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S1 Derivation of the equations of motion for the micromechanical

model consisting of unistable nanocells

In this section, the equations of motion for a micromechanical model that consists solely of
nanocells with a single stable phase will be derived. To this end, the relation between the
nanocells and the nodes of the micromechanical model will be made explicit in Section S1.1,
directly leading to the Hamiltonian formulation of the micromechanical model in Section S1.2.
Based on this Hamiltonian and the explicit derivatives determined in Section S1.3, the equations
of motion of Section S1.4 are obtained. Finally, in Section S1.5, the extension towards nonperiodic

or isolated micromechanical models is discussed.

S1.1 Definition of the relation between the nanocells and the nodes of the microme-

chanical model

The central idea behind the micromechanical model is to partition the extended material into
nanocells h;,,. As these nanocells are substantially smaller than the extended material, the 3x3
equilibrium cell matrix hy,0 and the fourth-order 3x3x3x3 stiffness tensor C,,x0 for each of
the nanocells can be determined from simulations at a higher level or theory or using a less
sparse representation. This a priori input allows us to define at any instant during our simulation
the 3x3 finite Lagrangian strain tensor €,,x experienced by the nanocell h,, as

1, _
Epvie = E [hyva,OhZVKh#VKhyle,O -1, (811)

in which 1 is the 3x3 unit tensor. In turn, this leads automatically to the following potential

energy associated with each of the nanocells:
1 T
Uy = 5 det(hye )€y * Crvo & Epvx- (S1.2)

In this expression, “:" denotes the matrix inproduct:

3
|:€T : C] » = Z Zgjicijld and [C : E]kg = Z Z Ckfijgij- (513)

‘ P

3 3 3
=1 ]:] =1

~
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Each nanocell hy,,« in our partitioning is defined by the vectors connecting the eight nodes on
its corners, as indicated in Figure S1 for an arbitrary nanocell. Using the notation of Figure S1

and with r;; the position of node Njj, we thus find:
T T T T T T T T
(T100 — Tooo) t (110 — T010) + (P101 — Toor) T (7111 — To11)

hogo = 4 (610 = To00) + (110 — Tio0) + (o1 — 7o) + (i1 —ioy) | (51.4)

(141 — 7do0) + (rdin — 7o) + (Pl — ig0) + (Pl — i)

In this notation, the indices (u, v, «) and (i, j, k) were shifted so that y = v = x = 0. To obtain the
expression for nanocell hy,, it therefore suffices to add y, v, and « to the i, j and k indices of the

position vectors, respectively.

S1.2 Hamiltonian formulation of the micromechanical model

Let r = {r;} be the set of position vectors of the nodes in the micromechanical model, with
ic[0,ny—1],j€[0,n,—1],and k € [0,n, — 1], and let 7 = {73 } be the set of velocity vectors of
the nodes. At this moment, periodic boundary conditions are assumed, although the extension

to isolated systems can be made easily (see Section 51.5). As a result of these periodic boundary

N3 = Noo1

Yy N1 = N100 N4 == N110
T r+ Ay r+ Aled)yp

Figure S1: Representation of an arbitrary nanocell hy,, and the eight nodes N;; that define the
cell. For notational simplicity, the indexing has been shifted so that y = v = x = 0 in this
representation. This means that for an arbitrary nanocell, the nodes will be given by Ny =
Nizpj=vk=xs N1 = Nizy11,j=vk=r, -+ Until N7 = Ny 1 j=p 11 k=x11-
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conditions, 7, jk = Tojks Vj,k, and similar expressions hold for the other two directions. Further-

more, let ;. be the mass associated with the node Njj. Typically, this mass will be chosen as the

average mass of the eight nanocells for which the node N;j forms one of the corners, as indicated

in Figure S2, although this is not required.

Through Eq. (S51.4), knowledge of all position vectors allows us to define all nanocells in our

micromechanical model, which in turns yields the strain and elastic potential energy associated

with each nanocell via Eq. (51.1) and Eq. (5§1.2). Therefore, the Lagrangian of the total microme-

Case 1
hOOO

(,U/,l/,li) = (Z,],]C)

To01

To11
T101

T100

T000

7000 To10

Case 6
hygp
(H7l/7’i) = (Z - 17j7k - 1)

hg

hyy,

T000

T
110
T100

Case 7

hyiy

Case 4
hogt
(uv v, H) = (i»jv k— 1)
T000 7010

ToiT

T

Case 8
hiyy

(M7V7’€) :(2_177_17k_1)

Figure S2: Overview of the eight possible nanocells hy,, that have a given node N;j (blue sphere)
on one of their corners and the relation between the indices (y,v,x) of these nanocells and
the indices (i, ], k) of the blue node. All indices are shifted so that the blue node has indices
i = j =k = 0; while ‘1" is used to denote ‘—1".
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chanical system is given by

ne—11y—1p,— 11 ne—1ny—1p,—1
L) = 3 T T gmprhi= L L thalr) sL5)
i=0 j=0 k=0 u=0 v=0 x=

. o . i=ny—1, j=ny—1, k=n,—1 S i i=ny—1, j=ny—1, k= nz—l
with r = {ri};_q j=0, k=0 and 7 = {#};_ =0, k=0

Based on this Lagrangian, the conjugated momenta can be defined as
Pijk = Vi L(r,7) = mygtije = mijvijy. (S1.6)

This derivation results in the following Hamiltonian for the micromechanical model:

ny—1ny—1ln,—1 pizjk ny—1ny—1lp,—1

=L L L Tl L L Ueln) (51.7)

Ozmi]k u=0 v=0 x=0

. . i=ny—1, j=ny—1, k=n.—1 i=ny—1, j=ny—1, k= nz—l
with again r = {Tijk}i:(), =0, k=0 and p = {pijk}l =0, j=0, k=0

From this Hamiltonian, the equations of motion can be derived as

. pl]k
2 VpH = = Vi, S1.8
ifk = Vi My ijk ( )

and

ny—1ny—1lp,—1

i J
pijk "‘z;k E E Z vrl]kuywc = - Z Z Z Vr,»jkuuVK(T)~ (51.9)

u=0 v=0 x= u=i—lv=j-1x=k-1

To obtain the last expression, we used that Eq. (51.4) implies that the position vector 7;j only
enters the definition of the eight nanocells in which y € {i —1,i},v € {j—1,j} and x € {k—1,k},
which is also visually depicted in Figure S2. In Section S1.3, the derivatives entering Eq. (51.9)

will be determined explicitly.
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S$1.3 Derivatives of the elastic potential energy

As indicated in Eq. (S1.9), updating the node’s momenta requires derivatives of the elastic po-

tential energy in Eq. (51.2) with respect to the position vector r;j:

1 1
_vrijku;u/;((r) — _5 (v’f‘i/k det(hyyk)> EZ;VK : C‘I«IVK,O : 8]/“/;( - E det(h]ﬂ/;{) (v"'ijkEZ;VK> . C]/H/K,O : E}IUK

1
—5 det(hw,()sz,w( ol G (v""ijks,uVK) . (51.10)
In this expression, we have:

v det(hW):det(hWK)Tr{h;}KV h;,w(}, (S1.11)

Tijk Tijk
and
1, _ _
V"'ijkE]fVK = V"'ijkEVVK = Ehyvj;c,o ((VTi,‘kh;fVK) hHVK + h;j;wc (VTijthVK)) hyle,O' (81'12)

In these expressions, y, v, and « are restricted to p € {i —1,i}, v € {j—1,j} and « € {k —1,k}.
Below, these eight cases, visualized in Figure S2, are treated separately.
Case 1: hP“’K = hijk

In the case that hy,x = h;j, oo in Eq. (S1.4) corresponds with 7 (recall that in Eq. (51.4) all

indices are shifted by (u,v,«x)). As a result:

-100 0 -1 0 00 —1
ahijk 1 ahijk 1 ahz’jk 1
— 2 — - _ ——— _ S1.13
oxy 4 10 0 v 4 0 -1 0 oz 4 00 —1 ( )
-1 00 0 -1 0 00 —1
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As a consequence, we find for the strain derivative:

aEZ‘jk
axijk

with

1 11
Lt
_ghijk,o 000
0 00
fi(xije)
L. 7
372hijk,0 0
0
L.
ko | fr(ik)
fi(zijk)

2f1(xi)  fryip)  fr(zijk)

hjx+hjx | 1 0 0

filyix)  fi(zijk)
0 0 +

0 0

-1
0 0 hijk,O'

0 0

fl(xi]-k) 00
fitvig) 0 O

fi(zix) 0 0

ijk,0

hz‘jk,O

f1(xijk) = 3Xijk + Xiajk + Xijrk + Xijkr1 = Xig1jr1k — Xipljke1 — Xijrlks1 — 3Xip1j+1k+1-

Similarly

and

deijk 1
ayijk - 32 ijk,0

9ijk L
aZl‘jk 32 ijk,0

0 f1 (xi]'k) 0
flxig) 2f(yir)  fi(zik)

0 fl (Zijk) 0

0 0 f1 (xi]'k)
f1(yijk)

flxin)  flvix) 2f(zik)

0 0

S-7
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hiao

ijk,0°

(S1.14)

(S1.15)

(S1.16)

(S1.17)

(S1.18)
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Case 2: h},w{ = hifljk

In the case that hyye = h;_1j, 7100 in Eq. (51.4) corresponds with 7. As a result:

ohi 1 1

0xjjk

1 00

-1 0 0

-1 0 0

0 1
ohi 1 1 0 1
ayl-jk 4 B
0 -1

As a consequence, we find for the strain derivative:

de;i_1jk

axi]-k

with

fa(xijk) = Xi1jk + 3Xijk — Xij41x — Xi-jkr1 T Xijr1k + Xijer1 — 3Xio1j41k41 — Xij+ 1k i1

Similarly

L1
ghiqjk,o
1 -T

33 s 17k
L1
372hi71jk,0

ogi1jk

Wik = 3 i-1jk0

1 -1 -1
0 0 0 |hiypt hinljk
0 0 0

(i) fo(yig)  f2(zijk)
0 0 0

0 0 0

2f2(xi)  fo(yijx)  fa(zijk)
f2(Yije) 0 0

f2(zijk) 0 0

h—l

00
ohiyjp 1
aZi]'k _4 00
00
1 00
h—l
-1 0 0 i—1jk,0
-1 0 0

i—1jk,0°

0 fz(xi]‘k) 0
1._ _
¢ fo(xik) 2fa(yin)  f2(zijx) hzelljk,o
0 f2(zijx) 0 |

S-8

-1

-1
(S1.20)

(S1.21)

-1
hi 0(51.22)

(S1.23)

(S1.24)
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and

ogi1jk

aZi]'k

Case 3: hP’VK = hi]'flk

-1 0 0
ohj1 1
-1 0 0

As a consequence, we find for the strain derivative:

dejj 1k 11

;i g Nij—1k0

@hij—lk,o

372hij71k,0

with

0 0 fz(xi]‘k)
32 li-1jk0 0 0 (i) | Mictjkor (51.26)
fxi) - fyie)  2f2(zij) |
In the case that hyyx = hjj_1x, 7010 in Eq. (51.4) corresponds with 7. As a result:
0 -1 0 0 0 -1
Rk 11 M 1o o
ayi]-k 4 aZi]'k 4
0 -1 0 00 -1
] ) (S1.27)
-1 1 -1 -1 0 0
0 0 0 |hiju +h£_1k 1 00 hi;ilk,o (S1.28)
0 0 O -1 0 0
fa(xije)  f3(vig)  f3(zije) fa(xi) 0 0
0 0 0 +1 flyix) 0 0 hi}ilk,o (51.29)
0 0 0 f3(zijk) 0 0
2f3(xi)  fa(yik)  fa(zijk)
flyiw) 0 0 | hilie (81.30)
f3(zijx) 0 0
f3(Xijk) = Xij—1k — Xig1j-1k + 3Xijk — Xij_1k41 + Xig1jk — 3Xip1j-1k41 T Xijks1 — Xip1jke1-  (S1.31)
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Similarly

dejie 1. g

0 f3(xij)

0

~1
oy 32 o | falxin) 2f3(yi) - fa(zije) hyi 1k (51.32)
0 f3(zijk) 0
and ) i
0 0 fg(xl‘]'k)
itk Ly h;;! 5133
dzge 32 ko 0 0 f3(Wije) ij—1k,0° (S1.33)
fa(xin)  fa(yik) 2f3(zijx)
In the case that hyy« = hjjx 1, 7o01 in Eq. (51.4) corresponds with 7. As a result:
-1 0 0 0 -1 0 00 -1
Pt 11 00 Mt _1 0 —-1 0 Mt _1 00 —1
1 0 0 0O 1 0 0 0 1
) ] ) ) ) (S1.34)
As a consequence, we find for the strain derivative:
-1 -1 1 -1 0 0
o€ijk—1 1h_T i BT - o1
vy g Vijk—1,0 0 0 O |hpg1+hjp, -1 00 ijk—1,0 (51.35)
0 0O O 1 0 0
fa(xi)  fa(yie)  fa(zijp) fa(xij) 0 0
= 3 k=10 0 0 0 T falyiw) 0 0 | | hijg1,0 (51.36)
0 0 0 f4(zijk> 0 0
2fa(xijn)  fayie)  fa(zije)
1. g »
= k10 | fayi) 0 0 hi 10 (51.37)
f4(zijk) 0 0
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with

fa(Xijk) = Xijk—1 — Xip1jk—1 — Xijy1k—1 + 3%Xijk — 3Xip1j11k-1 T Xig1jk + Xijr1k — Xipjrike (S1.38)

Similarly
0 f4(xi]-k) 0
deijp1 1. g -1
Wik w10 | falp) 2fa(yip)  falzig) | Pig-10 (51.39)
0 f4 (Zijk) 0
and _ )
0 0 f4(xi]-k)
deijk—1 1. g -1
dzy 32l | 0 0 Al | M- (S1.40)
fa(xin)  fa(yin) 2fa(zi)
Case 5: hP’VK = hi*ljflk
In the case that hyyx = h;_1j_1x, 7110 in Eq. (51.4) corresponds with r;j. As a result:
1 00 0 1 0 0 0 1
ahi_lj_lk _ 1 L o0 o ahi_lj_lk _ 1 0 1 0 ahi—lj—lk _ 1 00 1
ax,-]-k 4 ayi]-k 4 aZZ']'k 4
-1 00 0 -1 0 0 0 —1
) ] ) ) ) (S1.41)
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As a consequence, we find for the strain derivative:

1 1 -1 1 0 0
0€;_1j1k 1, 7 . »
ik - §hi—1j—1k,o 00 0 |higjuthi_g | 1 00 hii1ko (S1.42)
00 O -1 0 0
fs(xij)  fs(yije)  f5(zijk) fs(xix) 0 0
= Moo 0 0 0 | fslyg) 0 0| [Biyiwe (S143)
0 0 0 fS(Zi]'k) 00
2fs(xij)  fs(Wie)  f5(zijk)
1, »
= Mk | flyip) 0 0 |k (S1.44)
f5(zijk) 0 0
with
fs(Xijk) = —Xi-1j-1x + X1k + X1k — 3Xi1j-1k41 T BXijk — Xij-1kt1 — Xi-tjkr1 + Xijgr1- (51.45)
Similarly
0 f5(X,']'k) 0
deiqjie 1. g .
dyie 32 u-wo | f(xie) 2fs(i) fo(zig) by i1k (S1.46)
0 f5(zijk) 0
and ) i
0 0 f5(xijk)
dei ik 1. g .
9Zijk = 32 im1j-1k0 0 0 f5(Yije) h 5 ik (51.47)
fs(xin)  fs(yije)  2fs(zijk)

S-12




Case 6: h},w{ = hifljkfl

In the case that hyye = h; 151, 7101 in Eq. (51.4) corresponds with 7;j. As a result:

1 00 0 1 0 0 0 1
ahi—ljk—l _ 1 ahi-l]’k—l - 1 ahi_ljk_l _ 1
axz‘]'k 4 -100 ayi]'k - 4 0 -10 aZZ‘]'k - 4 00 —1
1 0 0 0 1 0 0 0 1
) ) ) ] (51.48)
As a consequence, we find for the strain derivative:
1 -1 1 1 0
0€;_1jk—1 1, -
Xk - ghijjkq,o 0 0 O hi—ljkfl‘f‘hiT,l]'k,l -1 0 0 hiflljkfl,o (S1.49)
0O 0 O 1 0
fo(xij)  fo(yi)  fo(zijk) fo(xi) 0 0
- 372hi—1jk—1,0 0 0 0 + f6(yijk) 00 hz‘_ljk_LQ (51.50)
0 0 0 fo(zi) 0 0
2fe(xi)  fo(yijk)  folzijr)
= Mo | felyi) 0 0 hi 10 (S1.51)
fo(zijk) 0 0
with
fo(xijK) = —Xi—1jk—1 + Xijk—1 — 3Xi—1j41k—1 T Xi—1jk — Xij+1k—1 + 3Xijk — Xi—1j+1k + Xijp1k-  (51.52)
Similarly
0 f6(xijk) 0
Jdei k-1 1, g .
Sy 32 k10 fo(xije) 2fe(yin)  folzije) | Micajk-10 (51.53)
0 fo(zijx) 0
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and

0 0 f6(xl-jk)
dgi 11 1, ¢ 1
dzyj 32 iUk-10 0 0 foyir) | Micrje10- (51.54)
fo(xije)  fo(vijk)  2fo(zije)
Case 7: hP’VK = hi]',lkfl
In the case that hyyx = hjj_151, To11 in Eq. (51.4) corresponds with r;j. As a result:
-1 0 0 0 -1 0 0 0 -1
ohjj i1 1 Lo o ohjj 11 1 0 1 0 ohj1p—1 _ 1 0 .
ax,-]-k 4 ayi]-k 4 aZZ']'k 4 0
1 00 0 1 0 0 0 1
) i i ) (51.55)
As a consequence, we find for the strain derivative:
1011 10 0
d€ij_1k-1 1h*T T -1
ax;j —  gllij—1k-10 0 00 |hjuwathjy | 1 00 hii i1 (51.56)
0O 00 1 00
fr(xig)  fr(yige)  f7(zijk) fr(xij) 0 0
1. ¢ -1
= @hij—1k—1,o 0 0 0 | fr(yix) 0 O hii i1 (S1.57)
0 0 0 f7(zijk) 0 0
2f7(xiw)  fr(yi)  fr(zijk)
1.7 1
= 372hij71k71,0 f7(Yijx) 0 0 hii 10 (51.58)
f7(zijk) 0 0
with
fr(Xijk) = —Xij—1k—1 — 3Xip1j-1k—1 + Xijk—1 + Xij_1k — Xiy1jk—1 — Xip1j—1k + 3Xijk + Xip1j-  (51.59)
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Similarly

d€ij_1k-1
ik

and

d€ij_1k-1
aZi]‘k

_ Ly
T 30 ij—1k=10

_ LT
T 327 ij—1k-10

0

fr(xi)  2f7(vi)  fr(zijx)

0

0

0

fr(xin)  fr(yin)  2f7(zijx)

fr(xijk)

f7(zijx)

0

0

0

0

f7(xijk)
fr (i)

In the case that hy,x = hi71j71k71, r111 in Eq. (S1.4) corresponds with 7;j. As a result:

1 0

ohiqjp—1 1
axi]‘k N 4 10
1 0

0
oh; 1j 141
0 —
]/z]k
0

1

4

S-15

1
hii k10 (51.60)
1
hi o (S1.61)

0 01

ohijju—1 1
oz —3|001
0 01
(51.62)



As a consequence, we find for the strain derivative:

(S1.63)

hiilljflkfl,o (S1.64)

1 11 1 00
Jg; 1j-1k-1 1. 1 T 1
axijk ghz’—lj—lk—l,o 0 0O hi—lj—lk—1+hi,1];1k,1 1 00 hi—lj—lk—l,o
0 00 1 00
fo(xije)  fs(yije)  fs(zijk) fs(xi) 0 0
1.7
372hi71j71k71,0 0 0 0 1 felyix) 0 0
0 0 0 fS(Zijk) 00
2fg(xij)  fo(yie)  fa(zijk)
1. ¢ -1
372hi—1j—1k—1,0 fs(Yiix) 0 0 b k10
fS(Zijk) 0 0
with
f(xijk) = —=3Xi_1j—1k—1 — Xij—1k—1 — Xi—1jk—1 — Xi—1j—1k + Xijk—1 + Xij—1k + Xi—1jk + 3%Xijr.  (51.66)
Similarly

ogi_1j—1k-1 _ 1

and

ogi1j-1k-1 1
= 3p Ni-1j-1k-1,0 0 0

-T

30 i—1j-1k-10

=T

0 fg(xl'jk) 0

0 fg (Zijk) 0

0 0

S-16

fs(xin)  2fs(yi)  fs(zijx)

fs(xijk)
fs (%‘jk)
fo(xijw)  fe(vijk)  2fs(zijk)

-1
hz’—lj—lk—l,O

h!

i—1j—1k—1,0"

(S1.67)

(S1.68)

(S1.65)



S1.4 Resulting equations of motion for unistable periodic systems

In conclusion, the update equations for the unistable periodic micromechanical system are given

by 7ijx = pij/mijx = vijx and

. 1 i j k - )
Piky = —5 Y Y ) det(huw) [Tr {hy},(ahw,(} € * Crm0 * €
p=i—1v=j—1k=k—1 Xijk
2fn]u/x (xl]k) fn]w;( (yl]k) fn]wx (al]k)
1|, B
T35 | Mo | o (i) 0 0 by |+ Cuveo : Epun
fn;zw (lek) 0 0
2fnpw;< (xljk) f”l;u/x (yljk) f”l;u/x (Zl]k)
1 _ _
+372 EZ;VK : CVVK/O : hyVTK,O fnym (yijk) 0 0 hw/l,(,o (51~69)
fn;wk (Zl]k) 0 0
) 1 i j k ) ) .
pl]k,]/ = _E Z Z Z det(h}w,() Tr hHVKrh}lVK EHVK . C‘MI/K,O . E]JVK
p=i—1v=j-1x=k-1 Yijk
0 P (Xijie) 0
+33 hVVK'O fnw/x (xljk) zfn}ll/K (yl]k) fn/uwc (Zl]k) hVVK/O : C}WK’O : SI/WK
f”yv»{ (Zijk) 0
0 fnw/x (xl]k) 0
et Gt | by h,) 1.70
+33 E’/L]/K - uvk,0 - uvx,0 anK (xijk) 2fn}wx (]/ijk) fn}wk (Zijk) pvx,0 (5 . )
L 0 f”;wx (Zijk) 0 i ]
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. 1 i j k p)
Pik: = —3 Z Yo Y det(hyu) [Tr{hw},(a hm}s;mzcm,o:em

0 0 Fie (Xijk)

1 -T 1 . .

+372 hva,O 0 O fn]wK (%;k) hVVK 0 . C}IVK,O : 6‘141/1(
L fn;lwc (xijk) fn;wK (yl]k) zfn/wx (Zijk) ]
0 0 fn;w;( <x1jk)

1 T T 1

+3—2 € * Cprrc0 hym 0 0 0 Fion (vije) hWK o | 1(61.71)
L fn;zwc (xl]k) fn;wx (yl]k) 2f”]u/x (Zl]k) ] i

The first-order polynomials f,,,, as well as the derivatives of hy,« appearing in these update
equations were determined in Section S1.3 for each of the eight possible (y, v, k) values entering

the summation of Eq. (51.9).

S1.5 Extension to unistable isolated systems

While the equations of motion derived in Section S1.4 are valid for a periodic 3D system, they
can be easily extended to also describe an isolated micromechanical system. To this end, consider
again an n, x n, x n, collection of nanocells, each defined by the eight nodes on their corners.
For a periodic system, we identified for instance 7, ik with Tojk- For an isolated system, however,
all nodes on the boundary, i.e., nodes N with i € {0,n,}, j € {0,n,} or k € {0,n;} are unique.
Therefore, (1, +1) x (n, +1) X (n; + 1) nodes are needed to define the system, resulting in the

following Lagrangian and Hamiltonian:

ny My ny ne—11y—1p,—1
Z Z Z mqkrz]k Z Z Z u]ﬂ/x (51.72)
i=0j=0k= u=0 v=0 x=

ny My ny plzjk ne—1Mmy—1lp,—1
R0 WL wl o W 517

i=0j=0k=0 u=0 v=0 x=

The interpretation of all these variables is the same as in the periodic system. Especially,

S-18



miji still denotes the mass assigned to node Njj, which is typically taken as the average of the
eight nanocells surrounding the node. In the case that the node N;jj is found on the boundary
of the system, a zero mass is assigned to each of the in total eight terms entering this averaging
procedure that fall outside the isolated model. This ensures that the nodes on the boundary
generally have a lower mass and a larger flexibility compared to bulk nodes, as can be intuitively
expected for an isolated system.

Given that the functional form of the Hamiltonian remains the same, also the update equa-
tions of the isolated system remain unaltered with respect to those determined for the periodic
system in Section 51.4; keeping in mind that the update equations for the momentum p;j will
contain fewer than eight terms in the case that a boundary node is considered as no elastic energy

is associated with the vacuum surrounding the isolated system.
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S2 Extension towards bistable nanocells

As outlined in the main text, the micromechanical model derived for unistable nanocells can
be easily extended to account for bistable nanocells by using the interpolation scheme of Christ
and van Gunsteren.! This interpolation scheme is introduced in Section S2.1 and result in the

equations of motion of Section 52.2.

S2.1 Interpolation of the elastic deformation energy

Using the interpolation scheme of Ref. 1, the potential energy for a bistable nanocell h,, is given

b
’ Z/{]/(HI/)K Z/[]/(HI/Q + AF1e1 UVK
Uy = —kgT;, In |exp | — +exp | — : . (52.1)
HVK B HVK [ p < kB T;VK ) p < kB T;]/K ) ]

In this expression, Z/{PSQ< and Z/{}%? are the single-phase elastic deformation energies, determined

based on the equilibrium cell matrix and stiffness tensor of these phases as outlined in Eq.
(51.2), and AFjeq1,uux is the difference in free energy between the two phases, determined from
the atomistic simulation. Furthermore, kp is the Boltzmann constant and Ty, is an effective
temperature that determines the smoothness of the interpolation. In practice, this parameter
should be fitted to best reproduce the barrier AF, ,,, obtained from atomistic simulations (see

Figure 4 in the main text for a visual representation).

S$2.2 Resulting equations of motion for bistable systems

From the equations of motion for the unistable system, given in Eq. (51.8) and Eq. (51.9), it is clear
that the altered potential energy will only directly affect the update equation for the conjugated

momenta, through Vrijkl/lw,((r). From Eq. (52.1), we find for the bistable nanocell that

(I (11)
Ui (1) (I Upiv (1) +BF16 11, pvx \V4 (1)
BT | VeuUuwi(r) +exp | — B T vt (1)

exp (—
VU (1) =
ik ox Ui (r) Tex _ U () AFr
P\~ &T. P K5 T

(S2.2)

The derivatives Vri].kbl}([&(r) and V,,l.jku}(“l,f{) (r) that enter this equation are derivatives of the

single-phase elastic deformation energy. As they were explicitly derived in Section S1.3, they can
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be directly plugged in in Eq. (52.2) to yield the update equation for the conjugated momenta of
nodes that define bistable nanocells.

In the update equation of the conjugated momentum of node Njj,

k

i j
pijk = - E E E V'r,jkuwx("")/ (52.3)

pu=i—lv=j—1x=k—1

each of the eight terms V,,z.jkl/{w,{(r) will thus correspond with the derivatives calculated in Sec-
tion S1.3 if that specific nanocell is unistable, or correspond with Eq. (52.2) if that specific nanocell
is bistable. To extend these update equations to isolated systems, the same procedure as in Sec-

tion S1.5 for unistable systems can be followed.
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