Supporting Information

Fully Alternating Sustainable Polyesters from Epoxides and Cyclic Anhydrides: Economical and Metal-free Dual Catalysis

Experimental Procedures

Materials

All chemicals were used as received unless otherwise stated. Cyclohexane oxide (CHO), propene oxide (PO) and 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU) were refluxed over CaH for 24 h and vacuum-distilled prior to use. Phthalic anhydride (J&K, 98%), maleic anhydride (TCI, >99%) and succinic anhydride (J&K, 99%) were purified by sublimation. Triclocarban (TCI, 98%), N,N'-diphenylurea (TCI,98%), N,N'-dicyclohexylurea (TCI, 98%), 1-cyclohexyl-3-phenyl-urea (Fuyuan Technology company, 98%), 1-cyclohexyl-3-phenyl-thiourea (J&K, 98%), bis(triphenylphosphine)iminium chloride([PPN]Cl) (Alfa, 97%), tetrabutylammonium bromide (NBu4Br) (Alfa, 98%) and 4-dimethylaminopyridine (DMAP) (Alfa, 99%) were used as received.

Measurements

1H NMR and 13C NMR spectra were obtained on a Bruker DRX-500 MHz NMR spectrometer using CDCl$_3$ or DMSO-d$_6$ as solvent. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) were recorded on Bruker ultrafleXtreme type. The polymer sample in THF (10 mg/mL), $trans$-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) in
THF as matrix (10 mg/mL) and sodium trifluoroacetate in methanol (1 mg/mL) were mixed in a 10:1:1 volume ratio, and then 1 μL of mixed solution was spotted onto the sample plate before being air-dried. Molecular weight determinations were carried out using a waters gel permeation chromatography (GPC) system with chloroform as eluent. The GPC system was calibrated by a series of polystyrene standards with polydispersity of 1.02. The glass-transition temperatures (T_g) were measured by a differential scanning calorimeter (DSC, Netzsch Model 204). The samples were firstly heated at a heating rate of 10 °C/min and then cooled at a cooling rate of 10 °C/ min by liquid nitrogen, followed by second heating.

General Procedure of Polymerization

Polymerizations were performed in a 25 mL vial using an external heating bath. The vial was charged with a predetermined amount of (thio)urea (0.05mmol, 1 equiv), organic base (0.05mmol, 1 equiv), epoxide (10mmol, 200 equiv) and anhydride (5mmol, 100 equiv), which were kept stirring for 5 min at room temperature in an N$_2$-filled glovebox. The vial was sealed, taken out of glovebox, and then immersed in the heating bath under the predetermined temperature. After equilibration at the desired polymerization temperature, the polymerization started. After a desired period of time, the vial was removed from heat block and a 0.2 mL of aliquot was taken from the reaction mixture and prepared for 1H NMR analysis. Then the mixture was dissolved in CHCl$_3$ and precipitated into 10-fold excess of methanol or hexane, filtered, washed with methanol or hexane to remove unreacted monomer, and dried in a vacuum oven at room temperature to a constant weight.
Table S1. Copolymerization of CHO with PA Catalyzed by U1/PPNCl under different conditions.\(^a\)

<table>
<thead>
<tr>
<th>entry</th>
<th>LA/LB/ CHO/PA</th>
<th>t /min</th>
<th>PA conv./%(^b)</th>
<th>ester /%(^c)</th>
<th>Mn kDa(^d)</th>
<th>PDI(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:1:500:100</td>
<td>15</td>
<td>100</td>
<td>98</td>
<td>9.4</td>
<td>1.21</td>
</tr>
<tr>
<td>2</td>
<td>1:1:200:100</td>
<td>15</td>
<td>100</td>
<td>99</td>
<td>8.9</td>
<td>1.24</td>
</tr>
<tr>
<td>3</td>
<td>1:1:100:100</td>
<td>15</td>
<td>63</td>
<td>98</td>
<td>5.3</td>
<td>1.28</td>
</tr>
<tr>
<td>4(^e)</td>
<td>1:1:100:100</td>
<td>60</td>
<td>84</td>
<td>98</td>
<td>4.6</td>
<td>1.26</td>
</tr>
<tr>
<td>5(^f)</td>
<td>1:1:200:100</td>
<td>60</td>
<td>95</td>
<td>99</td>
<td>5.2</td>
<td>1.29</td>
</tr>
<tr>
<td>6</td>
<td>1:1:500:250</td>
<td>40</td>
<td>100</td>
<td>98</td>
<td>15.9</td>
<td>1.28</td>
</tr>
<tr>
<td>7(^g)</td>
<td>1:1:200:-</td>
<td>180</td>
<td>CHO:0.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) The copolymerizations were carried out at 110 °C in bulk, unless otherwise mentioned. \(^b\) PA conversion was determined by \(^1\)H NMR. \(^c\) Ester linkage was determined via \(^1\)H NMR by integrating ester and ether signals. \(^d\) \(M_n\) and PDI were determined by GPC. \(^e\) Performed in xylene, with a PA concentration of 5 mol/L. \(^f\) At 80 °C. \(^g\) Homopolymerization of CHO.
Figure S1 Representative GPC curves of resultant poly(CHO-alt-PA) A: a) 1:1:200:100-crude, $M_n = 8.9$ kDa (Table S1 entry 2); b) 1:1:200:100, $M_n = 13.0$ kDa (Table 1 entry 11); c) 1:1:500:250, $M_n = 22.5$ kDa (Table 1 entry 12); d) 2:1:500:250, $M_n = 26.2$ kDa (Table 1 entry 13); e) 1:1:1000:500, $M_n = 34.6$ kDa (Table 1 entry 14); poly(PO-alt-PA) B: a) 1:1:200:100, $M_n = 14.1$ kDa (Table 2 entry 1); b) 1:1:500:250, $M_n = 23.5$ kDa (Table 2 entry 2);
Figure S2 GPC curves of resultant poly(CHO-alt-PA) performed at U1/PPNCl/CHO/PA = 1:1:200:100 in bulk at different reaction time.
Figure S3 1H NMR and 13C NMR spectrum and 13C NMR spectrum of the poly(PO-alt-PA) in CDCl$_3$.
Figure S4 1H NMR and 13C NMR spectrum of the poly(CHO-alt-MA) produced in xylene with 2% maleic acid in CDCl$_3$.
Figure S5 1H NMR and 13C NMR spectrum and 13C NMR spectrum of the poly(PO-alt-MA) in CDCl$_3$.
Figure S6 ¹H NMR and ¹³C NMR spectrum and ¹³C NMR spectrum of the poly(CHO-alt-SA) in CDCl₃.
Figure S7 1H NMR and 13C NMR spectrum and 13C NMR spectrum of the poly(PO-alt-SA) in CDCl$_3$.
Figure S8 MALDI-TOF mass spectra of poly(CHO-alt-MA) produced in xylene with 2% maleic acid (A); poly(CHO-alt-SA) produced in xylene with 2% succinic acid (B).

Figure S9 ¹H NMR spectra of a) PA; b) PPNCl; c) U2; d) U2/PPNCl (1:1); e)
U2/PPNCl/ PA (1:1:2) in DMSO-d$_6$ at 110 °C.

Figure S10 1H NMR spectra of a) CHO; b) PPNCl; c) U2; d) U2/PPNCl (1:1); e) U2/PPNCl/ CHO (1:1:2) in DMSO-d$_6$ at 110 °C.
Figure S11 ¹H NMR spectra of a) maleic acid; b) DBU; c) U2; d) U2/DBU (1:2); e) U2/DBU/maleic acid (1:2:1) in DMSO-d₆.