Synthesis of 2-Substituted Indoles through Cyclization and Demethylation of 2-Alkynyldimethylanilines by Ethanol

Guangkuan Zhao, Christelle Roudaut, Vincent Gandon, Mouad Alami, Olivier Provot

Table of Contents

Experimental procedure for quantification of residual traces of Pd and Cu	S2
Characterization data for new compounds and synthetic procedures	S2-S8
NMR spectra of new compounds	S9-S58
References for reported compounds	S62

Experimental procedure for quantification of residual traces of Pd and Cu

Quantification of residual traces of Pd and Cu in S1, S2 and S3 by atomic absorption after mineralization of each samples

The samples S1, S2 and S3 are weighed and solubilized in 4 mL of hydrochloric acid and 4 mL of nitric acid of chromatographic purity. The mineralization takes place in an ANTON PAAR microwave. Cu and Pd residues contained in the 3 samples are dosed by ICP-OES 5100 Agilent. A first analysis was carried out with the PEPure VIII standards from 0.5 ppm for 5 ppm for the determination of Cu and the standard PEMECS4 from 0.2 ppm to 2 ppm for the determination of Pd. Since the values found are inferior to 0.5 ppm for the 3 samples for Cu and Pd, a second analysis was carried out in a lower range of concentrations, from 5 ppb to 50 ppb.

	Samples	Cu (initial concentration) ppb	Pd (initial concentration) ppb
	C1	0	7
	31	0	1
	S2	0	3
	S3	0	1
	Blank	0	0

The results obtained allow us to conclude that the concentration of S1 is inferior to 5 ppb in Cu and less than 10 ppb in Pd and that the concentrations of the samples S2 and S3 are inferior to 5 ppb in Cu and Pd.

Characterization data for new compounds and synthetic procedures

All glasswares were oven-dried at 140 °C and all reactions were conducted under an argon atmosphere. Solvents: cyclohexane, ethyl acetate (AcOEt), for chromatography, were technical grade. The ¹H NMR and ¹³C NMR and ¹⁹F spectra were recorded in CDCl₃ on Bruker Avance 300 spectrometer. The chemical shifts of ¹H are reported in ppm relative to the solvent residual peak in CDCl₃ (δ 7.2.6) for ¹H NMR. For the ¹³C NMR spectra, the solvent signal of CDCl₃ (δ 77.14) was used as the internal standards. The following abreviation are used: m (multiplet), s (singlet), d (doublet), t (triplet), dd (doublet of doublet), td (triplet of doublet), dd (doublet of doublet). IR spectra were measured on a Bruker Vector 22 spectrophotometer (neat, cm⁻¹). High-resolution mass spectra were recorded on a Bruker Daltonics micrOTOF-Q instrument. Analytical TLC was performed on Merck precoated silica gel 60 F-254 plates. Merck silica gel 60 (230-400 mesh) was used for column chromatography. The plates were visualized by either UV light (254 nm).

Procedure for the synthesis of diarylenynes 1a, 1c.

Under argon, chloroenyne **1b** (1.03 g, 5 mmol), the desired boronic acid (1.3 equiv), K_2CO_3 (1.38 g, 2 equiv), and Pd(PPh₃)₄ (462.2 mg, 8 mol%) were mixed in toluene (12 mL) and MeOH (6 mL). The reaction mixture was stirred at 90°C in 30 mL sealed tube monitored by TLC (7 h). After the mixture were allowed to cool to room temperature and filtrated through a pad of celite washed by CH₂Cl₂. Solvent was removed under reduced pressure and the crude material was purified by silica gel column chromatography (0 to 30% AcOEt in cyclohexane).

(E)-2-(4-(4-Methoxyphenyl)but-3-en-1-yn-1-yl)-N,N-dimethylaniline (1a)

OMe Rf = 0.57 (cyclohexane/AcOEt 10:3), yellow solid, m.p. 54.8 – 55.0 °C, yield 75%, 1.04 g.

¹H NMR (300 MHz, CDCl₃) δ = 7.47 (d, J = 7.5 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.26 (t, J = 8.4 Hz, 1H), 7.09 – 6.83 (m, 5H), 6.36 (d, J = 16.2 Hz, 1H), 3.85 (s, 3H), 3.01 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 160.1 (Cq), 154.6 (Cq), 140.0 (CH), 134.3 (CH), 129.5 (Cq), 127.7 (2 CH), 120.7 (CH), 117.1 (CH), 115.8 (Cq), 114.3 (2 CH), 106.5 (CH), 94.7 (Cq), 90.5 (Cq), 55.4 (CH₃), 43.6 (2 CH₃). IR (neat): 2834, 1603, 1510, 1253 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₂₀NO: 278.1545; found: 278.1541.

(E)-1-(4-(4-(2-(Dimethylamino)phenyl)but-1-en-3-yn-1-yl)phenyl)ethan-1-one (1c)

 P_{\parallel} Rf = 0.43 (cyclohexane/AcOEt 10:3), yellow solid, m.p. 123.5 – 123.7 °C, yield 73%, 1.05 g.

¹H NMR (300 MHz, CDCl₃) δ = 7.84 (d, *J* = 8.4 Hz, 2H), 7.42 – 7.33 (m, 3H), 7.16 (t, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 16.2 Hz, 1H), 6.88 – 6.73 (m, 2H), 6.49 (d, *J* = 16.2 Hz, 1H), 2.89 (s, 6H), 2.50 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 197.3 (Cq), 154.9 (Cq), 141.1 (Cq), 138.9 (CH), 136.7 (Cq), 134.5 (CH), 129.6 (CH), 128.9 (2 CH), 126.3 (2 CH), 120.6 (CH), 117.1 (CH), 115.0 (Cq), 111.8 (CH), 93.9 (Cq), 93.2 (Cq), 43.6 (2 CH₃), 26.6 (CH₃). IR (neat): 2833, 2186, 1678, 1598, 1267 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₂₀NO: 290.1545; found: 290.1546.

Procedure for the synthesis of (E)-chloroenynes 1b, 1d.

To a solution of 2-ethynyl-N,N-dimethylaniline (5 mmol) in Et₂O (30 mL) was added successively (*E*)-1,2-dichloroethylene (4 mL, 50 mmol), PdCl₂(PPh₃)₂ (175 mg, 0.25 mmol), piperidine (1 mL, 10 mmol) and Cul (95 mg, 0.5 mmol). After complete disappearance of starting material monitored by TLC, the solution was filtered through a pad of celite using AcOEt. The organic layer was washed successively with sat. NH₄Cl, sat. NaHCO₃ and HCl (1 M) solutions. After drying over MgSO₄ and evaporation *in vacuo*, the crude residue was purified by silica gel column chromatography (0 to 30% AcOEt in cyclohexane).

(E)-2-(4-Chlorobut-3-en-1-yn-1-yl)-N,N-dimethylaniline (1b)^[1]

¹H NMR (300 MHz, CDCl₃) δ = 7.52 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.28 (td, *J* = 7.5, 1.2 Hz, 1H), 6.97 – 6.86 (m, 2H), 6.63 (d, *J* = 13.5 Hz, 1H), 6.25 (d, *J* = 13.5 Hz, 1H), 2.95 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 154.9 (Cq), 134.3 (CH), 129.7 (CH), 129.2 (CH), 120.7 (CH), 117.1 (CH), 114.6 (Cq), 114.4 (CH), 91.5 (Cq), 89.7 (Cq), 43.6 (2 CH₃). IR (neat): 2945, 2197, 1595, 1490, 1325 cm⁻¹. HRMS (ESI): m/z [M+H]^{*} calcd for C₁₂H₁₃N³⁵Cl: 206.0737; found: 206.0735.

 $(E) - 2 - (4 - Chlorobut - 3 - en - 1 - yn - 1 - yl) - N, N - dimethyl - 4 - (1 - (3, 4, 5 - trimethoxyphenyl) vinyl) aniline (1d)^{[1]} - (1 - (3, 4, 5 - trimethoxyphenyl) vinyl) anil$

Rf = 0.60 (cyclohexane/AcOEt 5:5), brown oil, yield 78%, 1.55 g.

¹H NMR (300 MHz, Acetone) δ = 7.36 (d, *J* = 2.1 Hz, 1H), 7.26 (dd, *J* = 8.7, Hz, 1H), 6.91 (d, *J* = 8.7 Hz, 1H), 6.82 (d, *J* = 13.5 Hz, 1H), 6.62 (s, 2H), 6.33 (d, *J* = 13.5 Hz, 1H), 5.38 (s, 1H), 5.35 (s, 1H), 3.79 (s, 6H), 3.77 (s, 3H), 2.97 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.1 (Cq), 157.9 (2 Cq), 153.1 (Cq), 142.6 (Cq), 141.7 (Cq), 138.3 (CH), 137.1 (Cq), 135.2 (CH), 134.6 (CH), 121.9 (CH), 119.4 (CH), 118.3 (CH₂), 117.3 (Cq), 110.8 (2 CH), 96.7 (Cq), 94.8 (Cq), 65.2 (CH₃), 61.1 (2 CH₃), 47.9 (2 CH₃), 1R (neat): 2937, 2196, 1579, 1502, 1347, 1235 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₂₅NO₃³⁵Cl: 398.1523.

Procedure for the synthesis of (Z)-chloroenynes 1e.

To a solution of 2-ethynyl-*N*,*N*-dimethylaniline (1.69 g, 5 mmol) in Et₂O (30 mL) was added successively (*Z*)-1,2-dichloroethylene (4 mL, 50 mmol), $PdCl_2(PPh_3)_2$ (175 mg, 0.25 mmol), *n*-BuNH₂ (1 mL, 10 mmol) and CuI (95 mg, 0.5 mmol). After complete disappearance of starting material monitored by TLC, the solution was filtered through a pad of celite using AcOEt. The organic layer was washed successively with sat. NH₄Cl, sat. NaHCO₃ and HCl (1 M) solutions. After drying over MgSO₄ and evaporation *in vacuo*, the crude residue was purified by silica gel column chromatography (0 to 30% AcOEt in cyclohexane). (*Z*)-2-(4-Chlorobut-3-en-1-yn-1-yl)-*N*,*N*-dimethyl-4-(1-(3,4,5-trimethoxyphenyl)vinyl)aniline (1**e**)

Rf = 0.40 (cyclohexane/AcOEt 5:5), brown oil, yield 69%, 1.37 g.

¹H NMR (300 MHz, CDCl₃) δ = 7.47 (d, *J* = 2.1 Hz, 1H), 7.22 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.84 (d, *J* = 8.7 Hz, 1H), 6.55 (s, 2H), 6.39 (d, *J* = 7.5 Hz, 1H), 6.13 (d, *J* = 7.5 Hz, 1H), 5.31 (s, 1H), 3.88 (s, 3H), 3.82 (s, 6H), 3.01 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 154.3 (Cq), 153.0 (2 Cq), 149.0 (Cq), 137.9 (Cq), 137.3 (Cq), 134.4 (CH), 133.0 (Cq), 129.9 (CH), 127.4 (CH), 116.5 (CH), 113.6 (Cq), 112.8 (CH₂), 112.6 (CH), 105.7 (2 CH), 96.9 (Cq), 88.7 (Cq), 61.0 (CH₃), 56.3 (2 CH₃), 43.6 (2 CH₃). IR (neat): 2987, 1684, 1579, 1542, 1470, 1376 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₂₅NO₃³⁵Cl: 398.1523; found: 398.1529.

Procedure for the synthesis of dichloroenyne 1f

Triethylamine (10 mL) was added to a stirred mixture of 2-ethynyl-*N*,*N*-dimethylaniline (726 mg, 5 mmol), 2-bromo-1,1-dichloroethylene (1.41 g, 8 mmol), PdCl₂(PPh₃)₂ (14.1 mg, 0.02mmol), Cul (6.7 mg, 0.035 mmol) and PPh₃ (13.1 mg, 0.05 mmol) under argon atmosphere. The mixture was heated under reflux for 4 h. The precipitated ammonium salt was filtered off, the solvent was evaporated and water (20 mL) was added to the residue. The mixture was extracted with Et₂O (3 x 20 mL), dried over MgSO₄, filtered and concentrated under reflux agent presidue was purified by silica gel column chromatography (0 to 30% AcOEt in cyclohexane). 2-(4.4-Dichlorobut-3-en-1-vn-1-vl)-N.*N*-dimethylaniline (1f)

ċι

Cl Rf = 0.65 (cyclohexane/AcOEt 10:3), yellow oil, yield 45%, 540.3 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.32 (d, *J* = 7.5 Hz, 1H), 7.16 (td, *J* = 7.8 Hz, 1.5 Hz, 1H), 6.87 – 6.69 (m, 2H), 6.14 (s, 1H), 2.86 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 154.8 (Cq), 134.7 (CH), 130.3 (Cq), 130.1 (CH), 120.5 (CH), 117.1 (CH), 114.1 (Cq), 111.6 (CH), 97.4 (Cq), 88.5 (Cq), 43.7 (2 CH₃). IR (neat): 2786, 2194, 1596, 1491, 1429, 1330 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₂N³⁵Cl₂: 240.0347; found: 240.0342.

General procedure for the synthesis of functionalized alkynes 1g, 1h, 1i, 1j, 1k, 1l , 1n, 1o, 1p, 1q, 1s, 1t, 1u, 1v, 3.

To a stirred mixture of iodide compound (5 mmol), $PdCl_2(PPh_3)_2$ (0.05 equiv) and CuI (0.1 equiv) in Et₃N (10 mL), terminal alkyne (1.1 equiv) was added dropwise at 0 °C. The mixture was then stirred at room temperature. When the starting material was disappeared (TLC monitoring), the mixture was passed through a pad of Celite to remove the insoluble materials. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (0 to 10% AcOEt in cyclohexane). Methyl (*E*)-5-(2-(dimethylamino)phenyl)pent-2-en-4-ynoate (**1g**)

Rf = 0.38 (cyclohexane/AcOEt 10:1), brown oil, yield 73%, 836.9 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.43 (d, J = 7.5 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.08 (d, J = 15.9 Hz, 1H), 6.99 – 6.79 (m, 2H), 6.31 (d, J = 15.9 Hz, 1H), 3.80 (s, 3H), 2.98 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 166.6 (Cq), 155.3 (Cq), 134.9 (CH), 130.5 (CH), 128.3 (CH), 125.9 (CH), 120.3 (CH), 117.0 (CH), 113.5 (Cq), 98.6 (Cq), 91.8 (Cq), 51.8 (CH₃), 43.5 (2 CH₃). IR (neat): 2788, 2188, 1719, 1615, 1491, 1431, 1318, 1159 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₆NO₂: 230.1181; found: 230.1177.

N,N-Dimethyl-2-(phenylethynyl)aniline (1h)[2]

Rf = 0.66 (cyclohexane/AcOEt 10:1), yellow solid, m.p. 52.0 – 52.2 °C, yield 81%, 896.3 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.64 - 7.50 (m, 3H), 7.42 - 7.26 (m, 4H), 7.00 - 6.91 (m, 2H), 3.06 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 154.7 (Cq), 134.5 (CH), 131.4 (2 CH), 129.3 (CH), 128.4 (2 CH), 128.1 (CH), 124.0 (Cq), 120.6 (CH), 117.1 (CH), 115.2 (Cq), 94.8 (Cq), 89.0 (Cq), 43.6 (2 CH₃). IR (neat): 2783, 2211, 1591, 1497, 1329 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₆N: 222.1283; found: 222.1278.

2-((4-Methoxyphenyl)ethynyl)-N,N-dimethylaniline (1i)^[2]

OMe Rf = 0.43 (cyclohexane/AcOEt 10:1), yellow solid, m.p. 65.5 – 65.7 °C, yield 85%, 1.07 g.

2-((4-Fluorophenyl)ethynyl)-N,N-dimethylaniline (1j)

F *Rf* = 0.56 (cyclohexane/AcOEt 10:1), yellow solid, m.p. 40.5 – 40.7 °C, yield 80%, 957.2 mg. ¹H NMR (300 MHz, CDCl₃) δ = 7.62 – 7.45 (m, 3H), 7.29 (t, *J* = 7.8 Hz, 1H), 7.07 (t, *J* = 8.4 Hz, 2H), 6.98 – 6.90 (m, 2H), 3.04 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 162.4 (d, *J* = 247.6 Hz, Cq), 154.7 (Cq), 134.3 (CH), 133.1 (d, *J* = 8.3 Hz, 2 CH), 129.3 (CH), 120.5 (CH), 120.1 (d, *J* = 3.3 Hz, Cq), 116.9 (CH), 115.6 (d, *J* =

6 = 162.4 (a, J = 247.6 Hz, Cq), 154.7 (Cq), 134.3 (CH), 133.1 (a, J = 8.3 Hz, 2 CH), 129.3 (CH), 120.5 (CH), 120.1 (a, J = 3.3 Hz, Cq), 116.9 (CH), 115.6 (a, J = 21.9 Hz, 2 CH), 114.9 (Cq), 93.5 (Cq), 88.6 (Cq), 43.5 (2 CH₃). ¹⁹F (188 MHz, CDCl₃): -111.394. IR (neat): 2785, 2214, 1590, 1329, 1231 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅NF: 240.1189; found: 240.1180.

N,N-Dimethyl-2-(thiophen-2-ylethynyl)aniline (1k)

Rf = 0.55 (cyclohexane/AcOEt 10:1), brown oil, yield 82%, 932.0 mg.

¹H NMR (300 MHz, $CDCl_3$) δ = 7.64 – 7.50 (m, 2H), 7.37 – 7.25 (m, 3H), 7.04 – 6.92 (m, 2H), 3.06 (s, 6H). ¹³C NMR (75 MHz, $CDCl_3$) δ = 154.7 (Cq), 134.2 (CH), 129.7 (CH), 129.2 (CH), 127.9 (CH), 125.3 (CH), 122.9 (Cq), 120.5 (CH), 117.0 (CH), 115.1 (Cq), 89.9 (Cq), 88.4 (Cq), 43.5 (2 CH₃). IR (neat): 2782, 1592, 1488, 1326, 1194 cm⁻¹. HRMS (ESI): m/z [M+H]* calcd for C₁₄H₁₄NS: 228.0847; found: 228.0843.

N,N-Dimethyl-2-(pyridin-2-ylethynyl)aniline (1)

Rf = 0.12 (cyclohexane/AcOEt 10:1), brown oil, yield 65%, 722.5 mg.

¹⁰ H NMR (300 MHz, CDCl₃) δ = 8.63 (d, *J* = 4.8 Hz, 1H), 7.70 – 7.50 (m, 3H), 7.31 – 7.18 (m, 2H), 6.96 – 6.86 (m, 2H), 3.04 (s, 6H).
¹³C NMR (75 MHz, CDCl₃) δ = 155.3 (Cq), 150.1 (CH), 144.1 (Cq), 136.1 (CH), 134.9 (CH), 130.0 (CH), 126.9 (CH), 122.4 (CH), 120.3 (CH), 116.9 (CH), 113.8 (Cq), 94.0 (Cq), 89.2 (Cq), 43.6 (2 CH₃). IR (neat): 2786, 2213, 1580, 1493, 1461, 1426, 1322 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₅N₂: 223.1235; found: 223.1232.

2-(Hex-1-yn-1-yl)-N,N-dimethylaniline (1n)[3]

Rf = 0.64 (cyclohexane/AcOEt 10:1), colorless oil, yield 83%, 835.5 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.37 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.19 (td, *J* = 7.5, 1.2 Hz, 1H), 6.93 – 6.81 (m, 2H), 2.92 (s, 6H), 2.49 (t, *J* = 7.2 Hz, 2H), 1.69 – 1.44 (m, 4H), 0.96 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 154.7 (Cq), 134.4 (CH), 128.4 (CH), 120.8 (CH), 117.1 (CH), 116.7 (Cq), 95.9 (Cq), 79.7 (Cq), 43.7 (2 CH₃), 31.0 (CH₂), 22.2 (CH₂), 19.7 (CH₂), 13.8 (CH₃). IR (neat): 2932, 2360, 1593, 1492, 1429, 1328 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₂₀N: 202.1596; found: 202.1590.

2-(5-Chloropent-1-yn-1-yl)-N,N-dimethylaniline (10)[4]

CIRf = 0.58 (cyclohexane/AcOEt 10:1), colorless oil, yield 86%, 953.4 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.39 (d, J = 7.5 Hz, 1H), 7.24 (t, J = 7.2 Hz, 1H), 6.95 – 6.86 (m, 2H), 3.76 (t, J = 6.3 Hz, 2H), 2.94 (s, 6H), 2.71 (t, J = 6.4 Hz, 2H), 2.16 – 2.06 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ = 154.8 (Cq), 134.4 (CH), 128.8 (CH), 120.8 (CH), 117.1 (CH), 116.1 (Cq), 93.4 (Cq), 80.8 (Cq), 43.9 (CH₂), 43.7 (2 CH₃), 31.7 (CH₂), 17.5 (CH₂). IR (neat): 2782, 1592, 1492, 1429, 1355 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₇N³⁵Cl: 222.1050; found: 222.1042.

4-(2-(Dimethylamino)phenyl)but-3-yn-1-ol (1p)

OH Rf = 0.10 (cyclohexane/AcOEt 10:3), yellow oil, yield 85%, 804.3 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.39 (d, J = 7.5 Hz, 1H), 7.25 (t, J = 7.8 Hz, 1H), 6.99 – 6.87 (m, 2H), 3.84 (t, J = 6.3 Hz, 2H), 2.92 (s, 6H), 2.76 (t, J = 6.3 Hz, 2H), 2.56 (br, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 154.9 (Cq), 134.1 (CH), 128.9 (CH), 121.4 (CH), 117.5 (CH), 116.4 (Cq), 92.1 (Cq), 81.7 (Cq), 61.2 (CH₂), 43.9 (2 CH₃), 24.4 (CH₂). IR (neat): 2952, 2363, 1593, 1492, 1450, 1318 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₆NO: 190.1232; found: 190.1230.

3-(Hex-1-yn-1-yl)-N,N-dimethylpyridin-2-amine (1q)

Rf = 0.46 (cyclohexane/AcOEt 10:1), yellow oil, yield 71%, 718.2 mg.

¹H NMR (300 MHz, CDCl₃) δ = 8.09 (dd, *J* = 4.8 Hz, 1.5 Hz, 1H), 7.53 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.64 – 6.59 (m, 1H), 3.13 (s, 6H), 2.45 (t, *J* = 7.2 Hz, 2H), 1.65 – 1.43 (m, 4H), 0.94 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 161.9 (Cq), 146.3 (CH), 142.7 (CH), 113.9 (CH), 107.7 (Cq), 96.9 (Cq), 78.7 (Cq), 41.1 (2 CH₃), 30.9 (CH₂), 22.2 (CH₂), 19.6 (CH₂), 13.7 (CH₃). IR (neat): 2932, 1579, 1492, 1401, 1233 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₉N₂: 203.1548; found: 203.1547.

N,N-Dimethyl-2-((trimethylsilyl)ethynyl)aniline (1s)[2]

Br

-TMS *Rf* = 0.71 (cyclohexane/AcOEt 10:1), brown oil, yield 85%, 923.9 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.22 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.01 (td, *J* = 7.5, 1.5 Hz,, 1H), 6.68 – 6.59 (m, 2H), 2.76 (s, 6H), 0.07 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ = 155.2 (Cq), 134.9 (CH), 129.5 (CH), 120.1 (CH), 116.8 (CH), 114.7 (Cq), 104.8 (Cq), 99.6 (Cq), 43.4 (2 CH₃), 0.1 (3 CH₃). IR (neat): 2958, 2149, 1594, 1492, 1330, 1248 cm⁻¹. HRMS (ESI): m/z [M+H]* calcd for C₁₃H₂₀NSi: 218.1365; found: 218.1362.

4-Bromo-N,N-dimethyl-2-((trimethylsilyl)ethynyl) aniline (1t)^[1]

TMS Rf = 0.80 (cyclohexane/AcOEt 10:1), colorless oil, yield 84%, 1.25 g.

¹H NMR (300 MHz, CDCl₃) δ = 7.29 (d, J = 2.4 Hz, 1H), 7.06 (dd, J = 9.0, 2.5 Hz, 1H), 6.48 (d, J = 9.0 Hz, 1H), 2.70 (s, 6H), 0.03 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ = 154.2 (Cq), 137.0 (CH), 132.3 (CH), 118.3 (CH), 116.4 (Cq), 111.8 (Cq), 103.2 (Cq), 101.2 (Cq), 43.3 (2 CH₃), 0.0 (3 CH₃). IR (neat): 2958, 2838, 2151, 1488, 1386, 838 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₉N⁷⁹BrSi: 296.0470; found: 296.0469.

1-(2-(Hex-1-yn-1-yl)phenyl)pyrrolidine (1u)

Rf = 0.77 (cyclohexane/AcOEt 10:1), brown oil, yield 83%, 943.5 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.23 (dd, J = 7.8, 1.5 Hz, 1H), 7.02 (td, J = 7.8, 1.5 Hz, 1H), 6.59 - 6.53 (m, 2H), 3.45 - 3.40 (m, 4H), 2.33 (t, J = 6.9 Hz, 2H), 1.92 - 1.77 (m, 4H), 1.55 - 1.32 (m, 4H), 0.85 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 150.5 (Cq), 135.2 (CH), 128.4 (CH), 117.4 (CH), 114.1 (CH), 110.7 (Cq), 93.6 (Cq), 81.3 (Cq), 50.4 (2 CH₂), 30.9 (CH₂), 25.6 (2 CH₂), 22.2 (CH₂), 19.6 (CH₂), 13.7 (CH₃). IR (neat): 2957, 1593, 1481, 1441, 1356 cm⁻¹. HRMS (ESI): m/z [M+H]* calcd for C₁₆H₂₂N: 228.1752; found: 228.1748.

1-(2-(Phenylethynyl)phenyl)pyrrolidine (1v)

Rf = 0.64 (cyclohexane/AcOEt 10:1), colorless oil, yield 87%, 1.08 g.

¹H NMR (300 MHz, CDCl₃) δ = 7.66 – 7.45 (m, 3H), 7.43 – 7.35 (m, 3H), 7.25 (td, *J* = 7.5, 1.0 Hz, 1H), 6.76 (t, *J* = 8.4 Hz, 2H), 3.73 – 3.68 (m, 4H), 2.07 – 1.99 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ = 150.4 (Cq), 135.3 (CH), 130.8 (2 CH), 129.4 (CH), 128.4 (2 CH), 127.7 (CH), 124.4 (Cq), 116.9 (CH), 114.0 (CH), 108.8 (Cq), 92.4 (Cq), 91.2 (Cq), 50.5 (2 CH₂), 25.8 (2 CH₂). IR (neat): 3059, 2870, 2205, 1592, 1497, 1477, 1441, 1355 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₈N: 248.1439; found: 248.1430.

2-(Hex-1-yn-1-yl)aniline (3)

Rf = 0.64 (cyclohexane/AcOEt 10:3), brown oil, yield 80%, 693.0 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.31 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.12 (td, *J* = 7.5, 1.5 Hz, 1H), 6.81 – 6.63 (m, 2H), 4.21 (br, 2H), 2.53 (t, *J* = 7.2 Hz, 2H), 1.72 – 1.49 (m, 4H), 1.02 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 147.7 (Cq), 132.0 (CH), 128.8 (CH), 117.8 (CH), 114.2 (CH), 109.0 (Cq), 95.7 (Cq), 77.14, (Cq), 31.1 (CH₂), 22.1 (CH₂), 19.4 (CH₂), 13.7 (CH₃). IR (neat): 3478, 2958, 2360, 1613, 1493, 1455, 1316 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₆N: 174.1283; found: 174.1281.

2-(hex-1-yn-1-yl)-N-isopropylaniline

Rf = 0.33 (cyclohexane/AcOEt 10:1), yellow oil, yield 81%, 872.1 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.33 (dd, J = 8.1, 1.5 Hz, 1H), 7.22 (td, J = 8.1, 1.5 Hz, 1H), 6.68 – 6.62 (m, 2H), 4.53 (br, 1H), 3.76 – 3.69 (m, 1H), 2.57 (t, J = 6.6 Hz, 2H), 1.74 – 1.57 (m, 4H), 1.33 (d, J = 6.3 Hz, 6H), 1.06 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 148.1 (Cq), 132.0 (CH), 129.0 (CH), 115.7 (CH), 109.9 (CH), 108.6 (Cq), 95.9 (Cq), 77.4 (Cq), 44.0 (CH), 31.1 (CH₂), 23.0 (2 CH₃), 22.0 (CH₂), 19.3 (CH₂), 13.6 (CH₃). IR (neat): 3400, 2960, 1600, 1506, 1546, 1321, 1281, 1176 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₂₂N: 216.1752; found: 216.1754.

2-(hex-1-yn-1-yl)-N-methyl-N-phenylaniline (7)

Rf = 0.47 (cyclohexane/AcOEt 10:1), colorless oil, yield 68%, 895.5 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.49 (d, J = 7.5 Hz, 1H), 7.34 - 7.14 (m, 5H), 6.89 - 6.61 (m, 3H), 3.34 (s, 3H), 2.29 (t, J = 6.6 Hz, 2H), 1.45 - 1.29 (m, 4H), 0.89 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 150.2 (Cq), 149.4 (Cq), 134.0 (CH), 128.8 (3 CH), 127.8 (CH), 125.3 (CH), 122.9 (Cq), 117.7 (CH), 114.5 (2 CH), 95.7 (Cq), 78.2 (Cq), 39.6 (CH₃), 30.7 (CH₂), 21.9 (CH₂), 19.3 (CH₂), 13.7 (CH₃). IR (neat): 2931, 1590, 1500, 1445, 1344 cm⁻¹. HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{19}H_{22}N$: 264.1752; found: 264.1744.

Procedure for the synthesis of secondary aniline 4.

To a solution of 3 (5 mmol, 866 mg) in DMF (30 mL) was added K₂CO₃ (1.5 equiv) and iodomethane (1.1 equiv). The reaction was stirred at room temperature for 3 h then quenched with water (30 mL). The aqueous layer was extracted with CH₂Cl₂ three times and the combined organic extracts were dried with anhydrous MgSO₄, filtered and concentrated. The crude mixture was purified by silica gel column chromatography (0 to 30% AcOEt in cyclohexane).

2-(Hex-1-yn-1-yl)-N-methylaniline (4)

Rf = 0.78 (cyclohexane/AcOEt 10:3), brown oil, yield 63%, 589.9 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.37 (dd, J = 7.5 Hz, 0.9 Hz, 1H), 7.28 (td, J = 7.8 Hz, 1.2 Hz, 1H), 6.80 – 6.60 (m, 2H), 4.70 (br, 1H), 2.97 (s, 3H), 2.58 (t, J = 7.2 Hz), 4.70 (br, 2H), 4.70 (br, Hz, 2H), 1.78 – 1.55 (m, 4H), 1.08 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 149.7 (Cq), 131.8 (CH), 129.1 (CH), 116.0 (CH), 108.7 (CH), 108.4 (Cq), 95.8 (Cq), 77.14 (Cq), 31.1 (CH₂), 30.2 (CH₃), 22.1 (CH₂), 19.4 (CH₂), 13.6 (CH₃). IR (neat): 3420, 2931, 1601, 1510, 1461, 1320, 1168 cm⁻¹. HRMS (ESI): m/z $[M+H]^+$ calcd for $C_{13}H_{18}N$: 188.1439; found: 188.1438.

Procedure for the synthesis of diyne 1m.

To a stirred mixture of 1-(bromorthynyl)-4-methoxybenzene (1.06 g, 5 mmol), PdCl₂(PPh₃)₂ (175.5 mg, 0.05 equiv) and Cul (95.3, 0.1 equiv) in pyrrolidine (10 mL), 2-ethynyl-N,Ndimethylaniline (798.6 mg, 1.1 equiv) was added dropwise at 0 °C. The mixture was then stirred at room temperature. When the starting material was disappeared (TLC monitoring), the mixture was passed through a pad of Celite to remove the insoluble materials. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (0 to 10% AcOEt in cyclohexane).

2-((4-Methoxyphenyl)buta-1,3-diyn-1-yl)-N,N-dimethylaniline (1m)

Rf = 0.40 (cyclohexane/AcOEt 10:1), yellow oil, yield 46%, 633.3 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.39 – 7.35 (m, 3H), 7.16 (t, J = 7.5 Hz, 1H), 6.83 – 6.69 (m, 4H), 3.72 (s, 3H), 2.89 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 160.3 (Cq), 156.2 (Cq), 135.4 (CH), 134.1 (2 CH), 130.0 (CH), 120.3 (CH), 116.9 (CH), 114.2 (2 CH), 113.4 (Cq), 82.9 (Cq), 81.3 (Cq), 80.5 (Cq), 79.3 (Cq), 73.3 (Cq), 55.4 (CH₃), 43.6 (2 CH₃). IR (neat): 2836, 2787, 2136, 1602, 1506, 1464, 1344 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₈NO: 276.1388; found: 276.1387.

Procedure for the synthesis of 2-(hex-1-yn-1-yl)-N-isopropyl-N-methylaniline (8).

To a solution of 2-(hex-1-yn-1-yl)-N-isopropylaniline (2 mmol, 430.6 mg) in THF (10 mL) was added NaH (2 equiv) and iodomethane (2 equiv). The reaction was stirred at 70 °C in a sealed tube for 3 h then quenched with water (10 mL). The aqueous layer was extracted with CH2Cl2 three times and the combined organic extracts were dried with anhydrous MgSO4, filtered and concentrated. The crude mixture was purified by silica gel column chromatography (0 to 10% AcOEt in cyclohexane).

2-(hex-1-yn-1-yl)-N-isopropyl-N-methylaniline (8)

Rf = 0.35 (cyclohexane/AcOEt 10:1), yellow oil, yield 69%, 316.5 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.27 (d, J = 7.5 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.83 – 6.68 (m, 2H), 4.17 – 4.07 (m, 1H), 2.58 (s, 3H), 2.39 (t, J = 7.2 Hz, 2H), 1.58 – 1.33 (m, 4H), 1.03 (d, J = 6.6 Hz, 6H), 0.86 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 154.5 (Cq), 134.3 (CH), 128.1 (CH), 120.5 (CH), 118.9 (CH), 117.4 (Cq), 95.1 (Cq), 79.7 (Cq), 53.1 (CH), 31.1 (CH₂), 31.0 (CH₃), 22.2 (CH₂), 19.6 (CH₂), 18.7 (2 CH₃), 13.7 (CH₃). IR (neat): 2957, 1591, 1486, 1444, 1388, 1328, 1198 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₂₄N: 230.1909; found: 230.1907.

Procedure for the synthesis of terminal alkyne 1r.

To an oven dried 100 mL round-bottomed flask was added N,N-dimethyl-2-((trimethylsilyl)ethynyl)aniline (1.09 g, 5 mmol), MeOH (30 mL), and oven dried K₂CO₃ (691 mg, 1 equiv). The flask was stirred under argon atmosphere at room temperature. When TLC show the disappearance of starting material, H₂O (30 mL) was added to the flask. After extracted with CH₂Cl₂ (3 × 30 mL), the organic layer was dried over anhydrous MgSO₄, and concentrated in vacuo. The crude oil was then purified by column chromatography on silica gel (0 to 10% AcOEt in cyclohexane). 2-Ethynyl-N.N-dimethylaniline (1r)[2]

Rf = 0.35 (cyclohexane/AcOEt 10:1), brown oil, yield 95%, 689.7 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.34 (dd, J = 7.5, 1.5 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 6.85 – 6.68 (m, 2H), 3.30 (s, 1H), 2.80 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 155.5 (Cq), 134.8 (CH), 129.6 (CH), 120.6 (CH), 117.0 (CH), 114.3 (Cq), 82.9 (Cq), 82.4 (CH), 43.5 (2 CH₃). IR (neat): 2956, 2360, 1650, 1561, 1431 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₂N: 146.0970; found: 146.0967.

General procedure for the synthesis of indoles 2a-v, 5, 6.

A solution of alkyne (0.5 mmol) in EtOH (3 mL) was stirred under microwave irradiation (for time and temperature see for each compound). When the starting material disappeared (TLC monitoring), the mixture was concentrated in vacuo, the crude mixture purified by silica gel column chromatography (0 to 30% AcOEt in cyclohexane).

(E)-2-(4-Methoxystyryl)-1-methyl-1H-indole (2a)^[1]

OMe Rf = 0.48 (cyclohexane/AcOEt 10:3), yellow solid, m.p. 141.4 – 141.8 °C, yield 92%, 55.8 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.63 (d, J = 7.5 Hz, 1H), 7.51 (d, J = 8.4 Hz, 2H), 7.34 - 7.12 (m, 4H), 7.05 (d, J = 15.9 Hz, 1H), 6.96 (d, J = 8.4 Hz, 2H), 6.80 (s, 1H), 3.87 (s, 3H), 3.83 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.5 (Cq), 138.8 (Cq), 138.1 (Cq), 130.6 (CH), 130.0 (Cq), 128.1 (Cq), 127.7 (2 CH), 121.5 (CH), 120.3 (CH), 119.8 (CH), 114.9 (CH), 114.2 (2 CH), 109.1 (CH), 98.4 (CH), 55.4 (CH₃), 29.9 (CH₃). IR (neat): 1573, 1463, 1395, 1247 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₈NO: 264.1388; found: 264.1387.

(E)-1-(4-(2-(1-Methyl-1H-indol-2-yl)vinyl)phenyl)ethan-1-one (2c)^[1]

Rf = 0.38 (cyclohexane/AcOEt 10:3), yellow solid, m.p. 188.5 – 188.9 °C, yield 90%, 123.9 mg. ¹H NMR (300 MHz, CDCl₃) δ = 7.99 (d, J = 8.4 Hz, 2H), 7.65 – 7.60 (m, 3H), 7.36 – 7.11 (m, 5H), 6.90 (s, 1H), 3.86 (s, 3H), 2.64 (s, 3H). ¹³C NMR (75 + 7.60 (m, 3H), 7.36 + 7.11 (m, 5H), 6.90 (s, 1H), 3.86 (s, 3H), 2.64 (s, 3H). ¹³C NMR (75 + 7.60 (m, 3H), 7.36 + 7.11 (m, 5H), 6.90 (s, 1H), 3.86 (s, 3H), 2.64 (s, 3H). ¹³C NMR (75 + 7.60 (m, 3H), 7.36 + 7.11 (m, 5H), 6.90 (s, 1H), 3.86 (s, 3H), 2.64 (s, 3H). ¹³C NMR (75 + 7.60 (m, 3H), 7.36 + 7.11 (m, 5H), 6.90 (s, 1H), 3.86 (s, 3H), 2.64 (s, 3H). ¹³C NMR (75 + 7.60 (m, 3H), 7.36 + 7.11 (m, 5H), 6.90 (s, 1H), 3.86 (s, 3H), 2.64 (s, 3H). ¹³C NMR (75 + 7.60 (m, 3H), 7.36 + 7.11 (m, 5H), 6.90 (s, 1H), 3.86 (s, 3H), 2.64 (s, 3H). ¹³C NMR (75 + 7.60 (m, 3H), 7.36 + 7.11 (m, 5H), 6.90 (s, 1H), 3.86 (s, 3H), 2.64 (s, 3H). ¹³C NMR (75 + 7.60 (m, 3H), 7.36 + 7.11 (m, 5H), 6.90 (s, 1H), 3.86 (s, 3H), 2.64 (s, 3H). ¹³C NMR (75 + 7.60 (m, 3H), 7.36 + 7.11 (m, 5H), 6.90 (s, 1H), 3.86 (s, 2H), 2.64 (s, 2H). ¹³C NMR (75 + 7.60 (m, 3H), 7.36 + 7.11 (m, 5H), 7.36 + 7.11 (m, 5H). ¹³C NMR (75 + 7.60 (m, 3H), 7.36 + 7.11 (m, 5H)). ¹³C NMR (75 + 7.60 (m, 5H), 7.36 + 7.11 (m, 5H)). ¹³C NMR (75 + 7.60 MHz, CDCl₃) δ = 197.5 (Cq), 141.9 (Cq), 138.5 (Cq), 137.8 (Cq), 136.1 (Cq), 129.3 (CH), 129.1 (2 CH), 128.0 (Cq), 126.5 (2 CH), 122.4 (CH), 120.8 (CH), 120.2 (CH), 119.7 (CH), 109.4 (CH), 100.2 (CH), 30.1 (CH₃), 26.7 (CH₃). IR (neat): 3054, 1675, 1597, 1348, 1274 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₈NO: 276.1388; found: 276.1378.

(E)-2-(2-Chlorovinyl)-1-methyl-1H-indole (2b)

Cl Rf = 0.84 (cyclohexane/AcOEt 10:1), brown solid, m.p. 65.2 – 65.5 °C, yield 75%, 71.9 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.49 (d, *J* = 7.8 Hz, 1H), 7.22 – 7.11 (m, 2H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.84 (d, *J* = 13.5 Hz, 1H), 6.62 (d, *J* = 13.5 Hz, 1H), 6.52 (s, 1H), 3.65 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 138.0 (Cq), 135.0 (Cq), 127.7 (Cq), 123.0 (CH), 122.3 (CH), 120.7 (CH), 120.4 (CH), 120.2 (CH), 109.4 (CH), 99.8 (CH), 30.1 (CH₃). IR (neat): 2940, 1463, 1343, 1319, 1166 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₁H₁₁³⁵ClN: 192.0580; found: 192.0571.

(E)-2-(2-Chlorovinyl)-1-methyl-5-(1-(3,4,5-trimethoxyphenyl)vinyl)-1H-indole (2d)

Rf = 0.72 (cyclohexane/AcOEt 5:5), brown oil, yield 56%, 107.5 mg.

^{Cl} ¹H NMR (300 MHz, CDCl₃) δ = 7.48 (s, 1H), 7.18 – 7.15 (m, 2H), 6.84 (d, J = 13.5 Hz, 1H), 6.62 (d, J = 13.5 Hz, 1H), 6.53 – 6.51 (m, 3H), 5.35 (s, 1H), 5.29 (s, 1H), 3.81 (s, 3H), 3.72 (s, 6H), 3.66 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 152.9 (2 Cq), 151.0 (Cq), 138.2 (Cq), 137.9 (Cq), 135.6 (Cq), 133.6 (Cq), 127.6 (Cq), 123.2 (CH), 122.8 (CH), 120.7 (CH), 120.6 (CH), 112.7 (CH₂), 108.9 (CH), 106.0 (2 CH), 100.1 (CH), 61.0 (CH₃), 56.3 (2 CH₃), 30.2 (CH₃). IR (neat): 2935, 1579, 1504, 1450, 1348, 1237, 1127 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₃NO₃³⁵Cl: 384.1366; found: 384.1366.

(Z)-2-(2-Chlorovinyl)-1-methyl-5-(1-(3,4,5-trimethoxyphenyl)vinyl)-1H-indole (2e)

Rf = 0.31 (cyclohexane/AcOEt 5:5), brown oil, yield 42%, 80.6 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.66 (s, 1H), 7.29 – 7.27 (m, 3H), 6.79 (d, *J* = 8.1 Hz, 1H), 6.63 (s, 2H), 6.42 (d, *J* = 8.1 Hz, 1H), 5.46 (s, 1H), 5.40 (s, 1H), 3.91 (s, 3H), 3.82 (s, 6H), 3.78 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 152.8 (2 Cq), 150.9 (Cq), 138.1 (Cq), 137.8 (Cq), 136.9 (Cq), 133.4 (Cq), 133.3 (Cq), 127.5 (Cq), 123.5 (CH), 121.0 (CH), 119.2 (CH), 118.2 (CH), 112.5 (CH₂), 108.7 (CH), 105.9 (2 CH), 105.1 (CH), 60.9 (CH₃), 56.1 (2 CH₃), 29.9 (CH₃). IR (neat): 2987, 1684, 1579, 1542, 1470, 1376 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₃NO₃³⁵Cl: 384.1366; found: 384.1359.

2-(2,2-Dichlorovinyl)-1-methyl-1*H*-indole (2f)

Rf = 0.67 (cyclohexane/AcOEt 10:1), yellow oil, yield 85%, 96.1 mg.

Cl¹H NMR (300 MHz, CDCl₃) δ = 7.55 (d, *J* = 8.1 Hz, 1H), 7.23 – 7.14 (m, 2H), 7.12 – 6.95 (m, 2H), 6.85 (s, 1H), 3.64 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 137.4 (Cq), 132.2 (Cq), 127.6 (Cq), 123.1 (CH), 122.1 (Cq), 121.3 (CH), 120.2 (CH), 118.2 (CH), 109.4 (CH), 104.3 (CH), 29.9 (CH₃). IR (neat): 2928, 1462, 2365, 1289 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₁H₁₀³⁵Cl₂N: 226.0185; found: 226.0180.

Ethyl (E)-3-(1-methyl-1H-indol-2-yl)acrylate (2g)

Rf = 0.24 (cyclohexane/AcOEt 10:1), yellow solid, m.p. 86.4 – 86.6 °C, yield 90%, 103.2 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.69 (d, J = 15.6 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.21 – 7.12 (m, 2H), 7.01 (t, J = 7.5 Hz, 1H), 6.84 (s, 1H), 6.38 (d, J = 15.6 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.69 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 167.1 (Cq), 139.1 (Cq), 135.0 (Cq), 132.7 (CH), 127.5 (Cq), 123.6 (CH), 121.4 (CH), 120.5 (CH), 118.3 (CH), 109.7 (CH), 103.8 (CH), 60.6 (CH₂), 30.1 (CH₃), 14.4 (CH₃). IR (neat): 2979, 1701, 1628, 1462, 1304, 1148 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₆NO₂: 230.1181; found: 230.1175.

Methyl (E)-3-(1-methyl-1H-indol-2-yl)acrylate (2h)

Rf = 0.26 (cyclohexane/AcOEt 10:1), yellow solid, m.p. 94.9 – 95.2 °C, yield 88%, 94.7 mg.

⁻¹H NMR (300 MHz, CDCl₃) δ = 7.81 (d, *J* = 15.9 Hz, 1H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.33 – 7.24 (m, 2H), 7.13 (t, *J* = 7.5 Hz, 1H), 6.96 (s, 1H), 6.49 (d, *J* = 15.9 Hz, -1H), 3.84 (s, 3H), 3.80 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 167.5 (Cq), 139.1 (Cq), 134.9 (Cq), 132.9 (CH), 127.5 (Cq), 123.7 (CH), 121.5 (CH), 120.5 (CH), 117.8 (CH), 109.7 (CH), 103.9 (CH), 51.8 (CH₃), 30.1 (CH₃). IR (neat): 2949, 1716, 1520, 1282, 1164 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₄NO₂: 216.1025; found: 216.1029.

1-Methyl-2-phenyl-1H-indole (2i)[5]

Rf = 0.58 (cyclohexane/AcOEt 10:1), yellow solid, m.p. 101.7 – 101.9 °C, yield 93%, 96.4 mg.

 \int^{3} ¹H NMR (300 MHz, CDCl₃) δ = 7.55 (d, *J* = 7.8 Hz, 1H), 7.49 – 7.21 (m, 6H), 7.16 (t, *J* = 7.8 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.48 (s, 1H), 3.65 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 141.6 (Cq), 138.4 (Cq), 132.9 (Cq), 129.4 (2 CH), 128.5 (2 CH), 128.0 (Cq), 127.9 (CH), 121.7 (CH), 120.5 (CH), 119.9 (CH), 109.6 (CH), 101.7 (CH), 31.2 (CH₃). IR (neat): 3057, 1604, 1467, 1386, 1340, 1319 cm⁻¹. HRMS (ESI): m/z [M+H]* calcd for C₁₅H₁₄N: 208.1126; found: 208.1126.

1-Methyl-2-phenyl-1H-indole-3-d ((D)-2i)

Rf = 0.58 (cyclohexane/AcOEt 10:1), yellow solid, m.p. 99.5 – 99.8 °C, yield 90%, 93.7 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.80 (d, J = 7.8 Hz, 1H), 7.69 – 7.47 (m, 6H), 7.40 (t, J = 7.5 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 141.6 (Cq), 138.5 (Cq), 132.9 (Cq), 129.4 (2 CH), 128.6 (2 CH), 128.0 (Cq), 127.9 (CH), 121.7 (CH), 120.5 (CH), 119.9 (CH), 109.7 (CH), 101.5 (t, J = 26.3 Hz, Cq), 31.2 (CH₃). IR (neat): 3054, 1603, 1465, 1380, 1336, 1302 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₃²HN: 209.1189; found: 209.1186.

2-(4-Methoxyphenyl)-1-methyl-1H-indole (2j)[6]

Rf = 0.37 (cyclohexane/AcOEt 10:1), yellow solid, m.p. 126.5 – 126.7 °C, yield 91%, 108.0 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.53 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 8.1 Hz, 2H), 7.26 (d, J = 8.1 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 8.1 Hz, 2H), 6.42 (s, 1H), 3.78 (s, 3H), 3.63 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.6 (Cq), 141.5 (Cq), 138.3 (Cq), 130.7 (2 CH), 128.2 (Cq), 125.4 (Cq), 121.5 (CH), 120.4 (CH), 119.9 (CH), 114.1 (2 CH), 109.6 (CH), 101.2 (CH), 55.5 (CH₃), 31.1 (CH₃). IR (neat): 2836, 1611, 1497, 1466, 1285, 1250 cm⁻¹. HRMS (ESI): m/z [M+H]* calcd for C₁₆H₂₆NO: 238.1232; found: 238.1227.

2-(4-Fluorophenyl)-1-methyl-1*H*-indole (2k)^[6]

Rf = 0.47 (cyclohexane/AcOEt 10:1), yellow solid, m.p. 116.7 – 117.3 °C, yield 94%, 105.9 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.53 (d, J = 7.8 Hz, 1H), 7.38 - 7.32 (m, 2H), 7.24 (d, J = 8.1 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H), 7.08 - 7.01 (m, 3H), 6.42 (s, 1H), 3.59 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 162.7 (d, J = 246.2 Hz, Cq), 140.5 (Cq), 138.4 (Cq), 131.1 (d, J = 8.0 Hz, 2 CH), 129.1 (d, J = 3.0 Hz, Cq), 128.0 (Cq), 121.9 (CH), 120.6 (CH), 120.1 (CH), 115.6 (d, J = 21.5 Hz, 2 CH), 109.7 (CH), 101.8 (CH), 31.1 (CH₃). ¹⁹F (188 MHz, CDCl₃): -113.776. IR (neat): 3066, 1603, 1494, 1432, 1219 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₃NF: 226.1032; found: 226.1030.

1-Methyl-2-(thiophen-2-yl)-1H-indole (2I)[7]

Rf = 0.50 (cyclohexane/AcOEt 10:1), yellow solid, m.p. 82.4 – 82.6 °C, yield 95%, 101.3 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.52 (d, *J* = 7.8 Hz, 1H), 7.32 – 7.11 (m, 5H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.49 (s, 1H), 3.67 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 138.2 (Cq), 136.5 (Cq), 133.5 (Cq), 128.5 (CH), 127.9 (Cq), 125.9 (CH), 123.3 (CH), 121.8 (CH), 120.5 (CH), 119.9 (CH), 109.6 (CH), 101.6 (CH), 31.2 (CH₃). IR (neat): 2944, 1465, 1405, 1334, 1310 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₂NS: 214.0690; found: 214.0689.

1-Methyl-2-(pyridin-2-yl)-1H-indole (2m)

Rf = 0.29 (cyclohexane/AcOEt 10:1), yellow solid, m.p. 88.8 – 89.0 °C, yield 95%, 98.9 mg.

¹H NMR (300 MHz, CDCl₃) δ = 8.59 (d, J = 4.5 Hz, 1H), 7.73 - 7.48 (m, 3H), 7.31 (d, J = 8.4 Hz, 1H), 7.21 - 7.02 (m, 3H), 6.76 (s, 1H), 3.98 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 152.7 (Cq), 149.1 (CH), 139.4 (Cq), 139.1 (Cq), 136.6 (CH), 127.6 (Cq), 123.6 (CH), 122.6 (CH), 121.8 (CH), 121.0 (CH), 120.0 (CH), 109.9 (CH), 103.6 (CH), 32.0 (CH₃). IR (neat): 3052, 2360, 1613, 1453, 1320 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₃N₂: 209.1079; found: 209.1073.

2-((4-Methoxyphenyl)ethynyl)-1-methyl-1H-indole (2n)

-OMe Rf = 0.40 (cyclohexane/AcOEt 10:1), white solid, m.p. 135.7 – 135.9 °C, yield 74%, 96.7 mg.

¹H NMR (400 MHz, CDCl₃) δ = 7.59 (d, J = 8.0 Hz, 1H), 7.54 – 7.49 (m, 2H), 7.32 – 7.23 (m, 2H), 7.14 – 7.09 (m, 1H), 6.93 – 6.89 (m, 2H), 6.80 (s, 1H), 3.86 (s, 3H), 3.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 160.1 (Cq), 137.4 (Cq), 133.1 (2 CH), 127.5 (Cq), 122.9 (CH), 122.6 (Cq), 120.9 (CH), 120.1 (CH), 114.9 (Cq), 114.2 (2 CH), 109.4 (CH), 107.0 (CH), 95.3 (Cq), 79.9 (Cq), 55.5 (CH₃), 30.7 (CH₃). IR (neat): 3009, 2360, 2210, 1602, 1537, 1502, 1441, 1250 cm⁻¹. HRMS (ESI): m/z $[M+H]^+$ calcd for $C_{18}H_{16}NO$: 262.1232; found: 262.1233.

2-Butyl-1-methyl-1H-indole (20)

Rf = 0.55 (cyclohexane/AcOEt 10:1), brown oil, yield 95%, 89.0 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.56 (d, J = 7.8 Hz, 1H), 7.28 (d, J = 8.1 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.28 (s, 1H), 3.68 (s, 3H), 2.76 (t, J = 7.5 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.18 (t, J = 7.5 Hz, 2H), 1.80 – 1.69 (m, 2H), 1.55 – 1.44 (m, 2H), 1.01 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 141.5 (Cq), 137.5 (Cq), 128.1 (Cq), 120.5 (CH), 119.8 (CH), 119.3 (CH), 108.8 (CH), 98.8 (CH), 30.9 (CH₂), 29.5 (CH₃), 26.7 (CH₂), 22.6 (CH₂), 14.0 (CH₃). IR (neat): 2929, 2359, 1546, 1467, 1401, 1314, 1252 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for $C_{13}H_{18}N$: 188.1439; found: 188.1445.

2-(3-Chloropropyl)-1-methyl-1H-indole (2p)

CIRf = 0.59 (cyclohexane/AcOEt 10:1), colorless oil, yield 80%, 83.1 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.56 (d, J = 7.8 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 6.30 (s, 1H), 3.73 – 3.58 (m, 5H), 2.95 (t, J = 7.5 Hz, 2H), 2.54 – 2.16 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ = 139.3 (Cq), 137.5 (Cq), 127.9 (Cq), 120.9 (CH), 119.9 (CH), 119.5 (CH), 108.9 (CH), 99.4 (CH), 44.3 (CH₂), 31.5 (CH₂), 29.5 (CH₃), 23.9 (CH₂). IR (neat): 2958, 1546, 1468, 1337, 1234 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₅N³⁵Cl: 208.0893: found: 208.0886.

2-(1-Methyl-1H-indol-2-yl)ethan-1-ol (2q)

OH Rf = 0.15 (cyclohexane/AcOEt 10:3), yellow solid, m.p. 63.3 - 63.5 °C, yield 79%, 69.2 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.57 (d, J = 7.8 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 6.35 (s, 1H), 3.94 (t, J = 6.3 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 6.35 (s, 1H), 3.94 (t, J = 6.3 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.11 (t, 2H), 3.70 (s, 3H), 3.04 (t, J = 6.3 Hz, 2H), 1.81 (br, 1H). 13 C NMR (75 MHz, CDCl₃) δ = 137.7 (Cq), 137.2 (Cq), 127.9 (Cq), 121.1 (CH), 120.0 (CH), 119.6 (CH), 119.6 (CH), 120.0 (CH), 119.6 (CH), 119.6 (CH), 120.0 (CH), 119.6 (CH), 120.0 (CH), 119.6 (CH), 120.0 (CH), 120. 109.1 (CH), 100.0 (CH), 61.4 (CH₂), 30.2 (CH₂), 29.7 (CH₃). IR (neat): 2946, 1468, 1341, 1234, 1044 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₁H₁₄NO: 176.1075: found: 176.1081.

2-Butyl-1-methyl-1H-pyrrolo[2,3-b]pyridine (2r)

Rf = 0.18 (cyclohexane/AcOEt 10:1), yellow oil, yield 90%, 84.7 mg.

¹H NMR (300 MHz, CDCl₃) δ = 8.24 (d, J = 4.5 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.02 – 6.97 (m, 1H), 6.19 (s, 1H), 3.79 (s, 3H), 2.76 (t, J = 7.5 Hz, 2H), 1.78 – 1.67 (m, 2H), 1.54 – 1.43 (m, 2H), 0.99 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 148.7 (Cq), 142.3 (Cq), 141.5 (CH), 127.2 (CH), 120.7 (Cq), 115.5 (CH), 96.7 (CH), 30.5 (CH₂), 28.0 (CH₃), 26.8 (CH₂), 22.6 (CH₂), 13.9 (CH₃). IR (neat): 2930, 1594, 1541, 1454, 1407, 1310 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for $C_{12}H_{17}N_2$: 189.1392; found: 189.1389.

1-Methyl-1*H*-indole (2s)^[6]

Rf = 0.80 (cyclohexane/AcOEt 10:1), yellow oil, for yields see the text.

¹H NMR (300 MHz, CDCl₃) δ = 7.54 (d, J = 7.8 Hz, 1H), 7.22 (d, J = 8.1 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 3.0 Hz, 1H), 6.39 (d, J = 3.0 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 7.11 (t, J N 1H), 3.66 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 136.8 (Cq), 128.8 (CH), 128.6 (Cq), 121.5 (CH), 120.9 (CH), 119.3 (CH), 109.2 (CH), 101.0 (CH), 32.8 (CH₃). IR (neat): 3055, 1513, 1462, 1316, 1242 cm⁻¹.

5-Bromo-1-methyl-1H-indole (2t)[8]

Rf = 0.46 (cyclohexane/AcOEt 10:1), yellow solid, m.p. 44.2 – 44.5 °C, yield 88%, 92.5 mg.

¹¹¹ H NMR (300 MHz, CDCl₃) δ = 7.79 (d, J = 1.5 Hz, 1H), 7.34 (dd, J = 8.7, 1.5 Hz, 1H), 7.21 (d, J = 8.7 Hz, 1H), 7.07 (d, J = 3.0 Hz, 1H), 6.46 (d, J = 3.0 Hz, 1H), 3.79 (s, N 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 135.5 (Cq), 130.2 (Cq), 130.0 (CH), 124.4 (CH), 123.4 (CH), 112.7 (Cq), 110.7 (CH), 100.6 (CH), 33.0 (CH₃). IR (neat): 2915, 1608, 1562, 1473, 1330, 1276, 1241 cm⁻¹.

2-Butyl-1-(4-ethoxybutyl)-1H-indole (2u)

Bı

Rf = 0.53 (cyclohexane/AcOEt 10:1), yellow oil, yield 85%, 116.2 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.53 (d, J = 7.5 Hz, 1H), 7.28 (d, J = 8.1 Hz, 1H), 7.16 – 7.02 (m, 2H), 6.24 (s, 1H), 4.11 (t, J = 7.5 Hz, 2H), 3.51 – 3.41 (m, 4H), 2.74 (t, J = 7.5 Hz, 2H), 1.89 – 1.45 (m, 8H), 1.20 (t, J = 7.2 Hz, 3H), 0.99 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 141.1 (Cq), 136.7 (Cq), 128.2 (Cq), 120.4 (CH), 119.8 (CH), 119.2 (CH), 109.2 (CH), 98.8 (CH), 70.2 (CH₂), 66.3 (CH₂), 43.1 (CH₂), 30.8 (CH₂), 27.4 (CH₂), 27.3 (CH₂), 26.5 (CH₂), 22.7 (CH₂), 15.3 (CH₃), 14.1 (CH₃). IR (neat): 2956, 2870, 1545, 1463, 1410, 1377, 1352, 1117 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₈NO: 274.2171; found: 274.2175.

1-(4-Methoxybutyl)-2-phenyl-1H-indole (2v)

¹H NMR (300 MHz, CDCl₃) δ = 7.54 (d, J = 7.8 Hz, 1H), 7.49 - 7.21 (m, 6H), 7.14 (t, J = 7.5 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.43 (s, 1H), 4.10 (t, J = 7.5 Hz, 2H), 3.29 - 2.94 (m, 5H), 1.73 - 1.62 (m, 2H), 1.38 - 1.27 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ = 141.4 (Cq), 137.5 (Cq), 133.4 (Cq), 129.5 (2 CH), 128.6 (2 CH), 128.4 (Cq), 128.0 (CH), 121.6 (CH), 120.7 (CH), 119.8 (CH), 110.2 (CH), 102.3 (CH), 72.1 (CH₂), 58.6 (CH₃), 43.8 (CH₂), 26.9 (CH₂), 26.8 (CH₂). IR (neat): 2942, 1444, 1393, 1347, 1314, 1115 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₂₂NO: 280.1701; found: 280.1698.

2-Butyl-1H-indole (5)

Rf = 0.60 (cyclohexane/AcOEt 10:1), yellow oil, yield 45%, 39.0 mg.

¹H NMR (400 MHz, CDCl₃) δ = 7.84 (br, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.19 – 7.00 (m, 2H), 6.25 (s, 1H), 2.76 (t, J = 7.6 Hz, 2H), 1.76 – 1.68 (m, 2H), 1.48 – 1.38 (m, 2H), 0.96 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 140.1 (Cq), 135.9 (Cq), 129.0 (Cq), 121.0 (CH), 119.8 (CH), 119.7 (CH), 119.7 (CH), 119.8 (CH), 119.7 (CH), 119

(CH), 110.3 (CH), 99.6 (CH), 31.4 (CH₂), 28.1 (CH₂), 22.5 (CH₂), 14.0 (CH₃). IR (neat): 3480, 2957, 1686, 1617, 1457, 1261 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for $C_{12}H_{16}N$: 174.1283; found: 174.1283.

1-(2-Aminophenyl)hexan-1-one (6)

Rf = 0.47 (cyclohexane/AcOEt 10:1), yellow oil, yield 43%, 41.2 mg. ¹H NMR (400 MHz, CDCl₃) δ = 7.74 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.28 – 7.23 (m, 1H), 6.72 – 6.59 (m, 2H), 2.92 (t, *J* = 7.2 Hz, 2H), 1.77 – 1.68 (m, 2H), 1.40 – 1.34 (m, 4H), 0.95 – 0.87 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 203.3 (Cq), 150.4 (Cq), 134.2 (CH), 131.3 (CH), 118.2 (Cq), 117.5 (CH), 115.8 (CH), 39.4 (CH₂), 31.8 (CH₂), 24.8 (CH₂), 24.8 (CH₂), 24.7 (CH₂), 14.1 (CH₃). IR (neat): 3341, 2988, 1649, 1615, 1582, 1548, 1452 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₈NO: 192.1388; found: 192.1394.

S54

S57

S58

References

- [1] G. K. Zhao, J. Bignon, H. Levaique, J. Dubois, M. Alami, O. Provot, J. Org. Chem., 2018, 83, 15323-15332.
- [2] Y. Chen, C. H. Cho, F. Shi, R. C. Larock, J. Org. Chem., 2009, 74, 6802-6811.
- [3] X. M. Zeng, R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed., 2010, 49, 942-945.
- [4] D. W. Yue, T. L. Yao, R. C. Larock, J. Org. Chem., 2006, **71**, 62-69.
- [5] Z. Z. Shi, S. T. Ding, Y. X. Cui, N. Jiao, Angew. Chem. Int. Ed., 2009, 48, 7895-7898.
- [6] S. D. Yang, C. L. Sun, Z. Fang, B. J. Li, Y. Z. Li, Z. J. Shi, Angew. Chem. Int. Ed., 2008, 47, 1473-1476.
- [7] S. E. Denmark, J. D. Baird, *Org. lett.*, 2004, **6**, 3649-3652.
- [8] H. F. T. Klare, M. Oestreich, J. Ito, H. Nishiyama, Y. Ohki, K. Tatsumi, J. Am. Chem. Soc., 2011, 133, 3312-3315.