15 mg</td>
<td>²</td>
</tr>
<tr>
<td>Na₃V₂(PO₄)₃@C wire</td>
<td>100 mA/g</td>
<td>1000 mg/L</td>
<td>98.0 mg/g</td>
<td>10 mg</td>
<td>³</td>
</tr>
<tr>
<td>A mixture of VOHPO₄·0.5(H₂O) and Na₀.₅VOPO₄·2(H₂O)</td>
<td>50 mA/g</td>
<td>100 mM</td>
<td>24.3 mg/g</td>
<td>64 mg</td>
<td>⁴</td>
</tr>
<tr>
<td>NH₄V₄O₁₀/rGO</td>
<td>1.2 V</td>
<td>500 mg/L</td>
<td>20.1 mg/g</td>
<td>75 mg</td>
<td>This work</td>
</tr>
</tbody>
</table>

By contrast, the SAC of NH₄V₄O₁₀/rGO CDI system in this work can reach the level that had been already reported in literatures.
Reference

