Supporting Information

NH₄V₄O₁₀/rGO Composite as High Performance Electrode

Material for Hybrid Capacitive Deionization

Chengxu Li^a, Shiyong Wang^a, Gang Wang^{b*}, Shuaifeng Wang^a, Xiaoping

Che^a, Duanzheng Li^a, Jieshan Qiu^{a*}

^aState Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China. E-mail: jqiu@dlut.edu.cn(J. S. Qiu), Tel: 0086-411-84986080.

^bResearch Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China. E-mail: wghy1979@163.com (G Wang).

Fig. S1 Crystal structure diagram of $NH_4V_4O_{10}$.

Fig. S2 (a, b) SEM images and (c, d) TEM images of NHVO.

Fig. S3 (a) Raman spectra of NHVO/rGO composite and pure GO; (b) TGA curve of NHVO/rGO composite.

Fig. S4 (a) N 1s and (b) V 2p XPS spectrum of NHVO.

Fig. S5 (a) Nitrogen adsorption-desorption isotherm and (b) pore-size distribution of

AC.

The BET surface area of AC used in our CDI system is 2153.7 m^2/g . The pore size distribution is mainly microporous.

Fig. S6 (a) conductivity change curves of effluent and (b) NaCl removal capacity of rGO//AC cell (rGO as the cathode and AC as the anode) in 500 mg/L NaCl solution at different cell voltages. (The mass of active material (containing AC and rGO) is 45.0 mg. The thickness of AC electrode, and rGO electrode is about 255.2 μ m and 326.1 μ m, respectively.)

Fig. S7 (a) relationship between conductivity and concentration of CaCl₂; (b) relation-

ship between conductivity and concentration of MgCl₂

Fig. S8 (a) the effluent conductivity variation and (b) effluent pH changes of NHVO/rGO cell during 100 cycles of charging and discharging process in 500 mg/L NaCl solution at the cell voltage of 0.8 V.

Fig. S9 (a, b) SEM images of NHVO/rGO composite after 100 cycles in 500 mg/L NaCl solution at the cell voltage of 0.8 V.

Fig. S10 (a) atomic ratio of C and O on the surface of AC after 100 cycles; (b) C 1S XPS spectrum of AC before cycling; (c) C 1s XPS spectrum of AC after 100 cycles.

deromzation systems					
Material	Voltage or Current density	NaCl	SAC	Electrode Mass	Reference
Na ₃ V ₂ (PO ₄) ₃ @C	1.0 V	100 mM	137.2 mg/g	10-20 mg	1
hV ₂ O ₅ -MWCNT	166 mA/g	600 mM	23.6±2.2 mg/g	15 mg	2
Na ₃ V ₂ (PO ₄) ₃ @C wire	100 mA/g	1000 mg/L	98.0 mg/g	10 mg	3
A mixture of VOHPO ₄ ·0.5(H ₂ O) and Na _{0.5} VOPO ₄ ·2(H2O)	50 mA/g	100 mM	24.3 mg/g	64 mg	4
NH ₄ V ₄ O ₁₀ /rGO	1.2 V	500 mg/L	20.1 mg/g	75 mg	This work

 Table S1 Comparison of desalting performance among different capacitive deionization systems

By contrast, the SAC of $NH_4V_4O_{10}/rGO$ CDI system in this work can reach the level that had been already reported in literatures.

Reference

- J. Cao, Y. Wang, L. Wang, F. Yu and J. Ma, Na₃V₂(PO₄)₃@C as Faradaic Electrodes in Capacitive Deionization for High-Performance Desalination, *Nano Lett.*, 2019, 19, 823-828.
- J. Lee, P. Srimuk, K. Aristizabal, C. Kim, S. Choudhury, Y. C. Nah, F. Mucklich and V. Presser, Pseudocapacitive Desalination of Brackish Water and Seawater with Vanadium-Pentoxide-Decorated Multiwalled Carbon Nanotubes, *ChemSusChem*, 2017, 10, 3611-3623.
- W. Zhao, L. Guo, M. Ding, Y. Huang and H. Y. Yang, Ultrahigh-Desalination-Capacity Dual-Ion Electrochemical Deionization Device Based on Na₃V₂(PO₄)₃@C-AgCl Electrodes, ACS Appl. Mater. Inter., 2018, 10, 40540-40548.
- 4. J. Lee, P. Srimuk, R. Zwingelstein, R. L. Zornitta, J. Choi, C. Kim and V. Presser, Sodium ion removal by hydrated vanadyl phosphate for electrochemical water desalination, *J. Mater. Chem. A*, 2019, **7**, 4175-4184.