Copper-Catalyzed Diastereoselective O-Transfer Reaction of N-Vinyl- α , β -Unsaturated Nitrones with Ketenes into γ -Lactones through [5+2] Cycloaddition and N-O bond Cleavage

Jun-Yi Liao,^{†,a} Qing-Yan Wu,^{†,a} Xiuqiang Lu,^b Ning-Zou,^a Cheng-Xue Pan,^a Cui Liang, Gui-Fa Su,^{a,*} and Dong-Liang Mo^{a,*}

^aState Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China (gfysglgx@163.com; moeastlight@mailbox.gxnu.edu.cn)

^bFuqing Branch of Fujian Normal University, Fuzhou, Fujian, 350300, China

Contents

1.	General experimental information	S2
2.	Optimization conditions	S2
3.	Studies of E/Z isomerization of N-vinyl nitrone 1m	S4
4.	Possible [3+2]/[3,3]-rearrangement mechanism to form 3 and 4	S6
5.	Synthesis of compounds 3 and 4	S6
6.	Synthesis of compounds 7 and 8	S20
7.	Gram scale preparation of 3aa	S22
8.	References	S22
9.	X-ray structure for compound 3aa	S23
10.	NMR spectra for 3 , 4 , 7 , 8 , and isomerization of 1m	S24

1. General Experimental Information:

¹H NMR and ¹³C NMR spectra were recorded at ambient temperature using 400 or 500 MHz spectrometers. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. High resolution mass spectra were acquired on an LTQ FT spectrometer, and were obtained by peak matching. Melting points are reported uncorrected. Analytical thin layer chromatography was performed on 0.25 mm extra hard silica gel plates with UV254 fluorescent indicator. Chromatography was performed using with 300-400 mesh silica gel (SiO₂). Unless otherwise noted, all reactions were performed under air atmosphere. All reagents and solvents were obtained from commercial sources and, where appropriate, purified prior to use. Acetyl chlorides **2** were all purchased from Sigma-Aldrich. *N*-Substituted α , β -unsaturated nitrones **1a-1r**^[1], epoxypyridine **5a**^[2], and allenoate **6a**^[3] was prepared according to literature method and their spectral data matched literature values.

2. More detailed optimization conditions

Table S1. Optimization of the Reaction Conditions.

Me Me Ph 1a	_0 [⊖] + 0 + CI → Ph 2a	∠Ph <u>cat. (20 mol</u> base, solv 0 °C to rt in	Me went air Ph	Ph Ph Ph O O 3aa
entry	cat.	solvent	base	3aa , yield % ^b
1	CuCl	THF	NEt ₃	5
2	CuI	THF	NEt ₃	8
3	CuOTf	THF	NEt ₃	12
4	Cu(OTf) ₂	THF	NEt ₃	67
5	Cu(NO ₃) ₂	THF	NEt ₃	64
6	$Cu(OAc)_2$	THF	NEt ₃	82
7	FeCl ₃	THF	NEt ₃	49

8	Fe(OTf) ₃	THF	NEt ₃	51
9	Cu(OAc) ₂	MeCN	NEt ₃	<5
10	Cu(OAc) ₂	toluene	NEt ₃	23
11	$Cu(OAc)_2$	DCM	NEt ₃	32
12	Cu(OAc) ₂	Et ₂ O	NEt ₃	50
13	Cu(OAc) ₂	THF	NEt ₃	56 ^c
14	Cu(OAc) ₂	THF	NEt ₃	79 ^d
15	Cu(OAc) ₂	THF	pyridine	<5
16	Cu(OAc) ₂	THF	TMEDA	41
17	Cu(OAc) ₂	THF	NMMP	72
18	Cu(OAc) ₂	THF	K ₂ CO ₃	12
19	Cu(OAc) ₂ /L1	THF	NEt ₃	62
20	$Cu(OAc)_2/L2$	THF	NEt ₃	75
21	$Cu(OAc)_2/L3$	THF	NEt ₃	68 (2) ^e
22	$Cu(OAc)_2/L4$	THF	NEt ₃	78 (5) ^e
23	Cu(OAc) ₂ /L5	THF	NEt ₃	$45(0)^{e}$
24	$Cu(OAc)_2/L6$	THF	NEt ₃	$34(0)^{e}$
25	Cu(OAc) ₂ /L7	THF	NEt ₃	<10
26	$Cu(OAc)_2/L8$	THF	NEt ₃	$23(0)^{e}$

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 equiv.), Cu(OAc)₂ (20 mol%), base (2.0 equiv.), solvent (3.0 mL), 0 °C to 25 °C, 24–48 h; [b] isolated yield; [c] **2a** (1.5 equiv.); [d] **2a** (3.0 equiv.); [e] ee value.

3. Studies of *E*/*Z* isomerization of N-vinyl nitrone 1m

N-Vinyl nitrone **1m** (1:1.3 E/Z) was prepared as follows: In a 25 mL flask was charged with chalcone oxime (0.3 mmol), alkenyl boronic acids (0.6 mmol, 2.0 equiv), Cu(OAc)₂ (0.03 mmol, 10 mol%) and anhydrous Na₂SO₄ (6.0 equiv) in air atmosphere. Then, DCE (3.0 mL) and pyridine (3.0 mmol, 10.0 equiv) was added *via* syringe. The reaction flask was then capped with a septum pierced with a ventilation needle and stirred vigorously at 25 °C for 14 h until the oxime disappeared (monitored by TLC). At this time, the reaction was quenched by H₂O (10 mL) and extracted with DCM (3 × 10 mL). Then, dried over with Na₂SO₄ and filtered. The solvent was removed under reduced pressure and the crude product was purified by a short column chromatography with 1/4, ethyl acetate/petroleum ether to provide *N*-vinyl nitrone **1m** (62 mg, 75% yield, 1:1.3 E/Z).

(1) In a 25 mL flask was charged with prepared nitrone **1m** (55 mg, 0.2 mmol) and THF (2.0 mL). Then, Cu(OAc)₂ (7.2 mg, 20 mol%) was added. The reaction vessel was stirred vigorously at room temperature (about 25 °C) for 2 h. At this time, the solvent was removed under reduced pressure and the crude product was purified by a filtration with short pat of silica gel (1/4, ethyl acetate/petroleum ether) to provide nitrone **1m** (50 mg, 90% yield) with 5:1 *E/Z* ratio.

(2) In a 25 mL flask was charged with prepared nitrone **1m** (55 mg, 0.2 mmol, 1:1.3 E/Z) and THF (2.0 mL). Then, Cu(OAc)₂ (7.2 mg, 20 mol%) and NEt₃ (0.2 mmol, 1.0 equiv.) was added. The reaction vessel was stirred vigorously at room temperature (about 25 °C) for 2 h. At this time, the solvent was removed under reduced pressure and the crude product was purified by a filtration with short pat of silica gel (1/4, ethyl acetate/petroleum ether) to provide nitrone **1m** (46 mg, 83% yield) with 7:1 E/Z ratio.

(3) In a 25 mL flask was charged with prepared nitrone **1m** (55 mg, 0.2 mmol, 1:1.3 E/Z) and THF (2.0 mL). Then, Cu(OAc)₂ (7.2 mg, 20 mol%) and NEt₃ (0.2 mmol, 1.0 equiv.) was added. The reaction vessel was stirred vigorously at room temperature (about 25 °C) for 4 h. At this time, the solvent was removed under reduced pressure and the crude product was purified by a filtration with short pat of silica gel (1/4, ethyl acetate/petroleum ether) to provide nitrone **1m** (31 mg, 56% yield) with 16:1 E/Z ratio.

(4) In a 25 mL flask was charged with prepared nitrone **1m** (55 mg, 0.2 mmol, 1:1.3 E/Z) and THF (2.0 mL). Then, Cu(OAc)₂ (7.2 mg, 20 mol%) and NEt₃ (0.2 mmol, 1.0 equiv.) was added. The reaction vessel was stirred vigorously at room temperature (about 25 °C) for 6 h. At this time, the solvent was removed under reduced pressure and the crude product was purified by a filtration with short pat of silica gel (1/4, ethyl acetate/petroleum ether) to provide nitrone **1m** (19 mg, 35% yield) with 9.4:1 E/Z ratio.

(5) In a 25 mL flask was charged with prepared nitrone **1m** (55 mg, 0.2 mmol, 16:1 E/Z) and THF (2.0 mL). Then, Cu(OAc)₂ (7.2 mg, 20 mol%) and NEt₃ (0.2 mmol, 1.0 equiv.) was added. The reaction vessel was stirred vigorously at room temperature

(about 25 °C) for 4 h. At this time, the solvent was removed under reduced pressure and the crude product was purified by a filtration with short pat of silica gel (1/4, ethyl acetate/petroleum ether) to provide nitrone **1m** (38 mg, 69% yield) with 5.2:1 E/Z ratio.

4. Possible [3+2]/[3,3]-rearrangement mechanism to form 3 and 4

5. Synthesis of compounds 3 and 4

General procedure A: In a 25 mL flask was charged with acyl chloride **2** (0.4 mmol, 2.0 equiv.) and THF (3.0 mL). The flask was cooled to 0 °C and NEt₃ (55 μ L, 0.2 mol, 2.0 equiv.) was added under air. The reaction was stirring at 0 °C for 0.5-2 h. Then, *N*-vinyl nitrones **1** (0.2 mmol) and Cu(OAc)₂ (7.2 mg, 20 mol%) was added. The reaction vessel was stirred vigorously at room temperature (about 25 °C) for 24-48 h until the substrate **1** disappeared (monitored by TLC). At this time, the reaction was

quenched by H₂O (5 mL) and extracted with EtOAc (10 mL \times 3). The combined organic layers were dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (the crude residue was dry loaded with silica gel, 1/50 to 1/10, ethyl acetate/petroleum ether) to provide γ -lactones **3** or **4**.

5-(5,6-Dimethyl-4-phenylpyridin-2-yl)-3,4-diphenyldihydrofuran-2(3H)-one

(3aa), yellow solid, 0.069 g, 82% yield. Mp: 87–88 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.37 (m, 3H), 7.27–7.21 (m, 10H), 7.19 (d, J = 7.2 Hz, 2H), 7.08 (s, 1H), 5.53 (d, J = 9.2 Hz, 1H), 4.39–4.34 (m, 1H), 4.20 (d, J = 12.0 Hz, 1H), 2.56 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.3, 158.1, 150.9, 149.9, 139.3, 136.7, 135.4, 129.4, 128.8, 128.7, 128.6, 128.5, 128.2, 127.8, 127.7, 127.6, 121.6, 85.0, 55.4, 54.4, 23.3, 16.0; IR (neat): 2925, 1783, 1710, 1603, 1454, 1385, 1148, 699 cm⁻¹; HRMS (ESI) m/z calcd for C₂₉H₂₆NO₂ [M + H]⁺: 420.1958; found: 420.1953.

4-(4-Methoxyphenyl)-5-(4-(4-methoxyphenyl)-5,6-dimethylpyridin-2-yl)-3-phenyl dihydrofuran-2(3H)-one (3ba), white solid, 0.057 g, 59% yield. Mp: 83–84 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.32–7.30 (m, 2H), 7.26 (brs, 3H), 7.20 (d, J = 10.5 Hz, 2H), 7.10 (d, J = 10.5 Hz, 2H), 7.06 (s, 1H), 6.97 (d, J = 10.5 Hz, 2H), 6.81 (d, J = 10.5 Hz, 2H), 5.47 (d, J = 12.0 Hz, 1H), 4.31–4.25 (m, 1H), 4.16 (d, J = 15.0 Hz, 1H), 3.86 (s, 3H), 3.75 (s, 3H), 2.55 (s, 3H), 2.19 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ

175.4, 159.4, 159.0, 158.1, 151.1, 149.7, 135.6, 131.8, 130.0, 129.4, 128.9, 128.8, 128.7, 127.7, 121.7, 114.2, 113.8, 85.4, 55.4, 55.2, 54.8, 54.7, 23.6, 16.2; IR (neat): 2963, 1712, 1611, 1291, 1178, 1031, 803 cm⁻¹; HRMS (ESI) m/z calcd for $C_{31}H_{30}NO_4 [M + H]^+$: 480.2169; found: 480.2165.

5-(5,6-Dimethyl-4-(p-tolyl)pyridin-2-yl)-3-phenyl-4-(p-tolyl)dihydrofuran-2(3H)one (3ca), yellow oil, 0.060 g, 67% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.33–7.24 (m, 7H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.06 (s, 5H), 5.49 (d, *J* = 9.6 Hz, 1H), 4.34 (dd, *J* = 12.0 Hz, 9.6 Hz, 1H) , 4.18 (d, *J* = 12.0 Hz, 1H), 2.55 (s, 3H), 2.41 (s, 3H), 2.28 (s, 3H), 2.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 175.5, 158.1, 151.1, 149.9, 137.7, 137.3, 136.5, 135.6, 133.6, 129.5, 129.4, 129.0, 128.7, 128.6, 127.7, 127.6, 121.7, 85.3, 55.1, 54.6, 23.5, 21.2, 21.0, 16.2; IR (neat): 3022, 2958, 1710, 1515, 1325, 1129, 1023, 808 cm⁻¹; HRMS (ESI) m/z calcd for C₃₁H₃₀NO₂ [M + H]⁺: 448.2271; found: 448.2265.

4-(4-Bromophenyl)-5-(4-(4-bromophenyl)-5,6-dimethylpyridin-2-yl)-3-phenyldih ydrofuran-2(3H)-one (3da), yellow oil, 0.042 g, 57% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.35–7.28 (m, 3H), 7.25–7.23 (m, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 9.6 Hz, 3H), 5.48 (d, J = 9.6 Hz, 1H), 4.34–4.29 (m, 1H), 4.16 (d, J = 12.4 Hz, 1H), 2.55 (s, 3H), 2.16 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.8, 158.4, 151.0, 148.9, 138.2, 135.8, 135.0, 131.9, 131.6, 130.3, 129.6, 129.3, 128.8, 128.5, 127.8, 122.2, 121.6, 121.2, 84.5, 54.9, 54.5, 23.5, 16.1; IR (neat): 3030, 2922, 2852, 1714, 1491, 1153, 1009, 828, 698 cm⁻¹; HRMS (ESI) m/z calcd for C₂₉H₂₄Br₂NO₂ [M + H]⁺: 576.0168; found: 576.0162.

3ea

5-(5,6-Dimethyl-4-(4-(trifluoromethyl)phenyl)pyridin-2-yl)-3-phenyl-4-(4-(trifluo romethyl)phenyl)dihydrofuran-2(3H)-one (3ea), white solid, 0.086 g, 78% yield. Mp: 74–75 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 7.6 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.39–7.29 (m, 7H), 7.26 (d, *J* = 6.8 Hz, 2H), 7.10 (s, 1H), 5.55 (d, *J* = 9.6 Hz, 1H), 4.48 (dd, *J* = 12.4 Hz, 9.6 Hz, 1H), 4.22 (d, *J* = 12.4 Hz, 1H), 2.56 (s, 3H), 2.17 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.7, 158.6, 151.0, 148.8, 142.9, 141.0, 134.9, 130.3 (q, *J* = 31.8 Hz), 129.5, 129.1, 128.9, 128.8, 128.6, 128.3, 128.0, 125.8 (q, *J* = 3.6 Hz), 125.4 (q, *J* = 3.6 Hz), 125.0 (q, *J* = 247 Hz), 121.2, 84.3, 55.1, 54.5, 23.5, 16.1; IR (neat): 2962, 1716, 1620, 1326, 1126, 847, 699 cm⁻¹; HRMS (ESI) m/z calcd for C₃₁H₂₄F₆NO₂ [M + H]⁺: 556.1706; found: 556.1698.

4-(3-Bromophenyl)-5-(4-(3-bromophenyl)-5,6-dimethylpyridin-2-yl)-3-phenyldih ydrofuran-2(3H)-one (3fa), yellow solid, 0.057 g, 49% yield. Mp: 70–71 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, *J* = 7.6 Hz, 1H), 7.41 (s, 1H), 7.37–7.25 (m, 8H), 7.19 –7.15 (m, 3H), 7.06 (s, 1H), 5.48 (d, *J* = 8.0 Hz, 1H), 4.34–4.29 (m, 1H), 4.19 (d, *J* = 12.0 Hz, 1H), 2.56 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.8, 158.5, 151.1, 148.6, 141.4, 139.3, 135.1, 131.6, 131.2, 131.0, 130.9, 130.4, 129.9, 129.4, 128.9, 128.6, 127.9, 127.4, 126.5, 122.8, 122.5, 121.2, 84.5, 55.0, 54.4, 23.5, 16.1; IR (neat): 2923, 1775, 1598, 1491, 1154, 1010, 828, 699 cm⁻¹; HRMS (ESI) m/z calcd for C₂₉H₂₄Br₂NO₂ [M + H]⁺: 576.0168; found: 576.0163.

4-(2-Bromophenyl)-5-(4-(2-bromophenyl)-5,6-dimethylpyridin-2-yl)-3-phenyldih ydrofuran-2(3H)-one (3ga), white solid, 0.046 g, 40% yield. Mp: 190–191 °C; *one isomer*: ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 8.4 Hz, 1H), 7.54 (t, J = 8.4 Hz, 2H), 7.39–7.35 (m, 2H), 7.29–7.28 (m, 6H), 7.14–7.11 (m, 2H), 7.00 (s, 1H), 5.60 (d, J = 8.8 Hz, 1H), 4.84 (dd, J = 11.2 Hz, 8.8 Hz, 1H), 4.32 (d, J = 11.2 Hz, 1H), 2.52 (s, 3H), 2.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.1, 157.9, 151.9, 149.3, 140.4, 136.6, 135.1, 133.5, 132.7, 130.2, 129.9, 129.4, 129.1, 128.7, 128.5, 128.1, 127.8, 127.4, 125.5, 122.5, 122.6, 120.1, 85.0, 55.1, 54.6, 23.2, 15.8; *the other isomer*: ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 8.4 Hz, 2H), 7.39–7.35 (m, 2H), 7.29–7.28 (m, 6H), 7.14–7.11 (m, 2H), 7.10 (s, 1H), 5.58 (d, J = 8.8 Hz, 1H), 4.76 (dd, J = 11.2 Hz, 8.8 Hz, 1H), 4.29 (d, J = 11.2 Hz, 1H), 2.47 (s, 3H), 2.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.1, 157.6, 151.4, 149.0, 140.3, 136.3, 134.9, 133.5, 132.7, 130.1, 129.8, 129.5, 129.0, 128.7, 128.5, 128.1, 127.7, 127.4, 125.3, 122.5, 119.5, 84.7, 54.6, 54.5, 23.1, 15.7; IR (neat): 2963, 1716, 1606, 1262, 1023, 802, 698 cm⁻¹; HRMS (ESI) m/z calcd for C₂₉H₂₄Br₂NO₂ [M + H]⁺: 576.0168; found: 576.0159.

5-(5,6-Dimethyl-4-(thiophen-2-yl)pyridin-2-yl)-3-phenyl-4-(thiophen-2-yl)dihydr ofuran-2(3H)-one (3ha), yellow oil, 0.065 g, 81% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.42 (m, 1H), 7.39–7.31 (m, 5H), 7.27–7.26 (m, 1H), 7.17 (d, *J* = 6.5 Hz, 1H), 7.13–7.12 (m, 2H), 6.89–6.87 (m, 1H), 6.79–6.78 (m, 1H), 5.47 (d, *J* = 12.5 Hz, 1H), 4.74 (dd, *J* = 15.0 Hz, 12.5 Hz, 1H), 4.18 (d, *J* = 15.5 Hz, 1H), 2.61 (s, 3H), 2.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.7, 158.4, 150.5, 142.5, 140.1, 139.8, 135.0, 129.9, 128.8, 128.7, 128.0, 127.9, 127.4, 127.0, 126.7, 125.7, 124.5, 122.5, 84.9, 55.3, 50.3, 23.7, 16.4; IR (neat): 2976, 1712, 1663, 1600, 1507, 1244, 1188, 799 cm⁻¹; HRMS (ESI) m/z calcd for C₂₅H₂₂NO₂S₂ [M + H]⁺: 432.1086; found: 432.1088.

5-(5-Ethyl-4,6-diphenylpyridin-2-yl)-3,4-diphenyldihydrofuran-2(3H)-one (3ia), yellow oil, 0.063 g, 63% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 8.0 Hz, 1H), 7.61 (t, J = 7.2 Hz, 1H), 7.43–7.42 (m, 10H), 7.35–7.28 (m, 6H), 7.24–7.22 (m,

5H), 5.66 (d, J = 12.0 Hz, 1H), 4.34–4.29 (m, 1H), 4.22 (d, J = 12.0 Hz, 1H), 2.69–2.65 (m, 2H), 0.74 (t, J = 7.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 175.4, 159.5, 151.7, 151.6, 140.8, 139.6, 136.8, 135.4, 135.3, 133.6, 130.1, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 128.0, 127.9, 127.8, 127.7, 122.7, 85.0, 55.7, 54.6, 22.2, 14.6; IR (neat): 2935, 1714, 1602, 1497, 1152, 1009, 825, 699 cm⁻¹; HRMS (ESI) m/z calcd for C₃₅H₃₀NO₂ [M + H]⁺: 496.2271; found: 496.2267

3,4-Diphenyl-5-(4-phenyl-5,6,7,8-tetrahydroquinolin-2-yl)dihydrofuran-2(3H)-on e (3ja), white solid, 0.080 g, 90% yield. Mp: 112–113 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.44–7.38 (m, 3H), 7.33–7.30 (m, 2H), 7.28–7.21 (m, 8H), 7.20 (d, *J* = 5.6, 2H), 7.06 (s, 1H), 5.54 (d, *J* = 7.6 Hz, 1H), 4.34–4.30 (m, 1H), 4.21 (d, *J* = 9.2 Hz, 1H), 2.98 (t, *J* = 5.2 Hz, 2H), 2.62–2.61 (m, 2H), 1.90–1.86 (m, 2H), 1.72–1.70 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 175.4, 158.1, 151.8, 150.2, 139.0, 136.9, 135.5, 130.5, 128.8, 128.7, 128.6, 128.5, 128.4, 127.9, 127.7, 127.6, 121.0, 85.2, 55.5, 54.6, 33.0, 29.7, 27.3, 22.8; IR (neat): 3455, 2958, 1708, 1608, 1469, 1283, 1152, 1021, 803, 747 cm⁻¹; HRMS (ESI) m/z calcd for C₃₁H₂₈NO₂ [M + H]⁺: 446.2115; found: 446.2115.

3ka

3,4-Diphenyl-5-(4-phenyl-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-2-yl)dihyd rofuran-2(3H)-one (3ka), yellow oil, 0.064 g, 71% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.44–7.38 (m, 3H), 7.34–7.18 (m, 12H), 7.06 (s, 1H), 5.52 (d, *J* = 8.0 Hz, 1H), 4.42–4.36 (m, 1H), 4.22 (d, *J* = 12.0 Hz, 1H), 3.11–3.09 (m, 2H), 2.73–2.71 (m, 2H), 1.87–1.86 (m, 2H), 1.75–1.73 (m, 2H), 1.61–1.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 175.4, 164.5, 150.6, 149.4, 139.7, 137.0, 136.0, 135.5, 128.8, 128.7, 128.6, 128.3, 127.9, 127.8, 127.7, 127.6, 121.8, 85.2, 55.2, 54.5, 39.4, 32.3, 29.5, 27.7, 26.4; IR (neat): 2963, 1717, 1624, 1518, 1250, 1176, 1031, 803, 695 cm⁻¹; HRMS (ESI) m/z calcd for $C_{32}H_{30}NO_2$ [M + H]⁺: 460.2271; found:460.2254.

3la

3,4-Diphenyl-5-(4'-phenyl-7',8'-dihydro-5'H-spiro[[1,3]dioxolane-2,6'-quinolin]-2 '-yl)dihydrofuran-2(3H)-one (3la), yellow solid, 0.068 g, 68% yield. Mp: 123–124 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.44–7.38 (m, 3H), 7.32–7.23 (m, 10H), 7.19–7.18 (m, 2H), 7.09 (s, 1H), 5.56 (d, *J* = 7.6 Hz, 1H), 4.30–4.26 (m, 1H), 4.21 (d, *J* = 9.6 Hz, 1H), 3.98–3.89 (m, 4H), 3.18 (t, *J* = 5.6 Hz, 2H), 2.91–2.82 (m, 2H), 2.07 (t, *J* = 5.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 175.3, 156.5, 152.6, 150.6, 138.4, 136.8, 135.5, 128.8, 128.7, 128.6, 128.5, 128.4, 128.1, 127.9, 127.7, 127.6, 127.5, 121.1, 107.7, 85.0, 64.5, 55.6, 54.7, 37.1, 31.3, 31.2; IR (neat): 2926, 1716, 1606, 1497, 1263, 1151, 1023, 804, 700 cm⁻¹; HRMS (ESI) m/z calcd for C₃₃H₃₀NO₄ [M + H]⁺: 504.2169; found: 504.2164.

3qa (ratio = 1.5:1)

γ-Lactone 3qa, ratio = 1.5:1, yellow solid, 0.039 g, 43% yield. Mp: 145–146 °C; major isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.40 (m, 2H), 7.33–7.23 (m, 6H), 7.19–7.17 (m, 3H), 7.08–7.06 (m, 2H), 6.96 (d, J = 8.4 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 5.52 (d, J = 9.6 Hz, 1H), 4.38–4.33 (m, 1H), 4.21 (d, J = 12.0 Hz, 1H), 3.85 (s, 3H), 2.55 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.4, 159.3, 158.2, 151.0, 149.6, 136.9, 135.5, 130.0, 129.4, 128.9, 128.7, 128.6, 128.3, 127.9, 127.7, 121.7, 121.6, 113.7, 85.1, 55.3, 55.1, 54.5, 23.5, 16.2; minor isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.40 (m, 2H), 7.33–7.23 (m, 6H), 7.19–7.17 (m, 3H), 7.08–7.06 (m, 2H), 6.96 (d, J = 8.4 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 5.47 (d, J = 9.6 Hz, 1H), 4.31–4.26 (m, 1H), 4.18 (d, J = 12.0 Hz, 1H), 3.74 (s, 3H), 2.56 (s, 3H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.4, 158.9, 158.2, 151.1, 150.0, 139.5, 135.5, 131.7, 129.4, 128.9, 128.8, 128.6, 128.3, 127.8, 127.7, 121.7, 121.6, 114.2, 85.3, 55.4, 54.8, 54.6, 23.5, 16.1; IR (neat): 3432, 2927, 1714, 1608, 1457, 1254, 1028, 727 cm⁻¹; HRMS (ESI) m/z calcd for C₃₀H₂₈NO₃ [M + H]⁺: 450.2064; found: 450.2057.

5-(5,6-Dimethyl-4-phenylpyridin-2-yl)-3-phenyl-4-(4-(trifluoromethyl)phenyl)dih ydrofuran-2(3H)-one (3ra), yellow solid, 0.073 g, 75% yield. Mp: 83–84 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.55 (d, J = 10.0 Hz, 2H), 7.46–7.40 (m, 3H), 7.34–7.32 (m, 5H), 7.26–7.24 (m, 4H), 7.12 (s, 1H), 5.54 (d, J = 11.5 Hz, 1H), 4.48 (dd, J = 15.0Hz, 11.5 Hz, 1H), 4.22 (d, J = 15.5 Hz, 1H), 2.55 (s, 3H), 2.19 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.8, 158.3, 150.7, 150.3, 141.1, 139.4, 135.0, 130.1 (q, J = 26.2Hz), 129.7, 129.0, 128.7, 128.6, 128.4, 128.3, 128.0, 127.9, 125.8 (q, J = 3.0 Hz), 124.9 (q, J = 247 Hz), 121.6, 84.6, 55.1, 54.6, 23.5, 16.2; IR (neat): 2960, 1713, 1621, 1327, 1123, 1018, 803, 702 cm⁻¹; HRMS (ESI) m/z calcd for C₃₀H₂₅F₃NO₂ [M + H]⁺: 488.1832; found: 488.1827.

5-(5,6-Dimethyl-4-phenylpyridin-2-yl)-3-(4-methoxyphenyl)-4-phenyldihydrofur an-2(3H)-one (3ab), yellow liquid, 0.055 g, 61% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.44–7.40 (m, 3H), 7.28–7.23 (m, 5H), 7.21–7.17 (m, 4H), 7.08 (s, 1H), 6.87 (d, J = 10.5 Hz, 2H), 5.51 (d, J = 12.0 Hz, 1H), 4.32 (dd, J = 15.0 Hz, 11.5 Hz, 1H), 4.16 (d, J = 15.5 Hz, 1H), 3.77 (s, 3H), 2.56 (s, 3H), 2.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 175.7, 159.1, 158.2, 151.2, 150.1, 139.5, 137.0, 129.7, 129.4, 128.8, 128.7, 128.4, 127.9, 127.6, 127.5, 121.6, 114.3, 85.1, 55.5, 55.2, 53.9, 23.5, 16.1; IR (neat): 2963, 1712, 1611, 1515, 1291, 1178, 1031, 695 cm⁻¹; HRMS (ESI) m/z calcd for C₃₀H₂₈NO₃ [M + H]⁺: 450.2064; found: 450.2057.

3-(4-Chlorophenyl)-5-(5,6-dimethyl-4-phenylpyridin-2-yl)-4-phenyldihydrofuran -2(3H)-one (3ac), white solid, 0.087 g, 97% yield. Mp: 120–121 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.44–7.38 (m, 3H), 7.30–7.21 (m, 9H), 7.18–7.16 (m, 2H), 7.06 (s, 1H), 5.52 (d, *J* = 8.0 Hz, 1H), 4.35 (dd, *J* = 9.6 Hz, 7.6 Hz, 1H), 4.19 (d, *J* = 10.0 Hz, 1H), 2.56 (s, 3H), 2.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.9, 158.3, 150.7, 150.0, 139.4, 136.6, 134.0, 133.7, 130.0, 129.6, 129.0, 128.9, 128.7, 128.4, 127.9, 127.8, 121.8, 85.2, 55.3, 54.0, 23.5, 16.1; IR (neat): 2962, 1715, 1607, 1407, 1282, 1020, 803, 750 cm⁻¹; HRMS (ESI) m/z calcd for C₂₉H₂₅ClNO₂ [M + H]⁺: 454.1568; found: 454.1566.

3-(4-Bromophenyl)-5-(5,6-dimethyl-4-phenylpyridin-2-yl)-4-phenyldihydrofuran -2(3H)-one (3ad), white solid, 0.096 g, 99% yield. Mp: 157–158 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.36 (m, 5H), 7.29–7.22 (m, 5H), 7.18–7.15 (m, 4H), 7.06 (s, 1H), 5.52 (d, *J* = 9.6 Hz, 1H), 4.36–4.31 (m, 1H), 4.18 (d, *J* = 12.0 Hz, 1H), 2.56 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.3, 158.0, 151.8, 150.2, 139.0, 136.9, 135.5, 130.4, 128.8, 128.7, 128.6, 128.5, 128.3, 127.9, 127.7, 127.6, 120.9, 85.2, 55.5, 54.6, 27.4, 22.8; IR (neat): 2922, 1715, 1607, 1494, 1384, 1015, 804 cm⁻¹; HRMS (ESI) m/z calcd for C₂₉H₂₅BrNO₂ [M + H]⁺: 498.1063; found: 498.1061.

5-(5,6-Dimethyl-4-phenylpyridin-2-yl)-3-(4-fluorophenyl)-4-phenyldihydrofuran-2(3H)-one (3ae), yellow oil, 0.072 g, 82% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.44–7.36 (m, 3H), 7.28–7.23 (m, 7H), 7.18–7.16 (m, 2H), 7.06 (s, 1H), 7.02 (t, J =8.8 Hz, 2H), 5.52 (d, J = 9.6 Hz, 1H), 4.35–4.29 (m, 1H), 4.20 (d, J = 12.0 Hz, 1H), 2.56 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.2, 163.4 (d, J = 245 Hz), 158.3, 150.8, 150.0, 139.4, 136.6, 131.2 (d, J = 2.9 Hz), 130.3 (d, J = 8.0 Hz), 129.5, 128.9, 128.7, 128.3, 127.9, 127.8, 127.7, 121.7, 115.8 (d, J = 21.1 Hz), 85.1, 55.5, 53.9, 23.5, 16.1; IR (neat): 2967, 1715, 1608, 1467, 1282, 1019, 727 cm⁻¹; HRMS (ESI) m/z calcd for C₂₉H₂₅FNO₂ [M + H]⁺: 438.1864; found: 438.1862.

3af

5-(5,6-Dimethyl-4-phenylpyridin-2-yl)-3-(3-fluorophenyl)-4-phenyldihydrofuran-2(3H)-one (3af), yellow oil, 0.086 g, 99% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.38 (m, 3H), 7.29–7.24 (m, 6H), 7.19–7.18 (m, 2H), 7.06 (s, 3H), 6.99 (t, J =5.6 Hz, 1H), 5.52 (d, J = 7.2 Hz, 1H), 4.40–4.35 (m, 1H), 4.22 (d, J = 9.6 Hz, 1H), 2.57 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.7, 164.1 (d, J = 245 Hz), 158.4, 150.8, 150.1, 139.4, 137.9 (d, J = 7.3 Hz), 136.7, 130.3 (d, J = 8.8 Hz), 129.5, 128.9, 128.7, 128.4, 127.9, 127.8, 127.7, 124.5 (d, J = 2.9 H), 121.8, 115.8 (d, J = 21.8 Hz), 114.9 (d, J = 21.2 Hz), 85.2, 55.1, 54.2, 23.5, 16.1; IR (neat): 3062, 2962, 1717, 1608, 1454, 1260, 1023, 804, 699 cm⁻¹; HRMS (ESI) m/z calcd for $C_{29}H_{25}FNO_2 [M + H]^+$: 438.1864; found: 438.1860.

3-(2-Bromophenyl)-5-(5,6-dimethyl-4-phenylpyridin-2-yl)-4-phenyldihydrofuran -2(3H)-one (3ag), yellow solid, 0.082 g, 82% yield. Mp: 199–200 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.43 (m, 3H), 7.41– 7.38 (m, 1H), 7.30–7.29 (m, 2H), 7.15 (s, 1H), 7.13–7.10 (m, 3H), 7.05–7.04 (m, 2H), 6.94–6.92 (m, 2H), 6.76–6.74 (m, 1H), 5.82 (s, 1H), 5.49 (d, *J* = 9.0 Hz, 1H), 4.60 (d, *J* = 8.5 Hz, 1H), 2.64 (s, 3H), 2.23 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 176.3, 158.6, 153.1, 150.2, 139.5, 138.7, 133.9, 132.0, 131.4, 129.2, 128.7, 128.5, 128.4, 128.3, 127.9, 127.6, 127.2, 126.9, 125.5, 120.2, 84.4, 51.4, 50.4, 23.7, 16.1; IR (neat): 2924, 1712, 1607, 1459, 1130, 1022, 728 cm⁻¹; HRMS (ESI) m/z calcd for C₂₉H₂₅BrNO₂ [M + H]⁺: 498.1063; found: 498.1070.

5-(5,6-Dimethyl-4-phenylpyridin-2-yl)-4-phenyl-3-(thiophen-2-yl)dihydrofuran-2 (**3H)-one (3ah)**, yellow solid, 0.035 g, 41% yield. Mp: 147–148 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.44–7.37 (m, 3H), 7.31–7.22 (m, 8H), 7.06 (s, 1H), 7.01–7.00 (m, 1H), 6.96–6.94 (m, 1H), 5.50 (d, J = 9.2 Hz, 1H), 4.53 (d, J = 12.4 Hz, 1H), 4.44 (dd, J = 12.0 Hz, 9.6 Hz, 1H), 2.55 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.9, 158.2, 150.6, 150.0, 139.4, 136.8, 136.4, 129.5, 128.9, 128.7, 128.3, 127.9, 127.8, 126.8, 126.4, 125.1, 121.7, 85.4, 55.2, 49.1, 23.5, 16.1; IR (neat): 3446, 2978, 1710, 1508, 1469, 1283, 1021, 728 cm⁻¹; HRMS (ESI) m/z calcd for C₂₇H₂₄NO₂S [M + H]⁺: 426.1522; found: 426.1522.

3-Benzyl-5-(5,6-dimethyl-4-phenylpyridin-2-yl)-4-phenyldihydrofuran-2(3H)-one (**3ai**), white solid, 0.060 g, 69% yield. Mp: 154–155 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.38–7.31 (m, 3H), 7.29–7.24 (m, 3H), 7.20–7.18 (m, 3H), 7.16–7.06 (m, 5H), 6.99 (s, 1H), 6.84 (d, *J* = 7.2 Hz, 2H), 5.48 (s, 1H), 3.90 (d, *J* = 8.4 Hz, 1H), 3.65–3.60 (m, 1H), 3.09 (dd, *J* = 14.8 Hz, 3.6 Hz, 1H), 2.49 (s, 3H), 2.29 (dd, *J* = 14.4 Hz, 10.4 Hz, 1H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 178.7, 158.4, 153.5, 150.1, 139.5, 139.3, 138.8, 128.9, 128.8, 128.7, 128.6, 128.4, 128.2, 127.9, 127.6, 126.2, 119.2, 85.6, 49.9, 44.3, 31.6, 23.6, 16.1; IR (neat): 2963, 1718, 1607, 1456, 1023, 728 cm⁻¹; HRMS (ESI) m/z calcd for C₃₀H₂₈NO₂ [M + H]⁺: 434.2115; found: 434.2111.

5-(5,6-Dimethyl-4-phenylpyridin-2-yl)-3-isopropyl-4-phenyldihydrofuran-2(3H)one (3aj), yellow solid, 0.056 g, 72% yield. Mp: 145–146 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.38 (m, 3H), 7.36–7.35 (m, 4H), 7.31–7.28 (m, 3H), 7.11 (s, 1H), 5.47 (s, 1H), 4.10 (d, *J* = 5.2 Hz, 1H), 2.82 (t, *J* = 6.8 Hz, 1H), 2.59 (s, 3H), 2.21 (s, 3H), 1.75–1.71 (m, 1H), 1.13 (d, *J* = 5.6 Hz, 3H), 0.78 (d, *J* = 5.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 177.9, 158.2, 153.7, 150.2, 139.6, 139.5, 128.8, 128.7, 128.6, 128.4, 128.1, 127.9, 127.4, 119.1, 84.7, 50.5, 48.8, 25.8, 23.6, 21.8, 20.1, 16.1; IR (neat): 2959, 1710, 1607, 1384, 1022, 803 cm⁻¹; HRMS (ESI) m/z calcd for C₂₆H₂₈NO₂ [M + H]⁺: 386.2115; found: 386.2112.

5-(5,6-Dimethyl-4-phenylpyridin-2-yl)-3-ethyl-3,4-diphenyldihydrofuran-2(3H)-o ne (3ak), yellow oil, 0.044 g, 49% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.37 (m, 3H), 7.21–7.20 (m, 3H), 7.17–7.14 (m, 3H), 7.10–7.09 (m, 3H), 6.77–6.73 (m, 4H), 5.57 (d, *J* = 10.0 Hz, 1H), 4.27 (d, *J* = 10.0 Hz, 1H), 2.47 (s, 3H), 2.19 (q, *J* = 7.0 Hz, 2H), 2.11 (s, 3H), 1.21 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 178.1, 157.9, 151.3, 149.9, 139.6, 136.4, 134.0, 129.5, 129.3, 128.7, 128.3, 128.0, 127.9, 127.8, 127.4, 127.3, 121.2, 81.6, 59.3, 56.3, 27.9, 23.4, 16.1, 9.1; IR (neat): 2975, 1714, 1634, 1528, 1279, 1 1166, 1027, 812, 689 cm⁻¹; HRMS (ESI) m/z calcd for C₃₁H₃₀NO₂ [M + H]⁺: 448.2271; found: 448.2252.

4ma

5-Benzoyl-3,4-diphenyldihydrofuran-2(3H)-one (4ma), yellow solid, 0.077 g, 91% yield. Mp: 153–154 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 6.0 Hz, 2H), 7.58–7.55 (m, 1H), 7.42–7.39 (m, 2H), 7.32–7.25 (m, 8H), 7.19 (d, J = 5.6 Hz, 2H), 5.75 (d, J = 7.2 Hz, 1H), 4.21 (d, J = 8.8 Hz, 1H), 4.14–4.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 192.8, 174.6, 137.2, 135.0, 134.5, 134.2, 129.3, 129.2, 129.0, 128.8, 128.4, 128.2, 128.0, 127.7, 82.0, 54.1, 52.3; IR (neat): 2924, 1687, 1607, 1412, 1284, 1017, 803, 727 cm⁻¹; HRMS (ESI) m/z calcd for C₂₃H₁₈O₃Na [M + Na]⁺: 365.1148; found: 365.1148.

5-Benzoyl-3-phenyl-4-(4-(trifluoromethyl)phenyl)dihydrofuran-2(3H)-one (4na), yellow oil, 0.074 g, 90% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.0 Hz, 2H), 7.34–7.25 (m, 8H), 7.18 (d, J = 6.4 Hz, 2H), 5.72 (d, J= 8.8 Hz, 1H), 4.24 (d, J = 11.2 Hz, 1H) , 4.13–4.08 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 192.1, 174.3, 137.0, 136.6, 135.7 (q, J = 32 Hz), 134.6, 129.5, 129.4, 129.0, 128.4, 128.3, 128.1, 127.7, 125.8 (q, J = 3.6 Hz), 124.3 (q, J = 267 Hz), 82.1, 53.9, 52.3; IR (neat): 3444, 2962,1706, 1620, 1326, 1068, 698 cm⁻¹; HRMS (ESI) m/z calcd for C₂₄H₁₈F₃O₃ [M + H]⁺: 411.1203; found: 411.1199.

4oa

5-Cinnamoyl-3,4-diphenyldihydrofuran-2(3H)-one (40a), yellow solid, 0.092 g, 95% yield. Mp: 155–156 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 15.6 Hz, 1H), 7.50 (d, *J* = 6.4 Hz, 2H), 7.42 – 7.25 (m, 11H), 7.16 (d, *J* = 6.4 Hz, 2H), 6.95 (d, *J* = 16.0 Hz, 1H), 5.22 (d, *J* = 9.6 Hz, 1H), 4.16 (d, *J* = 11.6 Hz, 1H), 3.86–3.81 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 193.1, 174.6, 146.4, 136.7, 134.7, 133.9, 131.4, 129.3, 129.0, 128.9, 128.8, 128.3, 128.2, 128.0, 127.8, 120.7, 84.5, 54.3, 53.5; IR (neat): 2924, 1714, 1608, 1468, 1283, 1151, 1023, 803, 699 cm⁻¹; HRMS (ESI) m/z calcd for C₂₅H₂₀O₃Na [M + Na]⁺: 391.1305; found: 391.1305.

6. Synthesis of compound 7 and 8

In a 25 mL flask was charged with γ -latone **3aa** (0.084 g, 0.2 mmol), m-CPBA (0.4 mmol, 2.0 equiv.) and DCM (5.0 mL). The mixture was stirred vigorously at room temperature (about 25 °C) for 4 h until the substrate **3aa** disappeared (monitored by TLC). At this time, the reaction was quenched by H₂O (50 mL) and extracted with

DCM (10 mL \times 3). The combined organic layers were dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (the crude residue was dry loaded on silica gel, 1/30 to 1/4, ethyl acetate/petroleum ether) to provide compound 7.

2,3-Dimethyl-6-(-5-oxo-3,4-diphenyltetrahydrofuran-2-yl)-4-phenylpyridine

1-oxide (7), white solid, 0.087 g, 100% yield. Mp: 249–250 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.39 (m, 3H), 7.36–7.22 (m, 8H), 7.18–7.16 (m, 5H), 6.17 (d, *J* = 6.0 Hz, 1H), 4.16–4.11 (m, 2H) , 2.56 (s, 3H), 2.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 175.8, 149.4, 144.1, 140.3, 139.6, 138.2, 135.5, 132.2, 129.3, 129.0, 128.8, 128.7, 128.5, 128.2, 128.1, 127.7, 127.6, 127.1, 122.1, 80.4, 54.7, 53.5, 17.3, 14.5; IR (neat): 3037, 1714, 1608, 1468, 1144, 1021, 803, 727 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₉H₂₆NO₃ [M + H]⁺: 436.1907; found: 436.1902.

In a 25 mL round-bottom flask was charged with γ -latone **3aa** (0.084 g, 0.2 mmol) and THF (5.0 mL), after stirring for 2 min, LiAlH₄ (8 mmol, 4.0 equiv) was added. The mixture was stirred vigorously at room temperature (about 25 °C) for 12 h until the substrate **3aa** disappeared (monitored by TLC). At this time, the reaction was quenched by H₂O (50 mL) and extracted with EtOAc (20 mL × 3). The combined organic layers were dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (the crude residue was dry loaded on silica gel, 1/30 to 1/1, ethyl acetate/petroleum ether) to provide 1,4-diol **8**.

1-(5,6-Dimethyl-4-phenylpyridin-2-yl)-2,3-diphenylbutane-1,4-diol (8), white solid, 0.048 g, 57% yield. Mp: 77–78 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.31–7.30 (m, 3H), 7.15–7.02 (m, 9H), 6.90–6.89 (m, 2H), 6.73–6.72 (m, 2H), 6.20 (s, 1H), 5.04 (d, *J* = 8.0 Hz, 1H), 4.84 (brs, 1H), 4.19 (brs, 1H), 4.07 (dd, *J* = 11.2 Hz, 8.0 Hz, 1H),

3.91 (dd, J = 11.2 Hz, 4.8 Hz, 1H), 3.73– 3.68 (m, 1H), 3.33 (t, J = 8.0 Hz, 1H), 2.58 (s, 3H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.1, 155.9, 149.5, 141.2, 139.9, 139.5, 129.7, 128.8, 128.5, 128.0, 127.9, 127.6, 127.5, 126.2, 126.1, 121.2, 74.7, 66.1, 56.9, 50.8, 22.9, 15.8; IR (neat): 3427, 2956, 1608, 1384, 1020, 804, 703 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₉H₂₉NO₂K [M + K]⁺: 462.1830; found: 462.1828.

7. Gram scale preparation of 3aa

In a 100 mL round-bottom flask was charged with 2-phenylacetyl chloride **2a** (1.0 mL, 8 mmol, 2.0 equiv.) and THF (60.0 mL). The flask was cooled to 0 °C and NEt₃ (1.1 mL, 8 mol, 2.0 equiv.) was added under air. The reaction was stirring for 2 h at 0 °C. Then, *N*-vinyl nitrones **1a** (1.2 g, 4.0 mmol) and Cu(OAc)₂ (140 mg, 20 mol%) was added. The reaction vessel was stirred vigorously at room temperature (about 25 °C) for 72 h until the substrate **1a** disappeared (monitored by TLC). At this time, the reaction was quenched by H₂O (50 mL) and extracted with EtOAc (30 mL × 3). The combined organic layers were dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (the crude residue was dry loaded with silica gel, 1/50 to 1/10, ethyl acetate/petroleum ether) to provide γ -lactones **3aa** (1.2 g, 72% yield).

8. References

- [1] (a) Zou, N.; Jiao, J.-W.; Feng, Y.; Pan, C.-X.; Liang, C.; Su, G.-F.; Mo, D.-L. Org. Lett. 2019, 21, 481. (b) Ma, X.-P.; Li, L.-G.; Zhao, H.-P.; Du, M.; Liang, C.; Mo, D.-L. Org. Lett. 2018, 20, 4571.
- [2] Chen, C.-H.; Wu, Q.-Y.; Wei, C.; Liang, C.; Su, G.-F.; Mo, D.-L. Green Chem.
 2018, 20, 2722
- [3] Lang, R. W.; Hansen, H.-J. Helvetica Chimica Acta 1980, 63, 438.

9. X-ray structure for compounds 3aa

Figure S1: ORTEP diagram of 3aa at 50% ellipsoid probability

10. NMR spectra for 3, 4, 7, 8, and isomerization of 1m

3aa

3aa

S30

3ia

3ka

0.072 -0.000

3la

3qa (ratio = 1.5:1)

3af

3ah

-0.000 -0.072

0.072 -0.000

3ak

4ma

4na

0.000

7

9

