Iron-catalysed 1,2-acyl migration of tertiary α-azido ketones and 2-azido-1,3-dicarbonyl compounds

Tonghao Yang, Yajun Lin, Chaoqun Yang, and Wei Yu*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou, 730000, P. R. China

Fax: +86-931-8912582; *Email: yuwei@lzu.edu.cn*

Supplementary Information

Contents	Page
General methods	2
General experimental procedures	2-6
Characterization data	6–25
References	26
Copies of ¹ H NMR and ¹³ C NMR spectra	27-92

General methods

The ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III-400 MHz spectrometer or a Varian Mercury plus-300 MHz spectrometer with CDCl₃, d₆acetone, or d₆-DMSO as the solvent. In CDCl₃, the chemical shifts in ¹H NMR spectra were determined with Si(CH₃)₄ as the internal standard ($\delta = 0.00$ ppm); the chemical shifts in ¹³C NMR spectra were determined based on the chemical shift of CDCl₃ ($\delta =$ 77.00 ppm). In d₆-DMSO, the chemical shifts in ¹H NMR and ¹³C NMR spectra were determined based on those of DMSO ($\delta = 2.50$ ppm and 40.00 ppm, respectively). In d₆-acetone, the chemical shifts in ¹H NMR and ¹³C NMR spectra were determined based on those of acetone ($\delta = 2.05$ ppm and 206.00 ppm, respectively). The EI-MS spectra were measured on an HP 5988A spectrometer by direct inlet at 70 eV. The high resolution mass spectra (HRMS) were measured on a Bruker micrOTOF QII by ESI. The Fourier transformation infrared spectra (FT-IR) were measured on a NEXUS 670 spectrometer. Melting points were measured on an XT-4 melting point apparatus and were uncorrected. Flash column chromatography was carried out on silica gel (200-300 mesh). FeBr₂ was purchased from ALDRICH. FeCl₂ was purchased from ACROS Organics. Anhydrous CH₃CN was purchased from ACROS Organics. 1,2-Bis(diphenylphosphanyl)benzene was purchased from Energy Chemicals. Other commercial reagents were purchased from Energy Chemicals and used as received. The unspecified substrates were prepared as the author has reported.¹

General experimental procedures

General procedure for the preparation of compounds 5c, 5r, 5s, 5t, 5v and 5w

S-Scheme 1

To a 50 mL round-bottom flask equipped with a magnetic stirring bar was charged with a solution of 1,3-dicarbonyl compounds (5.0 mmol), $Mg(ClO_4)_2$ (1.5 mmol, 0.335 g) and *N*-bromobutanimide (7.5 mmol, 1.340 g) in 25 mL CH₃CN, which was

stirred at room temperature for 6 h. After that, the reaction mixture was poured into water (20 mL), and was extracted with ethyl acetate (3×30 mL). The combined organic phases were washed with brine (2×50 mL), dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure on a rotary evaporator.

The crude product was dissolved in CH₃CN (15 mL) along with NaN₃ (15 mmol, 0.975 g), and the solution was stirred overnight at room temperature. After that, the reaction mixture was poured into water (50 mL), and was extracted with ethyl acetate (3×30 mL). The combined organic phases were washed with brine (6×50 mL), dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure on a rotary evaporator. The residual was treated with silica gel column chromatography (with petroleum ether (PE) and ethyl acetate (EA)) to yield product .

General procedure for the preparation of compounds 5f-5p¹

To a 100 mL two-neck flask charged with a suspension of 60% NaH (30 mmol, 1.200 g) in 30 mL dimethyl carbonate (DMC) was added dropwise acetophenone (10 mmol) in 10 mL dimethyl carbonate. The resulting solution was refluxed at 100 °C for 4 h. After cooling to room temperature, the mixture was added into 100 mL cold water, the pH value of which was then adjusted to pH < 4 with HCl of 1 mol/L. The aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and evaporated under reduced pressure on a rotary evaporator.

5 mmol (estimated) of crude product was dissolved in 35 mL of DMSO, and an aqueous solution of NaN₃ (1 mol/L, 18 mL) was added the DMSO solution, followed by the addition of 7.5 mmol of I_2 (1.920 g). The solution was then stirred at room

temperature for 4 h. The reaction was quenched by saturated aqueous $Na_2S_2O_3$ solution (10 mL). The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phases were washed with brine (6×100 mL), dried over anhydrous Na_2SO_4 . The solvent was evaporated and the residual was purified by flash chromatography on silica (eluent: PE:EA = 10:1) to yield the pure product.

Preparation of compound 5u¹

A 50 mL round bottom flask was charged with a solution of 10 mmol ethyl 2-methyl-3-oxo-3-phenylpropanoate and 20 mmol of aniline (2 mL) in 25 mL xylene under argon atmosphere. The resulting mixture was refluxed for 24 h, and the solvent was removed by distillation. After cooling to room temperature, 20 mL of n-hexane was added and the mixture was stirred for 5 min. The mixture was then filtered and the filter cake was repeatedly rinsed with n-hexane for several times. The resulting solid was dried in vacuo to give the amide product.

A 50 mL flask was charged with a solution of the amide product (5 mmol), $Mg(ClO_4)_2$ (1.5 mmol, 0.335 g) and *N*-bromobutanimide (NBS) (7.5 mmol, 1.340 g) in 25 mL CH₃CN at room temperature for 24 h. After that, the reaction mixture was poured into water (20 mL), and was extracted with ethyl acetate (3×30 mL). The combined organic phases were washed with brine (2×50 mL), dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure on a rotary evaporator.

The crude product was dissolved in CH₃CN (15 mL) along with NaN₃ (15 mmol, 0.975 g), and the solution was stirred overnight at room temperature. After that, the reaction mixture was poured into water (50 mL), and was extracted with ethyl acetate (3×30 mL). The combined organic phases were washed with brine (2×50 mL), dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure on a rotary evaporator. The residual was treated with silica gel column chromatography (PE and

EA) to yield 5u.

Preparation of Cat-1,² Cat-2³ and Cat-3⁴

Preparation of Fe(dpbz)Br₂ (Cat-1): An oven-dried 100 mL two-necked flask equipped with a magnetic stirring bar and a reflux condenser was charged with a solution of anhydrous FeBr₂ (4.0 mmol, 0.863 g) and 1,2-bis (diphenylphosphino) benzene (4.4 mmol, 1.926 g) in ethanol (40 mL). The solution was refluxed under stirring for 18 h, at this time pale brown colored precipitate was formed. The reaction mixture was cooled to room temperature. The brown solid was filtered and the solid was washed with hot ethanol (3×20 mL). The resulting yellow solid Cat-1 (1.560 g, 59%) was dried under high vacuum for 12 h. Elem. Anal. calcd. for C₃₀H₂₄Br₂FeP₂: C, 54.42, H 3.65%; found: C, 55.57; H, 3.72%.

Preparation of Fe(dpbz)Cl₂ (Cat-2): FeCl₂·4H₂O (2.00 mmol, 0.398 g) was dissolved in THF in a Schlenk tube equipped with a magnetic stirring bar. After stirring for 15 min, the solvent was removed *in vacuo*. This was repeated twice. 1,2-Bis(diphenylphosphino)benzene (2.00 mmol, 0.893 g) was then added to the resulting FeCl₂(THF)_{1.5}, followed by anhydrous acetone (25 mL), and the mixture was stirred at room temperature for 24 h. The suspension was filtered through a Büchner funnel and the solid was washed with cold Et₂O to yield **Cat-2** as a light green powder (0.821 g, 70%). Elem. Anal. calcd. for C₃₀H₂₄Cl₂FeP₂: C, 62.86, H 4.22%; found: C, 61.56; H, 4.17%.

Preparation of [Fe(dpbz)Cl]₂ (Cat-3): FeCl₂·4H₂O (2.00 mmol, 0.398 g) was dissolved in THF in a Schlenk tube equipped with a magnetic stirring bar. After stirring for 15 min, the solvent was removed *in vacuo*. This was repeated twice. 1,2-Bis(diphenylphosphino)benzene (3.9 mmol, 0.739 g) was then added to the resulting FeCl₂(THF)_{1.5}, followed by anhydrous acetone (30 mL), and the mixture was stirred for 24 h. The suspension was filtered through a Büchner funnel and the solid was washed with cold Et₂O to yield **Cat-3** (1.390 g, 78%). Elem. Anal. calcd. for C₆₀H₄₈Cl₂FeP₄: C, 70.56, H 4.74%; found: C, 69.76; H, 4.86%.

General procedure for Cat-1-catalyzed reactions (Method A)

Compound 1, 3 or 5 (0.5 mmol) and Cat-1 (0.025 mmol, 16.6 mg) were dissolved in anhydrous CH₃CN (2.5 mL) contained in a 25 mL Schlenk reaction vessel equipped with a magnetic stirring bar. After the reaction tube is placed in an ice bath, the air in it is quickly exchanged with nitrogen gas for more than five times using a double-row gas exchange tube. The mixture was then stirred at 65 °C or 80 °C (oil bath temperature) under N₂ for 12-24 h. After reaction completed, the mixture was cooled to room temperature, and was filtered through silica gel, which was eluted then with EtOAc (3×30 mL). The combined filtrates were then concentrated under reduced pressure on a rotary evaporator. The residual was treated with silica gel column chromatography (eluent: PE and EA) to yield the pure product.

General procedure for FeBr₂/Et₃N-catalyzed reactions (Method B)

The substrate (0.5 mmol), Et₃N (0.1 mmol, 14 uL) and FeBr₂ (0.1 mmol, 21.6 mg) were dissolved in anhydrous CH₃CN (5 mL) contained in a 25 mL Schlenk reaction vessel equipped with a magnetic stirring bar. After the reaction tube is placed in an ice bath, the air in it is quickly exchanged with nitrogen gas for more than five times using a double-row gas exchange tube. The mixture was stirred at 50 °C, 65 °C or 80 °C (oil bath temperature) under N₂ for 12-24 h. After reaction completed, the mixture was cooled to room temperature, and was filtered through silica gel, which was eluted then with EtOAc (3×30 mL). The combined filtrates were then concentrated under reduced pressure on a rotary evaporator. The residual was treated with silica gel column chromatography (eluent: PE and EA) to yield the pure product(s).

Characterization data for compounds 5 and 7

Ethyl 2-azido-2-benzoylheptanoate (5c)

Yellow liquid (1.20 g, 79%); $R_f = 0.63$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.98–7.96 (m, 2 H), 7.54–7.50 (m, 1 H), 7.42–7.38 (m, 2 H), 4.15 (q, J = 7.2 Hz, 2 H), 2.38–2.34 (m, 2 H), 1.60–1.56 (m, 1 H), 1.34–1.24 (m, 5 H), 1.04 (t, J = 7.2 Hz, 3 H), 0.86 (t, J = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 189.2,

168.1, 133.8, 133.2, 129.3, 128.3, 67.2, 63.0, 38.4, 31.6, 24.4, 22.2, 13.8, 13.6; FT-IR (KBr, cm⁻¹): 2101.0; ESI-HRMS: m/z calcd for C₁₆H₂₁N₃O₃+Na⁺: 326.1475, found 326.1480.

1-Ethyl 4-methyl 2-azido-2-benzoylsuccinate (5e)

Colorless oil (0.63 g, 41%); $R_f = 0.35$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.06–8.03 (m, 2 H), 7.58–7.52 (m, 1 H), 7.45–7.39 (m, 2 H), 4.24 (q, *J* = 7.2 Hz, 2 H), 3.73 (s, 3 H), 3.57 (q, *J* = 16.5 Hz, 2 H), 1.42 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 188.8, 169.4, 166.9, 133.5, 129.8, 128.3, 63.7, 60.5, 52.2, 44.4, 13.6; FT-IR (KBr, cm⁻¹): 2116.7; ESI-HRMS: m/z calcd for C₁₄H₁₅N₃O₅+Na⁺: 328.0904, found 328.0912.

Methyl 2-azido-2-methyl-3-oxo-3-(o-tolyl)propanoate (5h)

Colorless liquid (0.98 g, 79%); $R_f = 0.57$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.57–7.54 (m, 1 H), 7.41–7.35 (m, 1 H), 7.29–7.19 (m, 1 H), 3.78 (s, 3 H), 2.42 (s, 3 H), 1.75 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 196.0, 169.7, 138.5, 134.7, 131.8, 131.5, 127.3, 125.3, 72.2, 53.3, 20.8, 20.5; FT-IR (KBr, cm⁻¹): 2118.4; ESI-HRMS: m/z calcd for C₁₂H₁₃N₃O₃+Na⁺: 270.0849, found 270.0852.

Methyl 2-azido-2-methyl-3-oxo-3-(m-tolyl)propanoate (5g)

Colorless liquid (0.78 g, 67%); $R_f = 0.54$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.79–7.74 (m, 2 H), 7.41–7.31 (m, 2 H), 3.75 (m, 3 H), 2.40 (s, 3 H), 1.81 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 191.0, 170.3, 138.6, 134.6, 133.3, 129.8, 128.4, 126.4, 71.0, 53.4, 21.3, 20.3; FT-IR (KBr, cm⁻¹): 2120.0; ESI-HRMS: m/z calcd for C₁₂H₁₃N₃O₃+Na⁺: 270.0849, found 270.0855.

Methyl 2-azido-2-methyl-3-oxo-3-(p-tolyl)propanoate (5f)

Yellow liquid (0.55 g, 46%); $R_f = 0.52$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.90–7.86 (m, 2 H), 7.27–7.24 (m, 2 H), 3.75 (s, 3 H), 2.41 (m, 3 H), 1.82 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 190.4, 170.4, 144.9, 130.7, 129.5, 129.4, 71.0, 53.4, 21.3, 20.3; FT-IR (KBr, cm⁻¹): 2116.7; ESI-HRMS: m/z calcd for $C_{12}H_{13}N_3O_3+Na^+$: 270.0849, found 270.0851.

Methyl 2-azido-3-(4-methoxyphenyl)-2-methyl-3-oxopropanoate (5i)

Colorless oil (0.92 g, 70%); $R_f = 0.45$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.00–7.97 (m, 2 H), 6.94–6.91 (m, 2 H), 3.87 (s, 3 H) 3.75 (s, 3 H), 1.81 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 189.2, 170.4, 163.9, 131.8, 126.0, 113.9, 71.1, 55.4, 53.3, 20.3; FT-IR (KBr, cm⁻¹): 2111.8; ESI-HRMS: m/z calcd for $C_{12}H_{13}N_3O_4$ +Na⁺: 286.0798, found 286.0800.

Methyl 2-azido-3-(2-fluorophenyl)-2-methyl-3-oxopropanoate (5j)

Colorless oil (0.85 g, 69%); $R_f = 0.44$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.70–7.65 (m, 1.0 H), 7.48–7.43 (m, 1.0 H), 7.21–7.14 (m, 1.0 H), 7.07–7.00 (m, 1.0 H), 3.72 (s, 2.7 H), 3.59 (s, 0.3 H), 1.69 (s, 2.7 H), 1.40 (m, 0.3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 191.0 (d, J = 4 Hz), 169.0, 161.8, 158.5, 134.9, 134.8, 134.0, 131.1, 131.1, 130.8, 124.6, 124.5, 122.8, 116.4, 116.3, 116.1, 116.0, 72.2, 53.2, 53.2, 22.7, 22.7, 19.9; FT-IR (KBr, cm⁻¹): 2110.7; ESI-HRMS: m/z calcd for C₁₁H₁₀N₃O₃F+Na⁺: 274.0598, found 274.0600.

Methyl 2-azido-3-(3-fluorophenyl)-2-methyl-3-oxopropanoate (5k)

Colorless oil (0.75 g, 60%); $R_f = 0.44$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.78–7.75 (m, 1 H), 7.71–7.68 (m, 1 H), 7.48–7.41 (m, 1 H), 7.33–7.26 (m, 1 H), 3.77 (s, 3 H), 1.84 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 189.6, 170.1, 162.5 (d, J = 249 Hz), 135.2 (d, J = 7 Hz), 130.0 (d, J = 8 Hz), 125.1 (d, J = 3 Hz), 120.8 (d, J = 21 Hz), 116.3 (d, J = 23 Hz), 70.9, 53.6, 20.0; FT-IR (KBr, cm⁻¹): 2109.3; ESI-HRMS: m/z calcd for C₁₁H₁₀N₃O₃F+Na⁺: 274.0598, found 274.0601.

Methyl 2-azido-3-(4-fluorophenyl)-2-methyl-3-oxopropanoate (5l)

Colorless oil (0.58 g, 47%); $R_f = 0.44$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.04–8.00 (m, 2 H), 7.15–7.09 (m, 2 H), 3.74 (m, 3 H), 1.81 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 189.1, 170.3, 165.9 (d, *J* = 278 Hz), 133.2 (d, *J* = 10 Hz), 129.6, 116.3 (d, *J* = 22 Hz), 70.9, 53.6, 20.1; FT-IR (KBr, cm⁻¹): 2110.8; ESI-HRMS: m/z calcd for C₁₁H₁₀N₃O₃F+Na⁺: 274.0598, found 274.0600.

Methyl 2-azido-2-methyl-3-oxo-3-(4-chlorophenyl)-phenyl)propanoate (5m)

Colorless oil (1.00 g, 75%); $R_f = 0.58$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.93–7.89 (m, 2 H), 7.42–7.39 (m, 2 H), 3.73 (m, 3 H), 1.80 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 189.5, 170.1, 140.3 131.5, 130.8, 128.9, 70.8, 53.5, 20.0; FT-IR (KBr, cm⁻¹): 2126.1; ESI-HRMS: m/z calcd for C₁₁H₁₀N₃O₃Cl+Na⁺: 290.0303, found 290.0310.

Methyl 2-azido-3-(4-bromophenyl)-2-methyl-3-oxopropanoate (5n)

Colorless oil (0.91 g, 58%); $R_f = 0.55$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.83–7.80 (m, 2 H), 7.57–7.54 (m, 2 H), 3.72 (m, 3 H), 1.79 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 189.6, 170.0, 131.9, 130.8, 129.0, 70.7, 53.5, 19.9; FT-IR (KBr, cm⁻¹): 2128.7; ESI-HRMS: m/z calcd for C₁₁H₁₀N₃O₃Br+Na⁺: 333.9798, found 333.9800.

Methyl 2-azido-2-methyl-3-oxo-3-(4-(trifluoromethyl)phenyl)propanoate (50)

Colorless oil (1.13 g, 75%); $R_f = 0.50$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.09–8.06 (m, 2 H), 7.72–7.69 (m, 2 H), 3.76 (s, 3 H), 1.84 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 189.9, 170.0, 136.2, 134.7 (q, J = 32 Hz), 129.8, 125.7, 125.6, 125.6, 125.1, 121.5, 70.8, 53.7, 19.9; FT-IR (KBr, cm⁻¹): 2131.7; ESI-HRMS: m/z calcd for C₁₂H₁₀N₃O₃F₃+Na⁺: 324.0566, found 324.0565.

Methyl 2-azido-3-(4-cyanophenyl)-2-methyl-3-oxopropanoate (5p)

White solid (0.40 g, 75%); m.p. = 85–86 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): δ 8.19 – 8.01 (d, *J* = 8.5 Hz, 2H), 7.86 – 7.66 (d, *J* = 8.6 Hz, 2H), 3.87 – 3.69 (s, 3H), 2.10 – 1.54 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 189.59, 169.84, 136.60, 132.31, 129.75, 117.59, 116.79, 70.79, 53.67, 19.75; FT-IR (KBr, cm⁻¹): 2118.2; ESI-HRMS: m/z calcd for C₁₂H₁₀N₄O₃+H⁺:281.0671, found 281.0675.

2-Azido-2-methyl-1-phenylbutane-1,3-dione (5r)

Colorless oil (0.89 g, 82%); $R_f = 0.81$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.94–7.90 (m, 2 H), 7.61–7.56 (m, 1 H), 7.48–7.42 (m, 2 H), 2.24 (s, 3 H), 1.80 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 202.9, 192.8, 133.8, 133.5, 129.5, 128.6, 77.1, 25.5, 19.2; FT-IR (KBr, cm⁻¹): 2119.7; ESI-HRMS: m/z calcd for $C_{11}H_{11}N_3O_2+Na^+$: 240.0743, found 240.0742.

2-Azido-2-ethyl-1,3-diphenylpropane-1,3-dione (5s)

White solid (1.16 g, 79%); m.p. = 55–56 °C; ¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.84–7.81 (m, 4 H), 7.38–7.33 (m, 2 H), 7.26–7.21 (m, 4 H), 2.60 (q, *J* = 7.2 Hz, 2 H), 0.90 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 191.1, 133.8, 133.5, 129.6, 128.6, 77.4, 32.6, 9.1; FT-IR (KBr, cm⁻¹): 2106.7; ESI-HRMS: m/z calcd for C₁₇H₁₅N₃O₂+Na⁺: 316.1056, found 316.1060.

2-Azido-2-benzyl-1,3-diphenylpropane-1,3-dione (5t)

White solid (1.26 g, 71%);m.p. = 99–100 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.81–7.79 (m, 4 H), 7.45–7.42 (m, 2 H), 7.32–7.28 (m, 4 H), 7.21–7.17 (m, 3 H), 7.07–7.05 (m, 2 H), 4.03 (s, 2 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 191.5, 134.2, 134.1, 133.4, 130.9, 128.4, 128.0, 127.5, 75.6, 45.1; ESI-HRMS: m/z calcd for C₂₂H₁₇N₃O₂+Na⁺: 378.1218, found 378.1220.

2-Azido-2-methyl-3-oxo-*N*,3-diphenylpropanamide (5u)

White solid (1.13 g, 77%); m.p. = 112–113 °C; ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.45 (br, s, 1 H), 8.02–8.00 (m, 2 H), 7.56–7.51 (m, 3 H), 7.43–7.30 (m, 4 H), 7.18–7.13 (m, 1 H), 1.94 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 191.9, 166.6, 136.5, 133.7, 133.6, 129.1, 128.6, 125.2, 120.0, 71.1, 20.6; FT-IR (KBr, cm⁻¹): 2120.8; ESI-HRMS: m/z calcd for C₁₆H₁₄N₄O₂+Na⁺: 317.1009, found 317.1011.

Ethyl-2-azido-2-methyl-3-oxopentanoate (5v)

Colorless oil (0.24 g, 24%); $R_f = 0.67$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 4.27 (q, J = 1.2 Hz, 2 H), 2.92–2.67 (m, 2 H), 1.30 (t, J = 7.2 Hz, 3 H), 1.41 (q, J = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 203.2, 168.6, 72.8, 62.7, 31.0, 19.3, 13.9, 7.7; FT-IR (KBr, cm⁻¹): 2112.0; ESI-HRMS: m/z calcd for C₈H₁₃N₃O₃+Na⁺: 222.0849, found 222.0850.

2-Azido-3-methylpentane-2,4-dione (5w)

Colorless oil (0.34 g, 44%); $R_f = 0.77$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.24 (s, 6 H), 1.61 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 202.2, 78.7, 25.8, 18.3; FT-IR (KBr, cm⁻¹): 2095.1; ESI-HRMS: m/z calcd for C₆H₉N₃O₂+Na⁺: 178.0587, found 178.0589.

Characterization data for product

Methyl 1-oxo-1,2-dihydroisoquinoline-3-carboxylate (2a)

White solid (**Method A:** 92 mg, 91%; **Method B**: 92 mg, 91%); m.p. = 158–160 °C; **Method A**: ¹H NMR (CDCl₃, 300 MHz, δ ppm): 9.99 (br, s, 1 H), 8.42 (dd, *J* = 8.1 Hz, *J* = 0.6 Hz, 1 H), 7.67–7.52 (m, 3 H), 7.32 (s, 1 H), 3.94 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 162.1, 162.0, 135.7, 132.8, 129.1, 128.0, 128.0, 127.7, 127.6, 111.2, 53.0; **Method B**: ¹H NMR (CDCl₃, 300 MHz, δ ppm): 10.00 (br, s, 1 H), 8.46 (d, *J* = 7.5 Hz, 1 H), 7.72–7.59 (m, 3 H), 7.37 (s, 1 H), 4.00 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 162.1, 162.0, 135.7, 132.8, 129.1, 128.0, 128.0, 128.0, 127.7, 127.7, 111.2, 53.0; EI-MS: m/z (rel.int., %): 203 (M⁺, 100.00), 145 (40.38), 143 (54.03), 115 (25.03), 89 (26.78).

Methyl 6-methyl-1-oxo-1,2-dihydroisoquinoline-3-carboxylate (2b)

White solid (97 mg, 89%); m.p. = 123–124 °C; ¹H NMR (CDCl₃, 300 MHz, δ ppm): 9.66 (s, 1.0 H), 8.26 (d, *J* = 0.9 Hz, 1 H), 7.59–7.53 (m, 2 H), 7.36 (s, 1 H), 3.99 (s, 3 H), 2.52 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 162.3, 161.8, 139.9, 134.3, 133.4, 128.0, 127.5, 126.8, 111.4, 53.0, 21.6; EI-MS: m/z (rel.int., %): 217 (M⁺, 100.00), 159 (29.66), 157 (58.07), 129 (26.47), 77 (11.17).

Methyl 8-methyl-1-oxo-1,2-dihydroisoquinoline-3-carboxylate (2c)

White solid (101 mg, 93%); m.p. = 125–126 °C; ¹H NMR (CDCl₃, 300 MHz, δ ppm): 9.26 (s, 1 H), 7.52 (t, *J* = 7.6 Hz, 1 H), 7.45 (d, *J* = 7.6 Hz, 1 H), 7.33 (d, *J* = 7.6 Hz, 1 H), 7.25 (s, 1 H), 3.97 (s, 3 H), 2.94 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 162.8, 162.0, 142.2, 137.5, 132.3, 132.0, 127.4, 126.4, 126.4, 111.7, 52.9, 23.4; EI-MS: m/z (rel.int., %): 217 (M⁺, 65.84), 185 (19.69), 157 (100.00), 129 (22.38), 77 (9.74).

Methyl 7-fluoro-1-oxo-1,2-dihydroisoquinoline-3-carboxylate (2d)

White solid (103 mg, 93%); m.p. = 105–106 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.34 (s, 1 H), 8.11 (dd, *J* = 9.2 Hz, 2.8 Hz, 1 H), 7.70 (dd, *J* = 8.4 Hz, 4.8 Hz, 1 H), 7.47 (dt, *J* = 2.8 Hz, 8.4 Hz, 1 H), 7.38 (s, 1 H), 4.01 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 163.0 (d, *J* = 250 Hz), 162.1, 160.9, 132.5 (d, *J* = 2 Hz), 130.5 (d, *J* = 8 Hz), 130.3 (d, *J* = 8 Hz), 127.2 (d, *J* = 3 Hz), 121.8 (d, *J* = 24 Hz), 113.5 (d, *J* = 23 Hz), 110.6, 53.3; EI-MS: m/z (rel.int., %): 221 (M⁺, 100.00), 163 (28.29), 161 (84.67), 133 (17.13), 107 (22.20).

Methyl 5-fluoro-1-oxo-1,2-dihydroisoquinoline-3-carboxylate (2e)

White solid (99 mg, 90%); m.p. = 85–85 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.43 (s, 1 H), 8.25 (d, *J* = 8.0 Hz, 1 H), 7.62–7.56 (m, 2 H), 7.46–7.42 (m, 1 H), 4.02 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 162.0, 160.7, 158.7 (d, *J* = 253 Hz), 129.8 (d, J = 8 Hz), 129.7 (d, J = 3 Hz), 128.1, 125.4 (d, J = 17 Hz), 123.6 (d, J = 4 Hz), 118.2 (d, J = 20 Hz), 103.7 (d, J = 5 Hz), 53.4; EI-MS: m/z (rel.int., %): 221 (M⁺, 100.00), 163 (38.47), 161 (74.50), 133 (37.24), 107 (44.30).

Methyl 8-bromo-1-oxo-1,2-dihydroisoquinoline-3-carboxylate (2f)

Gray solid (127 mg, 90%); m.p. = 199–200 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.35 (s, 1 H), 7.79 (d, *J* = 7.6 Hz, 1 H), 7.56 (d, *J* = 7.6 Hz, 1 H), 7.44–7.41 (m, 1 H), , 7.23 (s, 1 H), 3.97 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 161.6, 160.1, 139.0, 136.1, 132.8, 128.3, 128.0, 125.5, 123.3, 110.7, 53.2; EI-MS: m/z (rel.int., %): 283 (M⁺+2, 99.10), 281 (M⁺, 100.00), 223 (54.32), 221 (50.15), 169 (27.10), 167 (25.11).

Methyl 7-bromo-1-oxo-1,2-dihydroisoquinoline-3-carboxylate (2g)

White solid (122 mg, 87%); m.p. =194–195 °C; ¹H NMR (d₆-DMSO, 400 MHz, δ ppm): 11.42 (s, 1 H), 8.31 (s, 1 H), 7.98–7.96 (m, 1 H), 7.89–7.87 (m, 1 H), 7.45 (s, 1 H), 3.88 (s, 3 H); ¹³C NMR (d₆-DMSO, 75 MHz, δ ppm): 162.0, 160.6, 136.2, 135.1, 131.1, 129.9, 129.8, 129.6, 122.7. 109.9, 53.3; ESI-HRMS: m/z calcd for C₁₁H₈BrNO₃+Na⁺: 303.9580, found 303.9577.

Methyl 5-bromo-1-oxo-1,2-dihydroisoquinoline-3-carboxylate (2h)

White solid (129 mg, 91%); m.p. = 218–219 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.65 (s, 1 H), 8.40 (d, *J* = 8.0 Hz, 1 H), 7.93 (dd, *J* = 8.0 Hz, 1.2 Hz, 1 H), 7.70 (d, *J* = 0.4 Hz, 1 H), 7.43 (t, *J* = 8.0 Hz, 1 H), 4.01 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 162.0, 161.1, 136.9, 135.5, 129.9, 129.7, 128.7, 127.4, 122.8, 109.6, 53.3; EI-MS: m/z (rel.int., %): 283 (M⁺+2, 100.00), 281 (M⁺, 99.39), 223 (71.85), 221 (49.14), 169 (20.75), 167 (20.56).

1-Oxo-N-phenyl-1,2-dihydroisoquinoline-3-carboxamide (2i)

White solid (112 mg, 85%); m.p. = 250–251 °C; ¹H NMR (d₆-DMSO, 400 MHz, δ ppm): 10.94 (s, 1 H), 10.52 (s, 1 H), 8.26 (d, J = 8.0 Hz, 1 H), 7.83–7.75 (m, 4 H), 7.64–7.60 (m, 1 H), 7.46 (s, 1 H), 7.40–7.36 (m, 2 H), 7.14 (t, J = 7.6 Hz, 1 H); ¹³C NMR (d₆-DMSO, 100 MHz, δ ppm): 161.8, 160.5, 138.8, 136.4, 133.5, 133.4, 129.2, 128.8, 128.3, 127.5, 127.4, 124.7, 120.8, 107.1; ESI-HRMS: m/z calcd for C₁₆H₁₂N₂O₂+Na⁺: 287.0791, found 287.0789.

3-Methylisoquinolin-1(2H)-one (2j)

White solid (**Method A**: 43 mg, 54%; **Method B**: 71 mg, 89%); m.p. = 235–236 °C; **Method A**: ¹H NMR (d₆-DMSO, 400 MHz, δ ppm): 11.27 (s, 1 H), 8.12 (d, *J* = 8.0 Hz, 1 H), 7.61 (td, *J* = 7.6 Hz, 0.8 Hz, 1 H), 7.50 (d, *J* = 8.0 Hz, 1 H), 7.38 (t, *J* = 8.0 Hz, 1 H), 6.29 (s, 1 H), 2.19 (s, 3 H); ¹³C NMR (d₆-DMSO, 100 MHz, δ ppm): 163.0, 139.1, 138.8, 132.8, 127.1, 126.0, 125.8, 124.7, 103.3, 19.2; **Method B**: ¹H NMR (d₆-DMSO, 400 MHz, δ ppm): 11.32 (s, 1 H), 8.13 (d, *J* = 8.0 Hz, 1 H), 7.60 (td, *J* = 7.6 Hz, 0.8 Hz, 1 H), 7.48 (d, *J* = 8.0 Hz, 1 H), 7.37 (t, *J* = 8.0 Hz, 1 H), 6.27 (s, 1 H), 2.19 (s, 3 H); ¹³C NMR (d₆-DMSO, 100 MHz, δ ppm): 163.0, 139.1, 138.9, 132.8, 127.1, 126.0, 125.9, 124.7, 103.4, 19.3; EI-MS: m/z (rel.int., %): 159 (M⁺, 100.00), 158 (14.66), 131 (16.79), 130 (55.66).

2-Ethylisoquinolin-1(2*H*)-one (2k)

White solid (**Method A**: 27 mg, 31%; **Method B**: 51 mg, 59%); m.p. = 127–129 °C; **Method A**: ¹H NMR (d₆-DMSO, 400 MHz, δ ppm): 11.07 (s, 1 H), 7.96 (d, *J* = 8.0 Hz, 1 H), 7.45 (td, *J* = 7.6 Hz, 0.8 Hz, 1 H), 7.36 (d, *J* = 8.0 Hz, 1 H), 7.22 (td, *J* = 8.0 Hz, 0.8 Hz, 1 H), 6.14 (s, 1 H), 2.32 (q, J = 7.6 Hz, 1 H), 1.02 (t, J = 7.6 Hz, 1 H); ¹³C NMR (d₆-DMSO, 100 MHz, δ ppm): 163.2, 144.7, 138.9, 132.9, 127.1, 126.3, 126.0, 124.9, 101.8, 26.1, 13.3; **Method B**: ¹H NMR (d₆-DMSO, 400 MHz, δ ppm): 11.12 (s, 1 H), 7.99 (d, J = 8.0 Hz, 1 H), 7.46 (t, J = 7.6 Hz, 1 H), 7.36 (d, J = 8.0 Hz, 1 H), 7.23 (t, J = 8.0 Hz, 1 H), 6.14 (s, 1 H), 2.33 (q, J = 7.6 Hz, 1 H), 1.03 (t, J = 7.6 Hz, 1 H); ¹³C NMR (d₆-DMSO, 100 MHz, δ ppm): 163.2, 144.6, 138.9, 132.8, 127.1, 126.3, 126.0, 124.9, 101.8, 26.1; EI-MS: m/z (rel.int., %): 173 (M⁺, 100.00), 172 (74.73), 158(35.17), 89 (13.11).

Methyl 1-oxo-2,5-dihydro-1*H*-benzo[c]azepine-3-carboxylate (4a)

Yellow solid (**Method A**: 49 mg, 45%; **Method B**: 47 mg, 43%); m.p. = 164–165 °C; **Method A**: ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.02 (s, 1 H), 7.93 (dd, *J* = 7.5 Hz, 0.9 Hz, 1 H), 7.46 (td, *J* = 6.0 Hz, 0.9 Hz, 1 H), 7.35 (td, *J* = 6.0 Hz, 0.4 Hz, 1 H), 7.15 (d, *J* = 7.5 Hz, 1 H), 6.73 (td, *J* = 7.5 Hz, 1.2 Hz, 1 H), 3.80 (s, 3 H), 3.44 (d, *J* = 7.5 Hz, 2 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 168.5, 163.3, 140.0, 132.7, 132.2, 131.2, 128.6, 127.2, 124.0, 52.6, 31.8; **Method B**: ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.05 (s, 1 H), 7.93 (d, *J* = 7.5 Hz, 1 H), 7.47(t, *J* = 7.5 Hz, 1 H), 7.35 (t, *J* = 7.5 Hz, 1 H), 7.15 (d, *J* = 7.5 Hz, 1 H), 6.74 (t, *J* = 7.5 Hz, 1 H), 3.81 (s, 3 H), 3.44 (d, *J* = 7.5 Hz, 2 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 168.5, 163.3, 140.0, 132.7, 132.2, 131.2, 128.6, 127.2, 124.1, 52.7, 31.8; EI-MS: m/z (rel.int., %): 217 (M⁺, 64.93), 185 (17.36), 158 (100.00), 131 (34.57), 103 (26.20).

1-Oxo-N-phenyl-2,5-dihydro-1H-benzo[c]azepine-3-carboxamide (4b)

White solid (65 mg, 47%); m.p. = 201–203 °C; ¹H NMR (d₆-DMSO, 400 MHz, δ ppm): 10.06 (s, 1 H), 9.37 (s, 1 H), 7.77 (d, J = 6.8 Hz, 1 H), 7.68–7.66 (m, 2 H), 7.49 (dd, J = 7.6 Hz, 1.2 Hz, 1 H), 7.38–7.28 (m, 4.0 H), 7.07 (t, J = 7.2 Hz, 1 H), 6.59 (t, J = 7.2 Hz, 1 H), 3.43–3.39 (m, 2 H); ¹³C NMR (d₆-DMSO, 100 MHz, δ ppm): 168.5,

162.5, 141.9, 139.1, 133.4, 133.4, 132.5, 130.9, 129.0, 127.6, 127.2, 124.2, 121.4, 120.7, 31.3; ESI-HRMS: m/z calcd for C₁₇H₁₅N₂O₂+Na⁺: 301.0947, found 301.0943.

Ethyl 2-(benzoylimino)propanoate (6a)

Colorless oil (45 mg, 41%); $R_f = 0.33$ (PE : EA = 10:1); ¹H NMR (d₆-acetone, 300 MHz, δ ppm): 7.91–7.88 (m, 2 H), 7.67–7.61 (m, 1 H), 7.56–7.49 (m, 2 H), 4.26–4.18 (m, 2 H), 2.34–2.33 (m, 3 H), 1.25–1.19 (m,3 H); ¹³C NMR (d₆-acetone, 75 MHz, δ ppm): 179.0, 162.0, 160.1, 134.2, 133.2, 129.8, 129.6, 63.2, 21.9, 14.3; ESI-HRMS: m/z calcd for C₁₂H₁₃NO₃+Na⁺: 242.0788, found 242.0789.

Ethyl 2-(benzoylimino)butanoate (6b)

Colorless oil (57 mg, 49%); $R_f = 0.36$ (PE : EA = 10:1); ¹H NMR (d₆-acetone, 400 MHz, δ ppm): 7.90–7.86 (m, 1.75 H), 7.72–7.69 (m, 0.25 H), 7.65–7.60 (m, 1.00 H), 7.53–7.49 (m, 2.00 H), 4.16 (q, J = 7.2 Hz, 2.00 H), 2.81 (q, J = 7.2 Hz, 2.00 H), 1.24–1.20 (m,3.00 H), 1.15 (t, J = 7.2 Hz, 3.00 H); ¹³C NMR (d₆-acetone, 75 MHz, δ ppm): 179.2, 163.5, 161.2, 133.9, 133.8, 133.8, 130.3, 129.6, 129.5, 129.1, 63.2, 28.9, 14.1, 10.0; ESI-HRMS: m/z calcd for C₁₃H₁₅NO₃+Na⁺: 256.0955, found 256.0958.

Mthyl 2-benzamidoacrylate (7a)

Colorless oil (81 mg, 75%); $R_f = 0.40$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.59 (br, s, 1 H), 7.86–7.83 (m, 2 H), 7.54–7.45 (m, 3 H), 6.79 (s, 1 H), 6.00 (s, 1 H), 4.33 (q, J = 6.9 Hz, 2 H), 1.37 (q, J = 7.2 Hz, 3 H) ; ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 165.6, 164.1, 134.1, 131.9, 131.1, 128.6, 108.4, 62.2, 14.0; EI-MS: m/z (rel.int., %): 219 (M⁺, 1.04), 217 (64.93), 158 (100.00), 131 (35.29), 103 (26.20).

Ethyl (Z)-2-benzamidobut-2-enoate (7b)

Yellow liquid (74 mg, 64%); $R_f = 0.46$ (PE : EA = 3:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.88–7.82 (m, 3 H), 7.54–7.50 (m, 1 H), 7.45–7.42 (m, 2 H), 6.88 (q, *J* = 7.2 Hz, 1 H), 4.22 (q, *J* = 7.2 Hz, 2 H), 1.83 (d, *J* = 7.2 Hz, 3 H), 1.29 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 165.4, 164.6, 133.8, 133.3, 131.8, 128.5, 127.3, 126.2, 61.3, 14.8, 14.1; EI-MS: m/z (rel.int., %): 233 (M⁺, 9.00), 187 (22.6), 128 (18.92), 105 (100.00), 77 (35.33).

Ethyl (Z)-2-benzamido-3-phenylacrylate (7d)

Yellow oil (59 mg, 42%); $R_f = 0.40$ (PE : EA = 3:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.87–7.85 (m, 3 H), 7.56–7.44 (m, 6 H), 7.35–7.29 (m, 3 H), 4.30 (q, J = 7.2 Hz, 2 H), 1.34 (t, J = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 165.3, 133.9, 133.5, 132.1, 131.2, 129.6, 129.3, 128.7, 128.5, 127.4, 124.3, 61.9, 14.2;ESI-HRMS: m/z calcd for C₁₈H₁₇NO₃+Na⁺: 318.1101, found 318.1104.

Methyl 2-(3-methylbenzamido)acrylate (7f)

White solid (72 mg, 67%); m.p. = 298–300 °C ; ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.52 (br, s, 1 H), 7.74–7.72 (m, 2 H), 7.27–7.25, (m, 2 H), 6.78 (m, 1 H), 6.00 (s, 1 H), 3.86 (m, 3 H), 2.39 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 165.5, 164.7, 142.5, 131.2, 130.9, 129.3, 126.8, 108.5, 53.0, 21.4; ESI-HRMS: m/z calcd for C₁₂H₁₃NO₃+Na⁺: 242.0788, found 242.0788.

Methyl 2-(3-methylbenzamido)acrylate (7g)

Colorless oil (75 mg, 69%); $R_f = 0.41$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.54 (br, s, 1 H), 7.65–7.62 (m, 2 H), 7.36–7.34 (m, 2 H), 6.80 (s, 1 H), 6.00 (s, 1 H), 3.88 (s, 3 H), 2.41 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 165.8, 164.7, 138.6, 134.1, 132.7, 130.9, 128.5, 127.5, 123.8, 108.7, 53.0, 21.3; ESI-HRMS: m/z calcd for C₁₂H₁₃NO₃+Na⁺: 242.0788, found 242.0790.

Methyl 2-(2-methylbenzamido)acrylate (7h)

Colorless oil (40 mg, 37%); $R_f = 0.44$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.12 (br, s, 1 H), 7.47–7.44 (m, 1 H), 7.39–7.34 (m, 1 H), 7.27–7.23 (m, 1 H), 6.70 (s, 1 H), 6.00 (s, 1 H), 3.86 (s, 3 H), 2.50 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 168.3, 164.5, 136.4, 135.6, 131.3, 131.0, 130.5, 126.8, 125.9, 108.9, 53, 19.9; ESI-HRMS: m/z calcd for C₁₂H₁₃NO₃+Na⁺: 242.0788, found 242.0791.

Methyl 2-(4-methoxybenzamido)acrylate (7i)

Colorless oil (68 mg, 57%); $R_f = 0.41$ (PE : EA = 10:1); ; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.46 (br, s, 1 H), 7.81–7.79 (m, 2 H), 6.96–6.94 (m, 2 H), 6.76 (m, 1 H), 5.95 (s, 1 H), 3.88 (m, 3 H), 3.85 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 165.2, 164.8, 162.6, 131.0, 128.8, 126.4, 113.9, 108.3, 55.3, 53.0; ESI-HRMS: m/z calcd for $C_{12}H_{13}NO_4+Na^+$: 258.0737, found 258.0738.

Methyl 2-(2-fluorobenzamido)acrylate (7j)

White solid (94 mg, 84%); m.p. = 267–269 °C ; ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.52 (br, d, *J* = 14.7 Hz, 1 H), 8.13–8.08 (m, 1 H), 7.56–7.49, (m, 1 H), 7.32–7.14, (m, 2 H), 6.82 (s, 1 H), 6.01 (m, 1 H), 3.89 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 164.3, 161.9, 161.6, 161.5, 158.6, 133.8 (d, *J* = 13.7 Hz), 131.8, 131.8, 131.1, 124.8 (d, *J* = 5 Hz), 120.8 (d, *J* = 14 Hz), 116.2 (d, *J* = 23 Hz), 109.5, 53.0; ESI-HRMS: m/z calcd for C₁₁H₁₀NFO₃+Na⁺: 246.0537, found 246.0536.

Methyl 2-(3-fluorobenzamido)acrylate (7k)

Colorless oil (80 mg, 72%); $R_f = 0.31$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.53 (br, s, 1 H), 7.60–7.55 (m, 2 H), 7.49–7.42, (m, 1 H), 7.27–7.22 (m, 1 H), 6.78 (s, 1 H), 6.01 (s, 1 H), 3.89 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 164.5, 164.3, 164.3, 161.0, 136.5 (d, *J* = 9 Hz), 130.7, 130.4, 130.3, 122.2, 122.2, 119.0 (d, *J* = 28 Hz), 114.3 (d, *J* = 31 Hz), 109.2, 53.1; ESI-HRMS: m/z calcd for C₁₁H₁₀NFO₃+Na⁺: 246.0537, found 246.0539.

Methyl 2-(4-fluorobenzamido)acrylate (7l)

White solid (72 mg, 65%); m.p. = 282–283 °C ; ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.49 (br, s, 1 H), 7.88–7.83 (m, 2 H), 7.18–7.13, (m, 2 H), 6.77 (s, 1 H), 6.00 (s, 1 H), 3.89 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 165.0 (d, *J* = 253 Hz), 164.6, 164.5, 130.8, 130.3, 129.3, 129.2, 115.7 (d, *J* = 29 Hz), 108.9, 53.1; ESI-HRMS: m/z calcd for C₁₁H₁₀NFO₃+Na⁺: 246.0537, found 246.0539.

Methyl 2-(4-chlorobenzamido)acrylate (7m)

White solid (85 mg, 71%); m.p. = 103–104 °C ; ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.51 (br, s, 1 H), 7.79–7.76 (m, 2 H), 7.46–7.42, (m, 2 H), 6.78 (s, 1 H), 6.00 (m, 1 H), 3.89 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 164.6, 164.5, 138.2, 132.4, 130.7, 128.9, 128.3, 109.1, 53.1; ESI-HRMS: m/z calcd for C₁₁H₁₀NClO₃+Na⁺: 262.0241, found 262.0241.

Methyl 2-(4-bromobenzamido)acrylate (7n)

White solid (105 mg, 74%); m.p. = 94–95 °C ; ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.50 (br, s, 1 H), 7.71–7.59 (m, 4 H), 6.77 (s, 1 H), 6.00 (m, 1 H), 3.88 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 164.6, 164.5, 132.9, 131.9, 130.7, 128.4, 126.7, 109.1, 53.1; EI-MS: m/z (rel.int., %): 285 (M⁺+2, 13.90), 283 (M⁺, 15.63), 253 (20.62), 251 (20.06), 185 (91.89), 183 (100.00), 157 (24.43), 155 (24.07).

Methyl 2-(4-(trifluoromethyl)benzamido)acrylate (70)

White solid (106 mg, 78%); m.p. = 147–149 °C ; ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.59 (br, s, 1 H), 7.97–7.94 (m, 2 H), 7.76–7.73, (m, 2 H), 6.81 (s, 1 H), 6.04 (s, 1 H), 3.89 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 164.4 (d, *J* = 16 Hz), 137.3, 135.5 (q, *J* = 32 Hz), 130.7, 127.4, 125.7 (q, *J* = 4 Hz), 125.3, 121.6, 109.5, 53.1; ESI-HRMS: m/z calcd for C₁₂H₁₀NF₃O₃+Na⁺: 296.0505, found 296.0503.

Methyl 2-(4-cyanobenzamido)acrylate (7p)

White solid (94mg, 82%); m.p. = 170–171 °C ; ¹H NMR (CDCl₃, 400 MHz, δ ppm): δ 8.60 – 8.51 (s, 1H), 7.97 – 7.91 (m, 2H), 7.83 – 7.75 (m, 2H), 6.83 – 6.77 (s, 1H), 6.09 – 6.02 (d, *J* = 1.3 Hz, 1H), 3.94 – 3.88 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 163.76, 137.9, 132.6, 130.6, 127.6, 117.7, 115.3, 109.7, 53.2; ESI-HRMS: m/z calcd for C₁₂H₁₀N₂O₃+Na⁺: 253.0584, found 253.0585.

N-(3-Oxo-3-phenylprop-1-en-2-yl)benzamide (7q)

Yellow oil (96 mg, 72%); $R_f = 0.37$ (PE : EA = 10:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.93 (s, 1 H), 7.92–7.89 (m, 2 H), 7.56–7.72 (m, 2 H), 7.60–7.44 (m, 6 H), 7.27

(s, 1 H), 5.71 (s, 1.0 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 193.0, 166.0, 137.8, 135.6, 134.1, 132.4, 132.0, 129.3, 128.7, 128.2, 127.0, 115.0; EI-MS: m/z (rel.int., %): 251 (M⁺, 0.75), 240 (10.98), 105 (100.00), 77 (24.16).

N-(3-Oxobut-1-en-2-yl)benzamide (7r)

Yellow solid (57 mg, 60%); m.p. = 107–108 °C ; ¹H NMR (CDCl₃, 300 MHz, δ ppm): 8.19 (br, s, 1 H), 7.72–7.45 (m, 5 H), 7.09 (s, 1 H), 5.61 (m, 1 H), 2.21 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz, δ ppm): 192.9, 169.3, 135.7, 132.3, 129.3, 128.2, 114.8, 24.7; ESI-HRMS: m/z calcd for C₁₁H₁₁NO₂+Na⁺: 212.0682, found 212.0680.

Ethyl 2-propionamidoacrylate (7v)

Colorless oil (47 mg, 55%); $R_f = 0.38$ (PE : EA = 3:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.77 (br, s, 1 H), 6.60 (s, 1 H), 5.87 (d, J = 1.2 Hz, 1 H), 4.29 (q, J = 7.2 Hz, 2 H), 2.36 (q, J = 7.2 Hz, 2 H), 1.35 (t, J = 7.2 Hz, 3 H), 1.20 (t, J = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 172.4, 164.1, 131.0, 108.0, 62.1, 30.6, 14.0, 9.3; ESI-HRMS: m/z calcd for C₈H₁₃NO₃+Na⁺: 194.0788, found 194.0790.

N-(3-oxobut-1-en-2-yl)acetamide (7w)

Yellow oil (18 mg, 28%); $R_f = 0.10$ (PE : EA = 3:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.03 (br, s, 1 H), 6.91 (s, 1 H), 5.78 (s, 1 H), 2.41 (s, 3 H), 2.13 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 194.8, 169.0, 138.3, 110.0, 24.7, 23.7; EI-MS: m/z (rel.int., %): 127 (M⁺, 52.23), 99 (4.22), 85(62.69), 43 (100.00).

3-Methyl-2,5-dihydro-1*H*-benzo[c]azepin-1-one (4c)

White solid (52 mg, 60%); m.p. = 197–199 °C ; ¹H NMR (d₆-DMSO, 300 MHz, δ ppm): 9.43 (s, 1 H), 7.89 (dd, J = 1.2 Hz, 7.8 Hz, 1 H), 7.42 (dt, J = 1.5 Hz, 7.5 Hz, 1

H), 7.28 (dt, J = 0.9 Hz, 7.5 Hz, 1 H), 7.15 (d, J = 7.5 Hz, 1 H), 5.24 (t, J = 6.9 Hz, 1 H), 3.10 (d, J = 6.9 Hz, 2.0 H), 1.75 (s, 3 H); ¹³C NMR (d₆-DMSO, 75 MHz, δ ppm): 169.0, 143.3, 134.4, 133.8, 132.3, 130.6, 127.0, 126.6, 111.4, 31.4, 20.8; ESI-HRMS: m/z calcd for C₁₁H₁₁NO+Na⁺: 196.0733, found 196.0737.

Ethyl 6-oxo-1,4,5,6-tetrahydropyridine-2-carboxylate (9a)

Colorless oil (38 mg, 45%); $R_f = 0.16$ (PE : EA = 3:1); ¹H NMR (CDCl₃, 300 MHz, δ ppm): 7.76 (br, s, 1 H), 6.23 (m, 1 H), 4.25 (q, J = 6.6 Hz, 1 H), 2.47 (m, 4 H), 1.29 (d, J = 6.6 Hz, 1 H);¹³C NMR (CDCl₃, 75 MHz, δ ppm): 169.7, 161.6, 128.8, 113.9, 61.8, 29.0, 20.6, 14.0; EI-MS: m/z (rel. int., %): 169 (M⁺, 100.00), 140 (44.56), 124 (11.89), 112 (41.50), 96 (55.05).

6-acetyl-3,4-dihydropyridin-2(1*H*)-one (9b)

White solid (51 mg, 74%); m.p. = 77–78 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.88 (br, s, 1 H), 6.29 (dt, J = 1.2 Hz, J = 4.8 Hz, 1 H), 2.64–2.58 (m, 2 H), 2.54–2.50 (m, 2 H), 2.39 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm):190.0, 169.2, 136.0, 116.1, 28.8, 23.7, 21.0; ESI-HRMS: m/z calcd for C₇H₉NO₂+Na⁺: 162.0526, found 162.0526.

Ethyl 7-oxo-4,5,6,7-tetrahydro-1*H*-azepine-2-carboxylate (9c)

Colorless oil (22 mg, 24%): R_f = 0.49 (PE : EA = 1:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.59 (br, s, 1 H), 6.52 (br, 1 H), 4.27 (q, *J* = 8.1 Hz, 2 H), 2.61–2.59 (m, 2 H), 2.50–2.45 (m, 2 H), 2.02–1.94 (m, 2 H), 1.33 (t, *J* = 8.1 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 174.2, 163.5, 126.1, 121.8, 62.0, 36.5, 28.5, 21.2, 14.0; ESI-

HRMS: m/z calcd for C₉H₁₃NO₃+Na⁺: 206.0788, found 206.0787.

7-Acetyl-1,3,4,5-tetrahydro-2*H*-azepin-2-one (9d)

White solid (50 mg, 65%); m.p. = 56–57 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.92 (br, s, 1 H), 6.41 (t, *J* = 4.8 Hz, 1 H), 2.62–2.56 (m, 4 H), 2.42 (s, 3 H), 2.02–1.96 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 193.2, 173.9, 133.6, 123.8, 36.7, 29.1, 24.1, 20.4; ESI-HRMS: m/z calcd for C₈H₁₁NO₂+Na⁺: 176.0682, found 176.0682.

N-(Cyclopent-1-en-1-yl)benzamide (11a)

White solid (83 mg, 89%); m.p. = 187–189 °C ; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.84 (s, 1 H), 7.77–7.73 (m, 2 H), 7.48–7.44 (m, 1 H), 7.40–7.36 (m, 2 H), 6.06 (t, J = 2.0 Hz, 1 H), 2.60–2.54 (m, 2 H), 2.47–2.42 (m, 2 H), 1.91–1.84 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 165.7, 136.2, 134.5, 131.2, 128.3, 126.8, 112.1, 33.5, 31.0, 21.2; EI-MS: m/z (rel.int., %): 187 (M⁺, 16.05), 128 (11.69), 105 (100.00), 77 (55.09).

N-(Cyclohex-1-en-1-yl)benzamide (11b)

White solid (44 mg, 44%); m.p. = 120–121 °C ; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.76–7.73 (m, 2 H), 7.49–7.44 (m, 1 H), 7.41–7.37 (m, 2 H), 7.18 (br, s, 1 H), 6.21 (s, 1 H), 2.26–2.23 (m, 2 H), 2.17–2.12 (m, 2 H), 1.75–1.69 (m, 2 H), 1.63–1.57 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 165.8, 135.2, 132.7, 131.2, 128.4, 126.8, 114.0, 28.0, 24.0, 22.5, 21.9; EI-MS: m/z (rel.int., %): 201 (M⁺, 39.46), 172 (5.72), 105 (100.00), 77 (35.18).

O N H

N-(Prop-1-en-2-yl)benzamide (11c)

White solid (49 mg, 60%); m.p. = 101-102 °C; ¹H NMR (CDCl₃, 400 MHz, δ ppm):

7.76–7.75 (m, 2 H), 7.50–7.47 (m, 1 H), 7.44–7.35 (m, 3 H), 5.56 (s, 1 H), 4.57 (s, 1 H), 2.03 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.0, 137.7, 135.0, 131.5, 128.6, 126.8, 99.6, 22.1; EI-MS: m/z (rel.int., %): 161 (M⁺, 3.52), 159 (29.77), 105 (100.00), 77 (23.34).

(E)-N-(1-Phenylprop-1-en-2-yl)benzamide (11d)

Yellow liquid (90 mg, 81%): $R_f = 0.44$ (PE : EA = 5:1); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.81–7.79 (m, 2 H), 7.53–7.49 (m, 1 H), 7.46–7.40 (m, 4 H), 7.34–7.31 (m, 2 H), 7.26–7.25 (m, 2 H), 7.20–7.18 (m, 1 H), 7.15 (s, 1 H), 2.21 (m, 3 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 166.0, 136.9, 135.1, 133.0, 131.6, 128.9, 128.7, 128.5, 128.1, 126.9, 126.1, 116.9, 18.1; ESI-HRMS: m/z calcd for C₁₆H₁₅NO+Na⁺: 260.1046, found 260.1051.

11e-1, 52% **11e-2**, 2%

11e-1 (Z:E = 1:2)⁵, 11e-2

Yellow liquid (50 mg, 54%): ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.81–7.75 (m, 3.40 H), 7.52–7.32 (m, 6.72 H), 5.79 (t, *J* = 7.2 Hz, 1 H), 5.70 (s, 0.06 H), 5.01 (t, *J* = 7.2 Hz, 0.56 H), 4.62 (s, 0.06 H), 2.25 (t, *J* = 8.0 Hz, 0.12 H), 2.13–1.98 (m, 8.48 H), 2.00 (m, 3.33 H), 1.60–1.54 (m, 0.12 H), 1.02–0.97 (m, 5.20 H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 165.9, 135.2, 134.8, 131.5, 131.3, 130.4, 130.1, 128.5, 128.4, 127.0, 126.8, 122.2, 120.2, 99.4, 37.8, 21.3, 20.5, 20.2, 16.0, 14.2, 13.7;

References

- 1. T. Yang, X. Fan, X. Zhao and W. Yu, Org. Lett., 2018, 20, 1875–1879.
- V. P. Kumar, V. S. Babu, K. Yahata and Y. Kishi, Org. Lett., 2017, 19, 2766–2768.
- 3. R. B. Bedford, M. Huwe and M. C. Wilkinson, Chem. Commun., 2009, 600-602.
- 4. J. E. Barclay and G. J. Leigh, J. Chem. Soc. Dalton Trans, 1988, 2866–2870.
- 5. B. M. Trost, J. J. Cregg and N. Quach, J. Am. Chem. Soc., 2017, 139, 5133-5139.

5c

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

5g

5f

5m

5r

5v

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

2f

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (com)

2h

2j

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

6b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

7i

7k

7I

7m

7p

7q

7r

2a (Method B)

2j (Method B)

2k (Method B)

4a (Method B)

4c (Method B)

9b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

