Supporting Information for:

Integration of Phosphine Ligand and Ionic Liquid Both in Structure and Property: An Efficient and Economical Catalytic System for Homogeneous-Catalyst Recycling

Xin Jin,* a Jianying Feng, a Hongbing Song, a Jiajun Yao, a Qingqing Ma, a Mei Zhang, a Cong Yu, a Shumei Li, b and Shitao Yu a

* State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Street, Qingdao 266042, People’s Republic of China

b College of Physical Education, Qingdao University of Science and Technology, 53 Zhengzhou Street, Qingdao 266042, People’s Republic of China

Corresponding Author
* E-mail: Xin Jin, jinx1971@163.com
List of the contents

1 Experimental Procedure

1.1 General procedure for recycling of Rh-2a catalyst in Rh-2a/1-octene/MeOH-HCBS hydroformylation system
1.2 General procedure for recycling of Rh-3a catalyst in Rh-3a/1-octene/EtOH-HCBS hydroformylation system
1.3 General procedure for recycling of Rh-2b catalyst in Rh-2b/1-octene/MeOH-HCBS hydrogenation system

2 NMR Spectra

2.1 1H NMR spectrum of 2a (Figure S1)
2.2 13C NMR spectrum of 2a (Figure S2)
2.3 31P NMR spectrum of 2a (Figure S3)
2.4 1H NMR spectrum of 2b (Figure S4)
2.5 13C NMR spectrum of 2b (Figure S5)
2.6 31P NMR spectrum of 2b (Figure S6)
2.7 1H NMR spectrum of 2c (Figure S7)
2.8 13C NMR spectrum of 2c (Figure S8)
2.9 31P NMR spectrum of 2c (Figure S9)
2.10 1H NMR spectrum of 2d (Figure S10)
2.11 13C NMR spectrum of 2d (Figure S11)
2.12 31P NMR spectrum of 2d (Figure S12)
2.13 1H NMR spectrum of 3a (Figure S13)
2.14 13C NMR spectrum of 3a (Figure S14)
2.15 31P NMR spectrum of 3a (Figure S15)
2.16 1H NMR spectrum of 3b (Figure S16)
2.17 13C NMR spectrum of 3b (Figure S17)
2.18 31P NMR spectrum of 3b (Figure S18)
2.19 1H NMR spectrum of 3c (Figure S19)
2.20 13C NMR spectrum of 3c (Figure S20)
2.21 31P NMR spectrum of 3c (Figure S21)
2.22 1H NMR spectrum of 3d (Figure S22)
2.23 13C NMR spectrum of 3d (Figure S23)
2.24 31P NMR spectrum of 3d (Figure S24)
3 HRMS Spectra

3.1 Mass spectrum (ES+) of 2a (Figure S25)
3.2 Mass spectrum (ES-) of 2a (Figure S26)
3.3 Mass spectrum (ES+) of 2b (Figure S27)
3.4 Mass spectrum (ES-) of 2b (Figure S28)
3.5 Mass spectrum (ES+) of 2c (Figure S29)
3.6 Mass spectrum (ES-) of 2c (Figure S30)
3.7 Mass spectrum (ES+) of 2d (Figure S31)
3.8 Mass spectrum (ES-) of 2d (Figure S32)
3.9 Mass spectrum (ES+) of 3a (Figure S33)
3.10 Mass spectrum (ES-) of 3a (Figure S34)
3.11 Mass spectrum (ES+) of 3b (Figure S35)
3.12 Mass spectrum (ES-) of 3b (Figure S36)
3.13 Mass spectrum (ES+) of 3c (Figure S37)
3.14 Mass spectrum (ES-) of 3c (Figure S38)
3.15 Mass spectrum (ES+) of 3d (Figure S39)
3.16 Mass spectrum (ES-) of 3d (Figure S40)

4 31P NMR Spectra of Fresh and Spent Catalyst

4.1 31P NMR spectrum of fresh catalyst (Figure S41)
4.2 31P NMR spectrum of spent catalyst (Figure S42)
1 Experimental Procedure

1.1 General procedure for recycling of Rh-2a catalyst in Rh-2a/1-octene/MeOH-HCBS hydroformylation system

Under an argon atmosphere, a 60 mL autoclave was loaded with Rh(acac)(CO)$_2$ (1.0 mg, 3.88×10$^{-3}$ mmol), 20 equivalents of 2a (110 mg, 7.76×10$^{-2}$ mmol) and MeOH (3 mL). Subsequently, 5×103 equivalents of 1-octene (3 mL, 19.4 mmol) and the internal standard were added, and the reaction temperature and syngas pressure were raised to 100 °C and 5.0 MPa, respectively, with an intense stirring. After 1 h, the reaction was terminated by placing the autoclave in an ice bath. Upon releasing the syngas and after a GC analysis, the methanol was removed in vacuo and n-heptane (4.5 mL) was added to extract the aldehydes. The upper organic phase was removed, then the fresh 1-octene and methanol were replenished to the IL phase for next run. (Note: 1.0 μL of N, N, N’, N’-tetramethylguanidine was added in runs 1, 6 and 9)

1.2 General procedure for recycling of Rh-3a catalyst in Rh-3a/1-octene/EtOH-HCBS hydroformylation system

Under an argon atmosphere, a 60 mL autoclave was loaded with Rh(acac)(CO)$_2$ (1.0 mg, 3.88×10$^{-3}$ mmol), 20 equivalents of 3a (105 mg, 7.76×10$^{-2}$ mmol) and EtOH (5 mL). Subsequently, 5×103 equivalents of 1-octene (3 mL, 19.4 mmol) and the internal standard were added, and the reaction temperature and syngas pressure were raised to 100 °C and 5.0 MPa, respectively, with an intense stirring. After 6 h, the reaction was terminated by placing the autoclave in an ice bath. Upon releasing the syngas and after a GC analysis, the ethanol was removed in vacuo and n-heptane (4.5 mL) was added to extract the aldehydes. The upper organic phase was removed, then the fresh 1-octene and ethanol were replenished to the IL phase for next run. (Note: 1.0 μL of N, N, N’, N’-tetramethylguanidine was added in cycles 2, 4 and 6)

1.3 General procedure for recycling of Rh-2b catalyst in Rh-2b/1-octene/MeOH-HCBS hydrogenation system

Under an argon atmosphere, a 60 mL autoclave was loaded with RhCl$_3$·3H$_2$O (1.0 mg, 3.8×10$^{-3}$ mmol), 20 equivalents of 2b (228 mg, 7.6×10$^{-2}$ mmol) and MeOH. Subsequently, 1×103 equivalents of 1-octene (0.6 mL, 3.8 mmol) and the internal standard were added, and the reaction temperature and H$_2$ pressure were raised to 80 °C and 6.0 MPa, respectively, with an intense stirring. After 5 h, the reaction was terminated by placing the autoclave in an ice bath. Upon releasing the gas and after a GC analysis, the methanol and products were removed in vacuo, then the fresh 1-octene and methanol were replenished to the IL phase for next run.
2 NMR Spectra

2.1 1H NMR spectrum of 2a

Figure S1. 1H NMR spectrum of 2a (500.0 MHz, D$_2$O)
2.2 13C NMR spectrum of 2a

Figure S2. 13C NMR spectrum of 2a (125.7 MHz, CDCl$_3$)
2.3 31P NMR spectrum of 2a

![P NMR spectrum of 2a](image.png)

Figure S3. 31P NMR spectrum of 2a (202.4 MHz, D$_2$O)
2.4 1H NMR spectrum of 2b

Figure S4. 1H NMR spectrum of 2b (500.0 MHz, D$_2$O)
Figure S5. 13C NMR spectrum of 2b (125.7 MHz, CDCl$_3$)
2.6 31P NMR spectrum of 2b

Figure S6. 31P NMR spectrum of 2b (202.4 MHz, D$_2$O)
2.7 1H NMR spectrum of 2c

Figure S7. 1H NMR spectrum of 2c (500.0 MHz, D$_2$O)
2.8 13C NMR spectrum of 2c

Figure S8. 13C NMR spectrum of 2c (150.9 MHz, CDCl$_3$)
2.9 ^{31}P NMR spectrum of 2c

Figure S9. ^{31}P NMR spectrum of 2c (202.4 MHz, D$_2$O)
2.10 1H NMR spectrum of 2d

Figure S10. 1H NMR spectrum of 2d (500.0 MHz, D$_2$O)
2.11 13C NMR spectrum of 2d

Figure S11. 13C NMR spectrum of 2d (150.9 MHz, CDCl$_3$)
2.12 31P NMR spectrum of 2d

Figure S12. 31P NMR spectrum of 2d (202.4 MHz, D$_2$O)
2.13 1H NMR spectrum of 3a

Figure S13. 1H NMR spectrum of 3a (500.0 MHz, D$_2$O)
2.14 13C NMR spectrum of 3a

Figure S14. 13C NMR spectrum of 3a (125.7 MHz, CD$_2$OD)
2.15 31P NMR spectrum of 3a

![NMR spectrum of 3a](attachment:image.png)

Figure S15. 31P NMR spectrum of 3a (202.4 MHz, D$_2$O)
2.16 1H NMR spectrum of 3b

Figure S16. 1H NMR spectrum of 3b (500.0 MHz, D$_2$O)
2.17 13C NMR spectrum of 3b

Figure S17. 13C NMR spectrum of 3b (125.7 MHz, CD$_3$OD)
2.18 31P NMR spectrum of 3b

Figure S18. 31P NMR spectrum of 3b (202.4 MHz, D$_2$O)
2.19 1H NMR spectrum of 3c

Figure S19. 1H NMR spectrum of 3c (500.0 MHz, D$_2$O)
2.20 13C NMR spectrum of 3c

Figure S20. 13C NMR spectrum of 3c (125.7MHz, CD$_3$OD)
2.21 31P NMR spectrum of 3c

Figure S21. 31P NMR spectrum of 3c (202.4 MHz, D$_2$O)
2.22 1H NMR spectrum of 3d

Figure S22. 1H NMR spectrum of 3d (500.0 MHz, D$_2$O)
2.23 13C NMR spectrum of 3d

Figure S23. 13C NMR spectrum of 3d (150.9 MHz, CD$_3$OD)
2.24 31P NMR spectrum of 3d

Figure S24. 31P NMR spectrum of 3d (202.4 MHz, D$_2$O)
3 HRMS Spectra

3.1 Mass spectrum (ES+) of 2a

Figure S25. Mass spectrum (ES+) of 2a
3.2 Mass spectrum (ES-) of 2a

Figure S26. Mass spectrum (ES-) of 2a
3.3 Mass spectrum (ES+) of 2b

![Mass spectrum (ES+) of 2b](image)

Figure S27. Mass spectrum (ES+) of 2b
3.4 Mass spectrum (ES-) of 2b

Figure S28. Mass spectrum (ES-) of 2b
3.5 Mass spectrum (ES+) of 2c

Figure S29. Mass spectrum (ES+) of 2c
3.6 Mass spectrum (ES-) of 2c

Figure S30. Mass spectrum (ES-) of 2c
3.7 Mass spectrum (ES+) of 2d

Figure S31. Mass spectrum (ES+) of 2d
3.8 Mass spectrum (ES-) of 2d

Figure S32. Mass spectrum (ES-) of 2d
3.9 Mass spectrum (ES+) of 3a

Figure S33. Mass spectrum (ES+) of 3a
3.10 Mass spectrum (ES-) of 3a

Figure S34. Mass spectrum (ES-) of 3a
3.11 Mass spectrum (ES+) of 3b

Figure S35. Mass spectrum (ES+) of 3b
3.12 Mass spectrum (ES-) of 3b

Figure S36. Mass spectrum (ES-) of 3b
3.13 Mass spectrum (ES+) of 3c

Figure S37. Mass spectrum (ES+) of 3c
3.14 Mass spectrum (ES-) of 3c

Figure S38. Mass spectrum (ES-) of 3c
3.15 Mass spectrum (ES+) of 3d

Figure S39. Mass spectrum (ES+) of 3d
3.16 Mass spectrum (ES-) of 3d

![Mass spectrum](image)

Figure S40. Mass spectrum (ES-) of 3d
4 31P NMR Spectra of Fresh and Spent Catalyst

4.1 31P NMR spectrum of fresh catalyst

Figure S41. 31P NMR spectrum of fresh Rh-2a catalyst (161.9 MHz, CDCl$_3$, 85% phosphoric acid as the internal standard)
4.2 31P NMR spectrum of spent catalyst

Figure S42. 31P NMR spectrum of spent Rh-2a catalyst (161.9 MHz, CDCl$_3$, 85% phosphoric acid as the internal standard)