Supporting information

Synthesis of Non-symmetrical Alkyl Carbonates from Alcohols and DMC over Nanocrystalline ZSM-5 Zeolite

Chevella Durgaiah, a Macharla Arun kumar, *a,b Banothu Rammurthy, a,c Gajula Krishna Sai, a,c Amrutham Vasu, a,c Boosa Murali a,c and Nama Narender a,c

a C&FC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India-500 007
b Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad, Telangana, India-500 046.
c Academy of Scientific and Innovative Research, CSIR-IICT, Hyderabad, Telangana, India-500007

E-mail: macharlaarunkumar@gmail.com; narendern33@yahoo.co.in; nama.iict@gov.in Fax: +91-40-27160387/27160757; Tel.: +91–40-27191703.

Table of Contents

1. Table S1 ...S2
2. Fig. S1 ...S3
3. Fig. S2 ...S4
4. Fig. S3 ...S5
5. Table S2 ...S6
6. Spectroscopic Data ...S7-S12
7. Copies of 1H and 13C NMR Spectra ..S13-S34
8. References ...S35
1. **Table S1.** Effect of amount of 2a, amount of NZSM-5, and temperature on synthesis of non-symmetrical organic carbonates

\[
1a \xrightarrow{\text{MeO} - \text{MeO}_2} 2a \xrightarrow{\text{NZSM-5}} 24 \text{h} \xrightarrow{\text{NZSM-5}} 2a \xrightarrow{\text{MeO}} 3a
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>2a (mL)</th>
<th>NZSM-5 (mg)</th>
<th>Temperature (°C)</th>
<th>Yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.42</td>
<td>150</td>
<td>110</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>150</td>
<td>110</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>150</td>
<td>110</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>150</td>
<td>110</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>150</td>
<td>110</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>50</td>
<td>110</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>75</td>
<td>110</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>100</td>
<td>110</td>
<td>65</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>120</td>
<td>110</td>
<td>79</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>150</td>
<td>RT</td>
<td>00</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>150</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>150</td>
<td>75</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>150</td>
<td>90</td>
<td>58</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>150</td>
<td>100</td>
<td>69</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>150</td>
<td>110</td>
<td>95c</td>
</tr>
</tbody>
</table>

\(1a\) (1 mmol). \(b\) Isolated yields. \(c\) Reaction conducted in 15 mL RB with condenser.
2. **Fig. S1** Nitrogen adsorption/desorption isotherms of NZSM-5
3. Fig. S2 Pyridine-IR spectra of (a) ZSM-5, (b) Synthesized NZSM-5
4. **Fig. S3** FT-IR spectra of pure DMC, DMC adsorbed NZSM-5 and Pure NZSM-5
5. Table S2. Recyclability of the dried catalyst without calcination

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Cycle</th>
<th>Yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1st</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>2nd</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>3rd</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>4th</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>5th</td>
<td>80</td>
</tr>
</tbody>
</table>

Reaction conditions: 1-Octanol (1a, 1 mmol), DMC (2 mL), NZSM-5 (150 mg), 110 °C. Isolated yields based on 1a.

To regenerate, the NZSM-5 was filtered to separate from the reaction mixture and washed with ethyl acetate, dried at 100 °C for 8 h, without calcination. Recyclability of the NZSM-5 catalyst was tested by performing the reaction of 1a with 2a in optimized reaction parameters (Table S2). The activity of the NZSM-5 was decreased with increase in number of cycles, this may be due to the blocking of active sites inside the micropores of zeolite by water
and DMC. In case of recycled NZSM-5 catalyst with calcination showed consistent activity up to five cycles (Table 3).

6. Spectroscopic Data

Methyl 1-octyl carbonate (3a)

\[
\text{1H NMR (CDCl}_3, 400 MHz, ppm): \delta = 4.13 (t, J = 6.72 Hz, 2H), 3.78 (s, 3H), 1.71-1.60 (m, 2H), 1.42-1.21 (m, 10H), 0.88 (t, J = 6.72 Hz, 3H); \text{13C NMR (CDCl}_3, 100 MHz, ppm): \delta = 155.87, 68.25, 54.60, 31.73, 29.12, 28.65, 25.66, 22.60, 14.05; HRMS: m/z calculated for C\textsubscript{10}H\textsubscript{20}O\textsubscript{3} [M+H]+ 188.14, found: 188.1440.}

1-Dodecyl methyl carbonate (3b)

\[
\text{1H NMR (CDCl}_3, 500 MHz, ppm): \delta = 4.13 (t, J = 6.71 Hz, 2H), 3.78 (s, 3H), 1.71-1.61 (m, 2H), 1.41-1.23 (m, 18H), 0.88 (t, J = 6.86 Hz, 3H); \text{13C NMR (CDCl}_3, 100 MHz, ppm): \delta = 155.87, 68.25, 54.59, 31.89, 29.59, 29.52, 29.46, 29.31, 29.18, 28.65, 25.65, 22.64, 14.09; HRMS: m/z calculated for C\textsubscript{14}H\textsubscript{28}O\textsubscript{3} [M+H]+ 245.20, found: 245.0792.}

S7
Methyl 1-undecyl carbonate (3c)

\[
\begin{align*}
\text{H NMR (CDCl}_3, 500 \text{ MHz, ppm): } & \delta = 4.13 (t, J = 6.72 \text{ Hz, 2H}), 3.78 (s, 3H), 1.71-1.61 (m, 2H), 1.40-1.23 (m, 16H), 0.88 (t, J = 6.86 \text{ Hz, 3H}); \\
\text{C NMR (CDCl}_3, 100 \text{ MHz, ppm): } & \delta = 155.88, 68.25, 54.59, 31.88, 29.56, 29.53, 29.46, 29.30, 29.19, 28.65, 25.66, 22.65, 14.08; \\
\text{HRMS: m/z calculated for C}_{13}\text{H}_{26}\text{O}_3\text{[M+H]}^+ & 231.18, \text{ found: 231.1966.}
\end{align*}
\]

1-Decyl methyl carbonate (3d)

\[
\begin{align*}
\text{H NMR (CDCl}_3, 400 \text{ MHz, ppm): } & \delta = 4.13 (t, J = 6.72 \text{ Hz, 2H}), 3.78 (s, 3H), 1.71-1.60 (m, 2H), 1.41-1.22 (m, 14H), 0.88 (t, J = 6.72 \text{ Hz, 3H}); \\
\text{C NMR (CDCl}_3, 100 \text{ MHz, ppm): } & \delta = 155.86, 68.26, 54.60, 31.85, 29.46, 29.26, 29.19, 28.65, 25.66, 22.64, 14.08; \\
\text{HRMS: m/z calculated for C}_{12}\text{H}_{24}\text{O}_3 \text{[M]}^+ & 216.17, \text{ found: 216.1745.}
\end{align*}
\]

Methyl 1-nonyl carbonate (3e)

\[
\begin{align*}
\text{H NMR (CDCl}_3, 500 \text{ MHz, ppm): } & \delta = 4.13 (t, J = 6.71 \text{ Hz, 2H}), 3.78 (s, 3H), 1.71-1.61 (m, 2H), 1.40-1.23 (m, 12H), 0.88 (t, J = 6.86 \text{ Hz, 3H}); \\
\text{C NMR (CDCl}_3, 100 \text{ MHz, ppm): } & \delta = 155.87, 68.25, 54.60, 31.82, 29.42, 29.19, 28.65, 25.66, 22.64, 14.08; \\
\text{HRMS: m/z calculated for C}_{11}\text{H}_{22}\text{O}_3 \text{[M+H]}^+ & 203.16, \text{ found: 203.1061.}
\end{align*}
\]

1-Heptyl methyl carbonate (3f)

\[
\begin{align*}
\text{H NMR (CDCl}_3, 500 \text{ MHz, ppm): } & \delta = 4.13 (t, J = 6.72 \text{ Hz, 2H}), 3.78 (s, 3H), 1.71-1.61 (m, 2H), 1.41-1.22 (m, 8H), 0.88 (t, J = 6.86 \text{ Hz, 3H}); \\
\text{C NMR (CDCl}_3, 100 \text{ MHz, ppm): } & \delta = 155.86, 68.23, 54.59, 31.65, 28.84, 28.64, 25.60, 22.53, 14.01; \\
\text{HRMS: m/z calculated for C}_{9}\text{H}_{18}\text{O}_3 \text{[M]}^+ & 174.13, \text{ found: 174.1298.}
\end{align*}
\]

1-Hexyl methyl carbonate (3g)

\[
\begin{align*}
\text{H NMR (CDCl}_3, 500 \text{ MHz, ppm): } & \delta = 4.13 (t, J = 6.72 \text{ Hz, 2H}), 3.78 (s, 3H), 1.71-1.61 (m, 2H), 1.41-1.22 (m, 8H), 0.88 (t, J = 6.86 \text{ Hz, 3H}); \\
\text{C NMR (CDCl}_3, 100 \text{ MHz, ppm): } & \delta = 155.86, 68.23, 54.59, 31.65, 28.84, 28.64, 25.60, 22.53, 14.01; \\
\text{HRMS: m/z calculated for C}_{8}\text{H}_{18}\text{O}_3 \text{[M]}^+ & 174.13, \text{ found: 174.1298.}
\end{align*}
\]
1H NMR (CDCl$_3$, 500 MHz, ppm): $\delta = 4.13$ (t, $J = 6.71$ Hz, 2H), 3.78 (s, 3H), 1.71-1.61 (m, 2H), 1.41-1.22 (m, 6H), 0.89 (t, $J = 6.86$ Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz, ppm): $\delta =$ 155.87, 68.25, 54.60, 31.36, 28.61, 25.33, 22.48, 13.95; HRMS: m/z calculated for C$_8$H$_{16}$O$_3$ [M+H]$^+$ 161.11, found: 161.0427.

6-Chloro-1-hexyl methyl carbonate (3h)

1H NMR (CDCl$_3$, 500 MHz, ppm): $\delta = 4.14$ (t, $J = 6.56$ Hz, 2H), 3.78 (s, 3H), 3.53 (t, $J = 6.56$ Hz, 2H), 1.83-1.73 (m, 2H), 1.72-1.64 (m, 2H), 1.52-1.36 (m, 4H); 13C NMR (CDCl$_3$, 100 MHz, ppm): $\delta =$ 155.80, 67.89, 54.63, 44.84, 32.37, 28.49, 26.43, 25.01; HRMS: m/z calculated for C$_8$H$_{15}$O$_3$Cl [M+H]$^+$ 197.07, found: 197.1039.

Methyl 1-pentyl carbonate (3i)

1H NMR (CDCl$_3$, 400 MHz, ppm): $\delta = 4.13$ (t, $J = 6.72$ Hz, 2H), 3.78 (s, 3H), 1.72-1.61 (m, 2H), 1.39-1.24 (m, 4H), 0.90 (t, $J = 6.96$ Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz, ppm): $\delta =$ 155.87, 68.22, 54.60, 28.33, 27.78, 22.26, 13.89; HRMS: m/z calculated for C$_7$H$_{14}$O$_3$, 147.09 [M+H]$^+$ found: 147.0514.

Isopentyl methyl carbonate (3j)

1H NMR (CDCl$_3$, 500 MHz, ppm): $\delta = 4.17$ (t, $J = 6.86$ Hz, 2H), 3.78 (s, 3H), 1.76-1.68 (m, 1H), 1.59-1.53 (m, 2H), 0.93 (d, $J = 6.56$ Hz, 6H); 13C NMR (CDCl$_3$, 100 MHz, ppm): $\delta =$ 155.85, 66.71, 54.60, 37.28, 24.76, 22.37; HRMS: m/z calculated for C$_7$H$_{14}$O$_3$ [M+H]$^+$ 147.09, found: 147.1158.

1-Butyl methyl carbonate (3k)

S9
\(^1H \) NMR (CDCl\(_3\), 400 MHz, ppm): \(\delta = 4.14 \) (t, \(J = 6.60 \) Hz, 2H), 3.78 (s, 3H), 1.71-1.60 (m, 2H), 1.47-1.33 (m, 2H), 0.94 (t, \(J = 7.33 \) Hz, 3H); \(^13C \) NMR (CDCl\(_3\), 100 MHz, ppm): \(\delta = 155.85, 67.89, 54.55, 30.63, 18.85, 13.58 \); HRMS: m/z calculated for C\(_6\)H\(_{12}\)O\(_3\) [M]\(^+\) 132.08, found: 132.0468.

Isobutyl methyl carbonate (3l)

\(^1H \) NMR (CDCl\(_3\), 500 MHz, ppm): \(\delta = 3.92 \) (d, \(J = 6.71 \) Hz, 2H), 3.78 (s, 3H), 2.02-1.91 (m, 1H), 0.95 (d, \(J = 6.71 \) Hz, 6H); \(^13C \) NMR (CDCl\(_3\), 100 MHz, ppm): \(\delta = 155.90, 74.12, 54.61, 27.75, 18.84 \); HRMS: m/z calculated for C\(_6\)H\(_{12}\)O\(_3\) [M+H]\(^+\) 133.08, found: 133.0468.

Dec-9-en-1-yl methyl carbonate (3m)

\(^1H \) NMR (CDCl\(_3\), 400 MHz, ppm): \(\delta = 5.87-5.72 \) (m, 1H), 5.04-4.90 (m, 2H), 4.13 (t, \(J = 6.72 \) Hz, 2H), 3.78 (s, 3H), 2.08-2.00 (m, 2H), 1.71-1.60 (m, 2H), 1.45-1.24 (m, 10H); \(^13C \) NMR (CDCl\(_3\), 100 MHz, ppm): \(\delta = 155.87, 139.13, 114.14, 68.23, 54.61, 33.75, 29.29, 29.12, 28.98, 28.85, 28.64, 25.64 \); HRMS: m/z calculated for C\(_{12}\)H\(_{22}\)O\(_3\) [M+H]\(^+\) 125.18, found: 215.1306.

Methyl pent-4-en-1-yl carbonate (3n)

\(^1H \) NMR (CDCl\(_3\), 500 MHz, ppm): \(\delta = 5.86-5.73 \) (m, 1H), 5.08-4.96 (m, 2H), 4.15 (t, \(J = 6.56 \) Hz, 2H), 3.78 (s, 3H), 2.19-2.10 (m, 2H), 1.82-1.72 (m, 2H); \(^13C \) NMR (CDCl\(_3\), 100 MHz, ppm): \(\delta = 155.77, 137.17, 115.41, 67.40, 54.64, 29.72, 27.77 \); HRMS: m/z calculated for C\(_7\)H\(_{12}\)O\(_3\) [M]\(^+\) 144.08, found: 144.0798.

(E)-Hex-3-en-1-yl methyl carbonate (3o)

\(^1H \) NMR (CDCl\(_3\), 500 MHz, ppm): \(\delta = 5.62-5.53 \) (m, 1H), 5.42-5.31 (m, 1H), 4.14 (t, \(J = 7.02 \) Hz, 2H), 3.78 (s, 3H), 2.39-2.31 (m, 2H), 2.06-1.96 (m, 2H), 0.97 (t, \(J = 7.48 \) Hz, 3H); \(^13C \)
NMR (CDCl₃, 100 MHz, ppm): δ = 155.75, 135.43, 123.42, 67.67, 54.63, 31.93, 25.56, 13.62; HRMS: m/z calculated for C₈H₁₄O₃ [M]⁺ 158.09, found: 158.1204.

(Z)-Hex-3-en-1-yl methyl carbonate (3p)

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O}
\end{align*}
\]

¹H NMR (CDCl₃, 400 MHz, ppm): δ = 5.57-5.47 (m, 1H), 5.37-5.26 (m, 1H), 4.13 (t, J = 6.96 Hz, 2H), 3.78 (s, 3H), 2.47-2.37 (m, 2H), 2.11-2.00 (m, 2H), 0.97 (t, J = 7.46 Hz, 3H);
¹³C NMR (CDCl₃, 100 MHz, ppm): δ = 155.79, 134.95, 123.00, 67.44, 54.64, 26.73, 20.58, 14.13; HRMS: m/z calculated for C₈H₁₄O₃ [M]⁺ 158.09, found: 158.1204.

Methyl 2-octyl carbonate (3q)

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O}
\end{align*}
\]

¹H NMR (CDCl₃, 500 MHz, ppm): δ = 4.80-4.71 (m, 1H), 3.76 (s, 3H), 1.68-1.60 (m, 1H), 1.54-1.45 (m, 1H), 1.38-1.24 (m, 1H), 0.88 (t, J = 6.72 Hz, 3H);
¹³C NMR (CDCl₃, 100 MHz, ppm): δ = 155.47, 75.52, 54.41, 35.86, 31.66, 29.06, 25.21, 22.54, 19.87, 14.03; HRMS: m/z calculated for C₁₀H₂₀O₃ [M]⁺ 188.14, found: 188.1443.

2-Heptyl methyl carbonate (3r)

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O}
\end{align*}
\]

¹H NMR (CDCl₃, 400 MHz, ppm): δ = 4.81-4.71 (m, 1H), 3.76 (s, 3H), 1.69-1.59 (m, 1H), 1.55-1.44 (m, 1H), 1.38-1.24 (m, 9H), 0.88 (t, J = 6.72 Hz, 3H);

2-Hexyl methyl carbonate (3s)
\[\text{1H NMR (CDCl}_3, 400 \text{ MHz, ppm): } \delta = 4.81-4.71 \text{ (m, 1H)}, 3.77 \text{ (s, 3H)}, 1.70-1.60 \text{ (m, 1H)}, 1.56-1.46 \text{ (m, 1H)}, 1.37-1.24 \text{ (m, 7H)}, 0.90 \text{ (t, } J = 6.82 \text{ Hz, 3H); } \text{13C NMR (CDCl}_3, 100 \text{ MHz, ppm): } \delta = 155.46, 75.49, 54.40, 35.54, 27.39, 22.47, 19.86, 13.91; \text{ HRMS: m/z calculated for C}_8\text{H}_{16}\text{O}_3 \ [M+H]^+ 161.11, \text{ found: 161.0968.} \]

\textbf{Methyl 2-pentyl carbonate (3t)}

\[\text{1H NMR (CDCl}_3, 500 \text{ MHz, ppm): } \delta = 4.81-4.73 \text{ (m, 1H)}, 3.76 \text{ (s, 3H)}, 1.68-1.59 \text{ (m, 1H)}, 1.53-1.44 \text{ (m, 1H)}, 1.43-1.32 \text{ (m, 2H)}, 1.27 \text{ (d, } J = 6.26 \text{ Hz, 3H)}, 0.92 \text{ (t, } J = 7.32 \text{ Hz, 3H); } \text{13C NMR (CDCl}_3, 100 \text{ MHz, ppm): } \delta = 155.47, 75.25, 54.42, 37.95, 29.67, 19.87, 16.50, 13.83; \text{ HRMS: m/z calculated for C}_7\text{H}_{14}\text{O}_3 \ [M]^+ 146.09, \text{ found: 146.1158.} \]

\textbf{Cyclohexyl methyl carbonate (3u)}

\[\text{1H NMR (CDCl}_3, 500 \text{ MHz, ppm): } \delta = 4.66-4.57 \text{ (m, 1H)}, 3.77 \text{ (s, 3H)}, 1.95-1.89 \text{ (m, 2H)}, 1.79-1.71 \text{ (m, 2H)}, 1.58-1.43 \text{ (m, 3H)}, 1.41-1.24 \text{ (m, 3H); } \text{13C NMR (CDCl}_3, 100 \text{ MHz, ppm): } \delta = 155.23, 76.67, 54.39, 31.51, 25.19, 23.60; \text{ HRMS: m/z calculated for C}_8\text{H}_{14}\text{O}_3 \ [M+H]^+ 159.09, \text{ found: 159.0426.} \]

\textbf{Methyl (2-phenyl)ethyl carbonate (3x)}

\[\text{1H NMR (400 \text{ MHz, CDCl}_3): } \delta \text{ (ppm) } = 7.28-7.34 \text{ (m, 2H)}, 7.21-7.26 \text{ (m, 3H)}, 4.34 \text{ (t, 2H, } J = 7.21 \text{ Hz)}, 3.76 \text{ (s, 3H)}, 2.98 \text{ (t, 2H, } J = 7.21 \text{ Hz). } \text{13C NMR (75 \text{ MHz, CDCl}_3): } \delta \text{ (ppm) } = 155.93, 137.44, 129.13, 128.77, 126.90, 68.61, 54.94, 35.36. \]
7. Copies of 1H and 13C NMR Spectra

3a
3b

3c
$3k$

$3l$
7. References

