1 2	Anti-hyperuricemic potential of stevia (<i>S</i> in hyperuricemic mice	<i>tevia rebaudiana</i> Bertoni) residue extract	
3	Arshad Mehmood ¹ , Liang Zhao ¹ , Muhammad Ishaq ¹ , Wang Xin ¹ , Lei Zhao ¹ *,		
4	Chengtao Wang ^{1*} , Imam Hossen ¹ , Huimin Zhang ¹ , Yunhe Lian ² , Meili Xu ²		
5	¹ Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing		
6	Engineering and Technology Research Center of Food Additives School of Food and		
7	Chemical Technology, Beijing Technology and Business University, Beijing 100048,		
8	China		
9	² Chenguang Biotech Group Co. Ltd. Handa	an 057250, China	
10	* Corresponding authors:		
11		Prof Dr. Chengtao Wang	
12		Email: wangchengtaojs@163.com, Tel:	
13		+86-10-6898-4547, Fax: +86-10-6898-	
14		5252	
15		Associate Prof Dr. Lei Zhao	
16		Email: <u>zhaolei@th.btbu.edu.cn</u> , Tel: +86-	
17		10-6898-5378, Fax: +86-10-6898-5252	
18			
19 20			
20			
22			
23			
24			
25			
26			
27			
28			
29			

30 Preparation of STVRE

The Stevia leaves powder was extracted twice with 18 volumes of distilled water at 31 32 65°C for 1.5 hr and then filtrated. The filtrate was mixed with ferrous sulfate (0.9% w/v, final concentration) and adjusted to pH 9.0-10.0 with calcium hydroxide. After 33 flocculation at 50°C for 30 min, the mixture was filtrated to obtain the Stevia residue. 34 The Stevia residue was then extracted three times with acidified 95% (v/v) acetone (pH 35 1.5) at 45°C for 1 hr and filtrated. The filtrate was evaporated under reduced pressure 36 to remove acetone, and thereafter purified by extraction with ethyl acetate. The partially 37 purified extract was applied to an HZ841 macroporous resin column, and then eluted it 38 with 2 bed volume (BV) of distilled water, followed by 2 BV of alkaline water (pH 9.5) 39 at a flow rate of 1 BV/hr to remove impurities. Subsequently, the adsorbed components 40 were eluted with 3 BV of 17% (v/v) ethanol, followed by 1.5 BV of 50% (v/v) ethanol. 41 42 The eluents were concentrated and lyophilized to obtain SRE1 and SRE2, respectively. to use (1-2, 5). The resulting STVRE powder was stored at -20°C prior 43 Qualitative and quantitative analysis of the major bioactive compounds in STVRE 44 The major bioactive compounds in SREs were identified by HPLC- ESI-QTOF-45 MS/MS (6530 HPLC-MS system; Aglient Technologies, Santa Clara, CA, USA) and 46 quantified by HPLC (1290 HPLC system; Aglient Technologies, Santa Clara, CA, 47 USA). The HPLC parameters were as follows: chromatographic column, Agilent 48 Eclipse Plus C18 column (50 mm × 2.1 mm i.d., 1.8 µm; Aglient Technologies, Santa 49 Clara, CA, USA); mobile phase, 0.1% formic acid in water (A) and methanol (B); flow 50 rate, 0.1 mL/min; elution procedure, 0-10 min, 10%-50% B; 10-12 min, 50%-10% 51 B; 12–15 min, 10% B; detection wavelength, 320 and 360 nm; column temperature, 52

53	30°C; volume of sample injection, 1 μ L. Authentic compounds (3-O-caffeoylquinic
54	acid, 4-O-caffeoylquinic acid, caffeic acid, quercetin, 3,4-O-dicaffeoylquinic acid, 3,5-
55	O-dicaffeoylquinic acid, 4,5-O-di-caffeoylquinic acid and quercetin-3-O-rhamnoside)
56	were dissolved in methanol; the concentrations were adjusted to 6.25, 12.5, 25, 50, 100,
57	200 and 400 $\mu\text{g/mL},$ respectively, and the calibration curves were established under the
58	same determination conditions. Mass spectrometric detection was set as follows:
59	Negative ion mass spectra of the column eluate were recorded in the range of m/z 100–
60	1500 (1-2, 5).
61 62	
63	

64 Supplementary Table 1. Retention times (Rt), MS and MS2 fragmentation ions of the

65 phenolic compounds in stevia residue extract (STVRE).

66					
Compou	Rt	Pseudomolec	MS2 (m/z)	Tentative identification	mg/ml
nds	(min	ular ion [M–			
)	H]-			
		(m/z)			
1	3.8	353.0878	191.0571 (100), 179.0357 (72),	3-O-Caffeoylquinic acid	1.68 ± 0.75
			135.0451 (9)		
2	4.2	353.0878	191.0567 (100), 179.0353 (76),	4-O-Caffeoylquinic acid	3.79 ± 0.41
			173.0431 (4), 135.0442 (13)		
3	4.4	179.0350	135.0456 (100)	Caffeic acid	8.54 ± 0.82
4	7.9	515.1195	353.0916 (100), 335.0823 (1),	3,4-O-Dicaffeoylquinic acid	232.75 \pm
			191.0575 (12), 179.0361 (9),		2.17
			135.0443 (2)		
5	8.0	515.1195	353.0914 (100), 335.0771 (1),	3,5-O-Dicaffeoylquinic acid	92.43 ±
			191.0564 (5), 179.036 (14),		0.97
			173.0467 (24), 135.0440 (2		
6	9.1	515.1195	353.0921 (100), 191.0587 (4),	4,5-O-Dicaffeoylquinic acid	265.94 \pm
			179.0365 (21), 173.0462 (19),		2.63
			135.0459 (2)		
7	9.3	447.0933	301.0373 (100)	Quercetin-3-O-rhamnoside	125.97 \pm
					1.13
8	11.0	301.0354	107.0139 (8), 121.0301 (11),	Quercetin	3.05 ± 0.63
			151.0042 (100), 178.9994 (72)		
				Total chlorogenic acids	605.13 ±
				8	5.66
				Total flavonoids	$129.02 \pm$
					20.61

67
68 Adopted from (1-2, 5)
69
70
71
72
73
74
75

76

77 Supplementary Table 2. Experimental plan

Treatmen	ts Dosage Information
NC	Normal diet + 0.5% (w/v) CMC-Na
MC	Normal diet + potassium oxonate (100 mg/kg bw) + fructose in drinking water (10 %) + yeast extract (100 mg/kg bw)
PC	Normal diet + potassium oxonate (100 mg/kg bw) + fructose in drinking water (10 %) + yeast extract (100 mg/kg bw) + allopurinol (5 mg/kg bw)
STVRE-1	Normal diet + potassium oxonate (100 mg/kg bw) + fructose in drinking water (10 %) + yeast extract (100 mg/kg bw) + stevia residue extract (75 mg/kg bw)
STVRE-2	Normal diet + potassium oxonate (100 mg/kg bw) + fructose in drinking water (10 %) + yeast extract (100 mg/kg bw) + stevia residue extract (150 mg/kg bw)
STVRE-3	Normal diet + potassium oxonate (100 mg/kg bw) + fructose in drinking water (10 %) + yeast extract (100 mg/kg bw) + stevia residue extract (300 mg/kg bw)
78	
79	Eight weeks
80	←
81	
82	All drugs and plant material used in animal study were dispersed in 0.5% CMC-Na.
83	NC: Normal control, MC: Model control: PC: Positive control, STVRE-1: Stevia
84	residue extract 1, STVRE-2: Stevia residue extract 3, STVRE-3: Stevia residue extract
85	3
86	
87	

Genes	Primer	Primer sequences	Reference
UART1	Forward	GCTACCAGAATCGGCACGCT	4
	Reverse	CACCGGGAAGTCCACAATCC	
GLUT9	Forward	GAGATGCTCATTGTGGGACG	
	Reverse	GTGCTACTTCGTCCTCGGT	
ABCG2	Forward	TAAATGGAGCACCTCAACCT	
	Reverse	GAGATGCCACGGATAAACTG	
OAT1	Forward	GCCTATGTGGGGCACCTTGAT	
	Reverse	CTTGTTTCCCGTTGATGCGG	
OAT3	Forward	AAGAACATCTCTGTGAGGGTG	
	Reverse	GGCAAGATGAACCAAAACTGG	
OCT1	Forward	ACATCCATGTTGCTCTTTCG	
	Reverse	TTGCTCCATTATCCTTACCG	
OCT2	Forward	ACAGGTTTGGGCGGAAGT	
	Reverse	CACCAGAAATAGAGCAGGAAG	
OCTN1	Forward	AGGAGAGGTGGAAACATGCG	
	Reverse	TCCTTCGTCTCCAAGGGGA	
OCTN2	Forward	CTTATTCCCATACGGGCGCT	
	Reverse	TTTCTGAGGCACCTGTCGTC	
NF-κB	Forward	5'-CTCACCGGCCTCATCCACAT-3'	3
	Reverse	5'-TGGCTAATGGCTTGCTCCAG-3'	
99			
100			
101			
102			
103			
104			
105			
106			
107			
108			
109			
110			
111			
112			
113			
114			
115			
116			
117			
118			

98 Supplementary Table 3: List of primers used in this study

Supplementary Table 4. Effect of STVRE on body, liver and kidney weight of
hyperuricemic mice (n = 10)

Group	Body Weight (g)	Liver Weight (g)	Kidney Weight (g)	Liver Index (%)	Kidney Index
					(%)
NC	55.56 ± 2.63	2.59 ± 0.30	0.58 ± 0.07	4.66 ± 0.3	1.04 ± 0.02
MC	52.56 ± 2.08	2.39 ± 0.23	0.53 ± 0.08	4.54 ± 0.23	1.00 ± 0.03
PC	53.56 ± 1.99	2.62 ± 0.21	0.59 ± 0.02	4.89 ± 0.21	0.97 ± 0.01
STVRE-1	51.24 ± 1.85	2.35 ± 0.17	0.52 ± 0.06	4.58 ± 0.17	1.01 ± 0.03
STVRE-2	53.02 ± 2.35	2.56 ± 0.15	0.56 ± 0.03	4.82 ± 0.15	1.05 ± 0.01
STVRE-3	56.58 ± 2.21	2.60 ± 0.19	0.56 ± 0.05	4.59 ± 0.19	0.98 ± 0.02

123 Non-significant (p>0.05) effect on general characteristic such as body weight, kidney

124 weight, liver weight, kidney index, and liver index were observed among all groups.

125 NC: normal control group, MC: model control group, PC: positive control group,

126 STVRE-1: Stevia residue extract 75 mg/kg bw, STVRE-2: Stevia residue extract 150

127 mg/kg bw, STVRE-3: Stevia residue extract 300 mg/kg bw

 ${}^{\#}p<0.05, {}^{\#\#}p<0.01, {}^{\#\#\#}p<0.001$ compare with normal control, ${}^{*}p<0.05, {}^{**}p<0.01,$ 129 ${}^{***}p<0.001$ compare with model control

ao, L., Wang, X., Xu, M., Lian, Y., Wang, C., Yang, H., & Mehmood, A.
018). Dietary intervention with Stevia residue extracts alleviates impaired
cose regulation in mice. Journal of Food Biochemistry, 42(6), e12651.
ao, L., Yang, H., Xu, M., Wang, X., Wang, C., Lian, Y., & Dai, H. (2019).
via residue extract ameliorates oxidative stress in d-galactose-induced aging
ce via Akt/Nrf2/HO-1 pathway. Journal of Functional Foods, 52, 587-595.
e, Y. M., Shon, E. J., Kim, O. S., & Kim, D. S. (2017). Effects of Mollugo
ntaphylla extract on monosodium urate crystal-induced gouty arthritis in
ce. BMC complementary and alternative medicine, 17(1), 447.
an, X., Wang, X., Luo, J., Liu, Y., Pang, J., Zhang, H., & Ling, W. (2019).
pouricemic and nephroprotective roles of anthocyanin's in hyperuricemic
ce. Food & function, 10(2), 867-878.
chmood A, Lei Zhao, Wang Chengtao, Imam Hossen, Rifat Nowshin
ka and Huimin Zhang.2019.Stevia residue extract increases intestinal uric acid
eretion via interacting with intestinal urate transporters in hyperuricemic mice.
od Funct., DOI:10.1039/C9FO02032B.