## Characterizing colloidal metals in drinking water by field flow fractionation

Benjamin F. Trueman,<sup>†,</sup>\* Tim Anaviapik-Soucie,<sup>§</sup> Vincent L'Hérault,<sup>¥</sup> and Graham A. Gagnon<sup>†</sup>

<sup>†</sup>Department of Civil & Resource Engineering, Dalhousie University, Halifax, NS, CAN, B3H 4R2

<sup>§</sup>Community of Pond Inlet, Pond Inlet, NU CAN, X0A 0S0

<sup>¥</sup>ARCTIConnexion, Québec, QC CAN, G1L 1Y8

\*Corresponding author: Department of Civil & Resource Engineering Dalhousie University 1360 Barrington St. Halifax, NS, CAN B3H 4R2 Email: benjamin.trueman@dal.ca Tel: 902.494.6070 Fax: 902.494.3105

This document contains 4 pages, 2 tables, and 3 figures.

 Table S1. FFF and ICP-MS instrument settings.

| FFF settings             |                                                     |
|--------------------------|-----------------------------------------------------|
| Spacer                   | 500 μm                                              |
| Sample loop volume       | 1 mL                                                |
| Injection flow rate      | $0.5 \text{ mL min}^{-1}$                           |
| Cross-flow rate          | $2.5 \text{ mL min}^{-1} - 0.1 \text{ mL min}^{-1}$ |
| Channel flow rate        | $1 \text{ mL min}^{-1}$                             |
| Focusing time            | 10 min                                              |
| Elution time             | 28 min                                              |
| ICP-MS settings          |                                                     |
| Forward power            | 1400 W                                              |
| Nebulizer flow rate      | 0.88 L min <sup>-1</sup>                            |
| Collision cell flow rate | 7.05 mL min <sup>-1</sup>                           |
| Auxiliary flow rate      | 0.70 L min <sup>-1</sup>                            |
| Dwell time               | 0.1 s                                               |
|                          |                                                     |



**Figure S1.** Skewed and ordinary Gaussian fits to the void and NOM peaks (fractions 1 and 2), the latter representing organically complexed metals. Fractograms represent site A, round 2.



**Figure S2.** Abundance maps of iron, oxygen, copper, and carbon acquired by energy dispersive X-ray spectroscopy, representing a typical micron-sized heteroaggregate.

| Element | Percent weight |
|---------|----------------|
| С       | 33.4           |
| 0       | 36.7           |
| Na      | 1.9            |
| Mg      | 21.0           |
| Si      | 0.5            |
| Κ       | 0.8            |
| Ca      | 0.6            |
| Fe      | 3.3            |
| Cu      | 1.7            |

| Table S2. Semiquantitative weight percentages as determined by energy | y dispersive X-ray |
|-----------------------------------------------------------------------|--------------------|
| spectroscopy, representing the heteroaggregate shown in Figure S2.    |                    |



**Figure S3.** FFF separation of hematite, suspended in polyphosphate ( $0.6 \text{ mg P } \text{L}^{-1}$ ). Replicates represent separately prepared and filtered suspensions; this variation—in addition to variability due to the method itself—is reflected in the fractograms.