Electronic Supplementary Information

for

Catalyst- and Additive-Free Baeyer–Villiger-type Oxidation of α-Iodocyclopentenones to α-Pyrones: Using Air as the Oxidant

Yuanyuan Zhou, Xianxiao Chen, Xiangxiang Ling and Weidong Rao*

Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

E-mail: weidong@njfu.edu.cn

Table of Contents

		page
1	General Experimental Information	S2
2	General Experimental Procedures for Baeyer–Villiger-type Oxidation of α -Iodocyclopentenones to α -Pyrones	S3
3	Analytical Data:	S3
4	Scale-Up Experiment and Synthetic Applications	S17
5	Control Experiments	S23
6	¹ H and ¹³ C NMR Spectra	S27
7	ORTEP Drawings	S71
8	References	S72

1. General Experimental Information

Unless specified, all reagents and starting materials were purchased from commercial sources and used as received. Solvents were purified following standard literature procedures. α -Iodocyclopentenones 1 were prepared following literature procedures.^[S1] Analytical thin layer chromatography (TLC) was performed using precoated silica gel plate. Visualization was achieved by UV light (254 nm). Flash chromatography was performed using silica gel and gradient solvent system (Petroleum ether:EtOAc as eluent). ¹H and ¹³C NMR spectra were recorded with Bruker AVQ-400 or 600 spectrometers. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as: s (singlet), brs (broad singlet), d (doublet), t (triplet), dd (doublet of doublets), td (triplet of doublets), dt (doublet of triplet) or m (multiplet). The number of protons (*n*) for a given resonance is indicated by nH and coupling constants are reported as a J value in Hz. High resolution mass spectra (HRMS) were obtained on a Finnigan MAT95XP LC/HRMS TOF spectrometer using simultaneous electrospray (ESI).

2. General Experimental Procedures for Baeyer–Villiger-type Oxidation of α-Iodocyclopentenones to α-Pyrones

The solution of α -iodocyclopentenones **1** (0.3 mmol) in DMA (3 mL) was stirred at 120 °C for 1-3 h under an air atmosphere. Upon completion, the reaction mixture was cooled to room temperature, then saturated sodium thiosulfate solution was added and the resulting mixture was extracted with ethyl acetate (10 mLx3), the combined organic layers were washed with brine, dried over MgSO₄, concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 10:1 to 1:1) to give the desired α -pyrone products **2**.

3. Analytical Data:

6-Methyl-4-phenyl-2H-pyran-2-one (2a)^[S2]

Product **2a** was obtained as a colorless solid in 72% yield (41 mg) following the general procedure, mp 90-91 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.56-7.55 (m, 2H), 7.47-7.45 (m, 3H), 6.34 (s, 1H), 6.30 (s, 1H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.5, 162.2, 155.5, 135.8, 130.6, 129.2, 126.7, 108.1, 103.5, 20.2.

6-Octyl-4-phenyl-2H-pyran-2-one (2b)^[S3]

Product **2b** was obtained as yellow oil in 62% yield (53 mg) following the general procedure; ¹H NMR (600 MHz, CDCl₃) δ 7.57-7.56 (m, 2H), 7.47-7.45 (m, 3H), 6.34 (s, 1H), 6.29 (d, *J*=1.3 Hz, 1H), 2.54 (t, *J* = 7.6 Hz, 2H), 1.73-1.68 (m, 2H), 1.30-1.24 (m, 10H), 0.87 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.0, 163.6, 155.5, 136.0, 130.6, 129.1, 126.7, 108.3, 102.8, 34.1, 31.8, 29.3, 29.1, 29.1, 27.0, 22.6, 14.1.

6-Decyl-4-phenyl-2H-pyran-2-one (2c)

Product **2c** was obtained as a pale-red solid in 61% yield (57 mg) following the general procedure, mp 59-61 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.57-7.56 (m, 2H), 7.47-7.45 (m, 3H), 6.34 (d, *J* = 1.3 Hz, 1H), 6.29 (s, 1H), 2.54 (t, *J* = 7.6 Hz, 2H), 1.73-1.68 (m, 2H), 1.37-1.26 (m, 14H), 0.87 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.0, 163.6, 155.5, 136.0, 130.6, 129.1, 126.7, 108.3, 102.8, 34.1, 31.9, 29.6, 29.5, 29.3, 29.3, 29.0, 27.0, 22.7, 14.1; HRMS (ESI) calcd. for C₂₁H₂₈O₂Na [M+Na]⁺: 335.1982, found: 335.1984.

4-Phenyl-6-(3-phenylpropyl)-2H-pyran-2-one (2d)

Product **2d** was obtained as a yellow solid in 65% yield (57 mg) following the general procedure, mp 65-66 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.57-7.55 (m, 2H), 7.48-7.47 (m, 3H), 7.31-7.28 (m, 2H), 7.22-7.19 (m,3H), 6.36 (s, 1H), 6.28 (s, 1H), 2.72 (t, *J* = 7.4 Hz, 2H), 2.58 (t, *J* = 7.6 Hz, 2H), 2.07 (t, *J* = 7.5 Hz, 2H);¹³C NMR (150 MHz, CDCl₃) δ 165.4, 163.5, 155.4, 141.1, 135.9, 130.6, 129.2, 128.5, 126.7, 126.1, 108.4, 103.0, 35.1, 33.5, 28.5; HRMS (ESI) calcd. for C₂₀H₁₈O₂Na [M+Na]⁺: 313.1199, found: 313.1202.

6-Cyclohexyl-4-phenyl-2H-pyran-2-one (2e)^[S3]

Product **2e** was obtained as a pale-yellow solid in 68% yield (52 mg) following the general procedure, mp 96-97 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.58-7.56 (m, 2H), 7.48-7.46 (m, 3H), 6.34 (d, *J* = 1.3 Hz, 1H), 6.26 (d, *J* = 0.8 Hz, 1H), 2.48 (tt, *J* = 11.8, 3.3 Hz, 1H), 2.04-2.01 (m, 2H), 1.87-1.84 (m, 2H), 1.47 (qd, *J* = 12.5, 3.0 Hz, 2H), 1.39-1.32 (m, 2H), 1.28-1.23 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 169.8, 163.6, 155.6, 136.2, 130.5, 129.1, 126.7, 108.4, 100.9, 42.5, 30.6, 25.9, 25.8.

4-Phenyl-6-(3-tosylpropyl)-2H-pyran-2-one (2f)

Product **2f** was obtained as a yellow solid in 61% yield (68 mg) following the general procedure, mp 134-136 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 7.6 Hz, 2H), 7.48-7.45 (m, 3H), 7.35 (d, *J* = 7.9 Hz, 2H), 6.34 (d, *J* = 11.9 Hz, 2H), 3.14 (t, *J* = 7.6 Hz, 2H), 2.70 (t, *J* = 7.5 Hz, 2H), 2.43 (s, 3H), 2.16-2.10 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 163.0, 163.0, 155.2, 145.1, 135.8, 135.5, 130.8, 130.1, 129.2, 128.1, 126.7, 108.9, 103.8, 55.0, 32.3, 21.6, 20.5; HRMS (ESI) calcd. for C₂₁H₂₀O₄SNa [M+Na]⁺: 391.0975, found: 391.0978.

N-(2-(2-oxo-4-phenyl-2H-pyran-6-yl)ethyl)-N-tosylacetamide (2g)

Product **2g** was obtained as a colorless solid in 62% yield (77 mg) following the general procedure, mp 153-155 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.58-7.56 (m, 2H), 7.48-7.46 (m, 3H), 7.35 (d, *J* = 8.2 Hz, 2H), 6.38 (d, *J* = 4.4 Hz, 2H), 4.12 (t, *J* = 7.0 Hz, 2H), 2.95 (t, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 2.37 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.1, 163.0, 161.4, 155.2, 145.3, 136.3, 135.6, 130.7, 130.1, 129.2, 127.4, 126.7, 109.2, 104.6, 44.6, 34.4, 25.0, 21.7; HRMS (ESI) calcd. for C₂₂H₂₁NO₅SNa [M+Na]⁺: 434.1033, found: 434.1035.

2-(3-(2-Oxo-4-phenyl-2H-pyran-6-yl)propyl)isoindoline-1,3-dione (2h)

S5

Product **2h** was obtained as a pale-yellow solid in 72% yield (78 mg) following the general procedure, mp 113-114 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.84-7.82 (m, 2H), 7.71-7.69 (m, 2H), 7.57-7.56 (m, 2H), 7.47-7.45 (m,3H), 6.39 (d, *J* = 0.5 Hz, 1H), 6.31 (d, *J* = 1.4 Hz, 1H), 3.80 (t, *J* = 6.8 Hz, 2H), 2.63 (t, *J* = 7.5 Hz, 2H), 2.16-2.11 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 164.0, 163.2, 155.3, 135.7, 134.1, 132.0, 130.7, 129.2, 126.7, 123.3, 108.5, 103.3, 37.0, 31.4, 25.8; HRMS (ESI) calcd. for C₂₂H₁₇NO₄Na [M+Na]⁺: 382.1050, found: 382.1053.

Ethyl 4-(2-oxo-4-phenyl-2H-pyran-6-yl)butanoate (2i)

Product **2i** was obtained as a yellow solid in 68% yield (58 mg) following the general procedure, mp 86-88 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.58-7.57 (m, 2H), 7.50-7.47 (m, 3H), 6.37 (d, *J* = 1.5 Hz, 1H), 6.33 (s, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 2.63 (t, *J* = 7.5 Hz, 2H), 2.41 (t, *J* = 7.3 Hz, 2H), 2.08-2.05 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.8, 164.5, 163.3, 155.3, 135.7, 130.7, 129.2, 126.7, 108.6, 103.3, 60.5, 33.2, 33.2, 22.2, 14.2; HRMS (ESI) calcd. for C₁₇H₁₈O₄Na [M+Na]⁺: 309.1097, found: 309.1100.

3-(2-Oxo-4-phenyl-2H-pyran-6-yl)propyl acetate (2j)

Product **2j** was obtained as yellow oil in 68% yield (56 mg) following the general procedure; ¹H NMR (600 MHz, CDCl₃) δ 7.56-7.55 (m, 2H), 7.47-7.45 (m, 3H), 6.35 (s, 1H), 6.33 (s, 1H), 4.13 (t, *J* = 6.2 Hz, 2H), 2.64 (t, *J* = 7.7 Hz, 2H), 2.08-2.03 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 171.0, 164.3, 163.3, 155.4, 135.7, 130.7, 129.2, 126.7, 108.6, 103.2, 63.16, 30.78, 26.04, 20.88; HRMS (ESI) calcd. for C₁₆H₁₆O₄Na [M+Na]⁺: 295.0941, found: 295.0943.

3-(2-Oxo-4-phenyl-2H-pyran-6-yl)propyl 4-nitrobenzoate (2k)

Product **2k** was obtained as a yellow solid in 72% yield (82 mg) following the general procedure, mp 124-125 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.27-8.25 (m, 2H), 8.13-8.16 (m, 2H),7.54-7.52 (m, 2H), 7.48-7.45 (m, 3H), 6.35 (s, 2H), 4.48 (t, *J* = 6.2 Hz, 2H), 2.75 (t, *J* = 7.4 Hz, 2H), 2.28-2.24 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 164.6, 164.0, 163.1, 155.3, 150.6, 135.5, 135.3, 130.8, 130.7, 129.2, 126.6, 123.6, 108.7, 103.3, 64.8, 31.0, 26.0; HRMS (ESI) calcd. for C₂₁H₁₇NO₆Na [M+Na]⁺: 402.0948, found: 402.0951.

6-(3-Phenoxypropyl)-4-phenyl-2H-pyran-2-one (2l)

Product **21** was obtained as a yellow solid in 60% yield (55 mg) following the general procedure, mp 67-69 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.52-7.47 (m, 2H), 7.46-7.44 (m, 3H), 7.29-7.26 (m, 2H), 6.95 (t, *J* = 7.3 Hz, 1H), 6.90 (dd, *J* = 8.7, 0.9 Hz, 2H), 6.37 (d, *J* = 1.5 Hz, 1H), 6.33 (d, *J* = 1.3 Hz, 1H), 4.04 (t, *J* = 5.9 Hz, 2H), 2.80 (t, *J* = 7.4 Hz, 2H), 2.23-2.20 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 164.7, 163.5, 158.7,

155.5, 135.8, 130.6, 129.5, 129.2, 126.7, 120.9, 114.5, 108.6, 103.4, 66.3, 30.8, 26.7; HRMS (ESI) calcd. for C₂₀H₁₈O₃Na [M+Na]⁺: 329.1148, found: 329.1150.

6-(5-Oxo-5-phenylpentyl)-4-phenyl-2H-pyran-2-one (2m)

Product **2m** was obtained as yellow oil in 54% yield (54 mg) following the general procedure; ¹H NMR (600 MHz, CDCl₃) δ 7.96-7.95 (m, 2H), 7.59-7.55 (m, 3H), 7.48-7.45 (m, 5H), 6.36 (d, *J* = 1.4 Hz, 1H), 6.34 (s,1H), 3.04 (t, *J* = 6.7 Hz, 2H), 2.63 (t, *J* = 6.8 Hz, 2H), 1.85-1.82 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 199.7, 165.2, 163.5, 155.5, 136.9, 135.9, 133.1, 130.6, 129.2, 128.7, 128.0, 126.7, 108.4, 103.0, 38.0, 34.0, 26.6, 23.5; HRMS (ESI) calcd. for C₂₂H₂₀O₃Na [M+Na]⁺: 355.1305, found: 355.1308.

N-methoxy-N-methyl-4-(2-oxo-4-phenyl-2H-pyran-6-yl)butanamide (2n)

Product **2n** was obtained as yellow oil in 46% yield (41 mg) following the general procedure; ¹H NMR (600 MHz, CDCl₃) δ 7.57-7.56 (m, 2H), 7.47-7.45 (m, 3H), 6.35 (d, *J* = 5.6 Hz, 2H), 3.67 (s, 3H), 3.18 (s, 3H), 2.64 (t, *J* = 7.6 Hz, 2H), 2.52 (t, *J* = 6.7 Hz, 2H), 2.09-2.03 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 165.1, 163.4, 155.4, 135.8, 130.6, 129.2, 126.7, 108.5, 103.1, 61.3, 33.3, 32.2, 30.7, 29.7, 21.9; HRMS (ESI) calcd. for C₁₇H₁₉NO₄Na[M+Na]⁺: 324.1206, found: 324.1209.

6-Methyl-4-(p-tolyl)-2H-pyran-2-one (20) [S2]

Product **20** was obtained as a pale-yellow solid in 65% yield (39 mg) following the general procedure, mp 101-102 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 6.32 (s, 1H), 6.29 (s, 1H), 2.40 (s, 3H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.6, 162.0, 155.3, 141.1, 132.8, 129.9, 126.6, 107.4, 103.4, 21.4, 20.2.

4-([1,1'-Biphenyl]-4-yl)-6-methyl-2H-pyran-2-one (2p)

Product **2p** was obtained as a colorless solid in 72% yield (57 mg) following the general procedure, mp 173-175 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.70-7.61 (m, 6H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 6.41 (s, 1H), 6.35 (s, 1H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.5, 162.2, 155.0, 143.5, 139.8, 134.5, 129.0, 128.1, 127.8, 127.1, 127.1, 107.8, 103.3, 20.2; HRMS (ESI) calcd. for C₁₈H₁₄O₂Na [M+Na]⁺: 285.0886, found: 285.0891.

4-(4-Fluorophenyl)-6-methyl-2H-pyran-2-one (2q) [86]

Product **2q** was obtained as a pale-yellow solid in 64% yield (44 mg) following the general procedure, mp 113-114 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.54-7.52 (m, 2H), 7.13 (t, *J* = 8.5 Hz, 2H), 6.27 (s, 1H), 6.25 (s, 1H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.7 (d, *J* = 251.9 Hz), 163.4, 163.2, 154.3, 131.9 (d, *J* = 3.3 Hz), 128.7 (d, *J* = 8.7 Hz), 116.3 (d, *J* = 21.8 Hz), 107.9, 103.2, 20.2.

4-(4-Chlorophenyl)-6-methyl-2H-pyran-2-one (2r) [S2]

Product **2r** was obtained as a colorless solid in 70% yield (46 mg) following the general procedure, mp 126-127 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.49 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 6.30 (s, 1H), 6.25 (s, 1H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.2, 162.5, 154.2, 136.9, 134.2, 129.4, 128.0, 108.2, 103.1, 20.2.

4-(4-Bromophenyl)-6-methyl-2H-pyran-2-one (2s) [S2]

Product **2s** was obtained as a yellow solid in 67% yield (53 mg) following the general procedure, mp 116-118 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, *J* = 8.5 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 6.31 (s, 1H), 6.24 (s, 1H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.1, 162.5, 154.3, 134.7, 132.4, 128.2, 125.2, 108.3, 103.0, 20.2.

6-Methyl-4-(4-(trifluoromethyl)phenyl)-2H-pyran-2-one (2t) [S5]

Product **2t** was obtained as a colorless solid in 54% yield (41 mg) following the general procedure, mp 141-142 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.65 (d, *J* = 8.2 Hz, 2H), 6.34 (s, 1H), 6.27 (s, 1H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 162.9, 154.1, 139.4, 132.3 (q, *J* = 32.8 Hz), 127.1, 126.1 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 272.4 Hz), 109.3, 103.2, 20.2.

4-(3,5-Dimethylphenyl)-6-methyl-2H-pyran-2-one (2u) [S6]

Product **2u** was obtained as a yellow solid in 56% yield (36 mg) following the general procedure, mp 87-89 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.16 (s, 2H), 7.10 (s, 1H), 6.31 (s, 1H), 6.28 (s, 1H), 2.36 (s, 6H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.6, 161.9, 155.8, 138.8, 135.8, 132.3, 124.5, 107.9, 103.7, 21.3, 20.1.

4-(3,5-Dichlorophenyl)-6-methyl-2H-pyran-2-one (2v)

Product **2v** was obtained as a yellow solid in 67% yield (51 mg) following the general procedure, mp 197-199 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, J = 1.6 Hz, 1H), 7.41 (d, J = 1.7 Hz, 2H), 6.29 (s, 1H), 6.20 (s, 1H), 2.32 (s, 3H); ¹³C NMR (150 MHz,

CDCl₃) δ 163.0, 162.6, 152.8, 138.9, 136.0, 130.3, 125.2, 109.3, 102.8, 20.2; HRMS (ESI) calcd. for C₁₂H₈³⁵Cl₂O₂Na [M+Na]⁺: 276.9794, found: 276.9796.

4-(2-Iiodophenyl)-6-methyl-2H-pyran-2-one (2w)

Product **2w** was obtained as a pale-red solid in 62% yield (58mg) following the general procedure, mp 66-67 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 7.9 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.21 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.09 (td, *J* = 8.0,1.4 Hz, 1H), 6.09 (s, 1H), 6.03 (s, 1H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 162.9, 161.6, 159.1, 142.1, 140.0, 130.6, 128.8, 128.5, 112.0, 106.1, 95.0, 20.1; HRMS (ESI) calcd. for C₁₂H₉IO₂Na [M+Na]⁺: 334.9539, found: 334.9543.

6-Methyl-4-(naphthalen-1-yl)-2H-pyran-2-one (2x)

Product **2x** was obtained as a pale-yellow solid in 65% yield (46 mg) following the general procedure, mp 113-115 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.93-7.91 (m, 3H), 7.56-7.50 (m, 3H), 7.42 (dd, J = 7.1, 1.0 Hz, 1H), 6.31 (s, 1H), 6.21 (d, J = 0.8 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.1, 161.5, 156.9, 135.3, 133.7, 123.0, 129.9, 128.7, 127.0, 126.5, 125.9, 125.3, 124.9, 112.1, 106.8, 20.1; HRMS (ESI) calcd. for C₁₆H₁₂O₂Na [M+Na]⁺: 259.0730, found: 259.0732.

6-Methyl-4-(naphthalen-2-yl)-2H-pyran-2-one (2y)

Product **2y** was obtained as a pale-yellow solid in 67% yield (48 mg) following the general procedure, mp 150-151 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.06 (s, 1H), 7.93-7.87 (m, 3H), 7.64 (dd, J = 8.5, 1.3 Hz, 1H), 7.58-7.54 (m, 2H), 6.48 (s, 1H), 6.44 (s, 1H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.5, 162.6, 155.3, 134.2, 133.1, 133.0, 129.1, 128.7, 127.8, 127.6, 127.0, 126.8, 123.5, 108.4, 103.5, 20.2; HRMS (ESI) calcd. for C₁₆H₁₂O₂Na [M+Na]⁺: 259.0730, found: 259.0734.

6-Methyl-4-(3-phenylpropyl)-2H-pyran-2-one (2z) [S4]

Product **2z** was obtained as yellow oil in 64% yield (44 mg) following the general procedure; ¹H NMR (600 MHz, CDCl₃) δ 7.29 (t, J = 7.4 Hz, 2H), 7.21-7.15 (m, 3H), 5.94 (s, 1H), 5.83 (s, 1H), 2.65 (t, J = 7.6 Hz, 2H), 2.37 (t, J = 7.6 Hz, 2H), 2.20 (s, 3H), 1.91-1.86 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 163.3, 161.5, 160.0, 141.2, 128.5, 128.4, 126.1, 109.8, 105.5, 35.1, 34.6, 29.6, 19.9.

Ethyl 4-(4-cyclopropyl-2-oxo-2H-pyran-6-yl)butanoate (2aa)

Product **2aa** was obtained as yellow oil in 50% yield (38 mg) following the general procedure; ¹H NMR (600 MHz, CDCl₃) δ 5.84 (s, 1H), 5.61 (s, 1H), 4.13-4.09 (m, 2H), 2.48 (t, J = 7.3 Hz, 2H), 2.33 (td, J = 7.3, 2.3 Hz, 2H), 1.97-1.94 (m, 2H), 1.66-S13 1.63 (m, 1H), 1.26-1.22 (m, 3H), 1.07-1.05 (m, 2H), 0.80-0.79 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 172.8, 163.9, 163.0, 162.8, 106.7, 102.1, 60.5, 33.2, 33.0, 22.1, 15.4, 14.2, 10.0; HRMS (ESI) calcd. for C₁₄H₁₈O₄Na [M+Na]⁺: 273.1097, found: 273.1101.

Ethyl 4-(4-cyclohexyl-2-oxo-2H-pyran-6-yl)butanoate (2ab)

Product **2ab** was obtained as yellow oil in 54% yield (47 mg) following the general procedure; ¹H NMR (600 MHz, CDCl₃) δ 5.90 (s, 1H), 5.87 (s, 1H), 4.10 (q, J = 7.1 Hz, 2H), 2.48 (t, J = 7.5 Hz, 2H), 2.32 (t, J = 7.3 Hz, 2H), 2.23-2.18 (m, 1H), 1.97-1.92 (m, 2H), 1.82-1.77 (m, 4H), 1.70 (d, J = 13.1 Hz, 1H), 1.33-1.17 (m, 8H); ¹³C NMR (150 MHz, CDCl₃) δ 172.8, 164.7, 163.7, 163.6, 108.4, 104.3, 60.5, 43.7, 33.2, 32.9, 31.7, 26.1, 25.7, 22.1, 14.2; HRMS (ESI) calcd. for C₁₇H₂₄O₄Na [M+Na]⁺: 315.1567, found: 315.1569.

Ethyl 4-(4-hexyl-2-oxo-2H-pyran-6-yl)butanoate (2ac)

Product **2ac** was obtained as yellow oil in 60% yield (53 mg) following the general procedure; ¹H NMR (600 MHz, CDCl₃) δ 5.93 (s, 1H), 5.85 (s, 1H), 4.13 (q, *J* = 14.2, 7.1 Hz, 2H), 2.51 (t, *J* = 7.6 Hz, 2H), 2.34 (t, *J* = 7.4 Hz, 4H), 2.01-1.96 (m, 2H), 1.55-1.51 (m, 2H), 1.32-1.23 (m, 9H), 0.88 (t, *J* = 5.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.8, 163.7, 163.3, 160.3, 110.1, 105.3, 60.5, 35.3, 33.2, 32.9, 31.5, 28.7, 28.1, 22.5, 22.1, 14.2, 14.0; HRMS (ESI) calcd. for C₁₇H₂₆O₄Na [M+Na]⁺: 317.1723, found: 317,1728.

N-(3-(4-hexyl-2-oxo-2H-pyran-6-yl)propyl)-4-methyl-N-phenylbenzenesulfonamide (2ad)

Product **2ad** was obtained as yellow oil in 60% yield (84 mg) following the general procedure; ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 8.2 Hz, 2H), 7.30-7.28 (m, 3H), 7.21 (d, *J* = 8.2 Hz, 2H), 7.02-7.01 (m, 2H), 5.91 (s, 1H), 5.88 (s, 1H), 3.55 (t, *J* = 6.4 Hz, 2H), 2.54 (t, *J* = 7.3 Hz, 2H), 2.40 (s, 3H), 2.33 (t, *J* = 7.7 Hz, 2H), 1.78-1.74 (m, 2H), 1.54-1.50 (m, 2H), 1.32-1.27 (m, 6H), 0.87 (t, *J* = 6.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.4, 163.2, 160.6, 143.6, 138.9, 134.9, 129.4, 129.2, 128.6, 128.1, 127.7, 110.0, 105.9, 49.3, 35.3, 31.5, 30.4, 28.7, 28.0, 25.3, 22.5, 21.5, 14.0; HRMS (ESI) calcd. for C₂₇H₃₃NO₄SNa [M+Na]⁺: 490.2023, found: 490.2025.

4-Phenyl-5,6,7,8-tetrahydro-2H-chromen-2-one (2ae)

Product **2ae** was obtained as a colorless solid in 53% yield (36 mg) following the general procedure, mp 89-90 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.41-7.38 (m, 3H), 7.25-7.23 (m, 2H), 6.04 (s, 1H), 2.57 (td, J = 6.5, 0.6 Hz, 2H), 2.20 (tt, J = 6.1, 1.6 Hz, 2H), 1.82-1.78 (m, 2H), 1.64-1.60 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 162.6, 159.9, 159.4, 136.7, 129.0, 128.5, 127.6, 112.1, 112.1, 27.9, 25.0, 22.4, 21.7; HRMS (ESI) calcd. for C₁₅H₁₄O₂Na [M+Na]⁺: 249.0886, found: 249.0890.

6-(3-(((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)propyl)-4-phenyl-2H-pyran-2-one (2af)

Product **2af** was obtained as a colorless solid in 63% yield (91 mg) following the general procedure, mp 137-139 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.53-7.44 (m, 5H), 7.19 (d, *J* = 8.5 Hz, 1H), 6.71-6.70 (m, 1H), 6.63 (s, 1H), 6.37 (s, 1H), 6.33 (s, 1H), 4.01 (t, *J* = 5.6 Hz, 2H), 2.89-2.86 (m, 2H), 2.78 (t, *J* = 7.4 Hz, 2H), 2.52-2.48 (m, 1H), 2.41-2.35 (m, 1H), 2.26-1.94 (m, 8H), 1.66-1.41 (m, 5H), 0.91 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.9, 164.8, 163.4, 156.8, 155.4, 137.9, 135.8, 132.3, 130.6, 129.2, 126.7, 126.4, 114.5, 112.2, 108.6, 103.4, 66.3, 50.4, 48.0, 44.0, 38.4, 35.9, 31.6, 30.8, 29.7, 26.7, 26.6, 25.9, 21.6, 13.9; HRMS (ESI) calcd. for C₃₂H₃₄O₄Na [M+Na]⁺: 505.2349, found: 505.2353.

5-Hydroxy-5-methyl-3-phenylcyclopent-2-en-1-one (3a)[S1]

Product **3a** was obtained as a pale-yellow solid, mp 148-150 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.65 (m, 2H), 7.52-7.44 (m, 3H), 6.55 (t, *J* = 1.6 Hz, 1H), 3.20 (dd, *J*= 17.7, 1.7 Hz, 1H), 3.09 (dd, *J* = 17.7, 1.6 Hz, 1H), 2.71 (s, 1H), 1.44 (s, 3H);¹³C NMR (100 MHz, CDCl₃) δ 209.8, 171.1,133.6, 131.8, 129.0, 127.1, 123.0, 75.7, 44.2, 25.7; HRMS (ESI) calcd. for C₁₂H₁₃O₂ [M+H]⁺: 189.0910, found 189.0921.

4. Scale-up Experiments and Synthetic Applications

The solution of α -Iodocyclopentenones **1a** (4 mmol) in DMA (40 mL) was stirred at 120 °C for 3 h under an air atmosphere. Upon completion, the reaction mixture was cooled to room temperature, then saturated sodium thiosulfate aqueous solution was added and the resulting mixture was extracted with ethyl acetate (20 mLx3), the combined organic layers were washed with brine, dried over MgSO₄, concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 10:1) to give the desired α -pyrone product **2a** in 63% yield (469 mg).

To a solution of **2a** (112 mg, 0.6 mmol) and *N*-iodosuccinimide (202 mg, 0.9 mmol) in DCE (6 mL) was added Tf₂NH (17 mg, 0.06 mmol), the reaction mixture was stirred at 60 °C for 24 h. Upon completion, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure, the resulting residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 10:1) to give the product **4** (142 mg, 76% yield).

3-Iodo-6-methyl-4-phenyl-2H-pyran-2-one (4)

Colorless solid, mp 156-158 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.48-7.44 (m, 3H), 7.36-7.35 (m, 2H), 6.02 (d, J = 0.8 Hz, 1H), 2.26 (d, J = 0.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 161.7, 161.0, 160.6, 140.6, 129.5, 128.6, 127.5, 106.6, 84.8, 19.4; HRMS (ESI) calcd. for C₁₂H₉IO₂Na [M+Na]⁺: 334.9539, found: 334.9542.

Synthetic applications of 2a and 4:

Diels-Alder reaction: To a solution of **2a** (112 mg, 0.6 mmol) in toluene (6 mL) was added dimethyl acetylenedicarboxylate (171 mg, 1.2 mmol), the reaction mixture was stirred at 100 °C for 24 h. Upon completion, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure, the resulting residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 5:1) to give the product **5** (136 mg, 80% yield).

Dimethyl 5-methyl-[1,1'-biphenyl]-3,4-dicarboxylate (5) [S7]

Colorless solid, mp 102-103 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.05 (d, *J* = 1.4 Hz, 1H), 7.62-7.59 (m, 3H), 7.47-7.44 (m, 2H) , 7.40-7.37 (m, 1H), 3.97 (s, 3H), 3.92 (s, 3H), 2.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.8, 166.4, 142.2, 139.4, 136.2, 133.9, 133.0, 129.0, 128.5, 128.1, 127.2, 126.2, 52.6, 19.3.

Diels-Alder reaction: To a solution of **2a** (112 mg, 0.6 mmol) in toluene (6 mL) was added *N*-Phenylmaleimide (260 mg, 1.5 mmol), the reaction mixture was stirred at 100 °C for 24 h. Upon completion, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure, the resulting residuewas purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 5:1 to 1:1) to give the product **6** (270 mg, 92% yield).

4-methyl-2,6,9-triphenyl-3a,4,4a,7a,8,8a-hexahydro-4,8-ethenopyrrolo[3,4f]isoindole-1,3,5,7(2H,6H)-tetraone (6) ^[S8,S9]

Colorless solid, mp 248-249 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.43-7.26 (m, 11H), 7.02-7.01 (m, 4H), 6.25 (d, J = 0.8 Hz, 1H), 4.44 (t, J = 2.9 Hz, 1H), 3.30 (dd, J = 8.2, 3.1 Hz, 2H), 2.93 (d, J = 8.2 Hz, 2H), 2.04 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.3, 174.7, 142.1, 136.2, 131.4, 129.2, 129.0, 128.9, 128.8, 128.3, 126.3, 125.6, 48.6, 44.5, 41.7, 37.1, 19.9; HRMS (ESI) calcd. for C₃₁H₂₄N₂O₄Na [M+Na]⁺: 511.1628, found: 511.1633.

To a solution of **2a** (112 mg, 0.6 mmol) in CH₃CN (6 mL) was added selectfluor (319 mg, 0.9 mmol), the reaction mixture was stirred at 80 °C for 6 h. Upon completion, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure, the resulting residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 10:1) to give the product **7** (45 mg, 37% yield).

3-fluoro-6-methyl-4-phenyl-2H-pyran-2-one (7)

Colorless solid, mp 137-138 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.59-7.57 (m, 2H), 7.50-7.45 (m, 3H), 6.11 (dd, J = 4.7, 0.8 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 157.7 (d, J = 28.9 Hz), 156.3 (d, J = 7.3 Hz), 142.1 (d, J = 254.3 Hz), 134.8 (d, J = 8.8 Hz), 131.1 (d, J = 2.6 Hz), 130.3, 128.9, 128.5 (d, J = 4.4 Hz), 103.9, 19.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -143.54 (d, J = 4.0 Hz); HRMS (ESI) calcd. for C₁₂H₉FO₂Na [M+Na]⁺: 227.0479, found: 227.0481.

Suzuki-Miyaura-coupling: The 3-iodo-6-methyl-4-phenyl-2H-pyran-2-one **4** (94 mg, 0.3 mmol), PhB(OH)₂ (55 mg, 0.45 mmol), Pd(PPh₃)₄ (11 mg, 0.009 mmol) and Na₂CO₃ (95 mg, 0.9 mmol) were dissolved in mixed solution (5.5 ml, toluene: EtOH: $H_2O = 2.5$: 2.5: 0.5), the reaction mixture was stirred at 80 °C for 8 h. Upon completion, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure, the resulting residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 10:1) to give the product **8** (45 mg, 80% yield).

6-Methyl-3,4-diphenyl-2H-pyran-2-one (8) [85]

Colorless solid, mp 111-113 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.28-7.21 (m, 6H), 7.17-7.15 (m, 2H), 7.12-7.10 (m, 2H), 6.20 (s, 1H), 2.36 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.5, 160.1, 152.7, 137.6, 133.9, 130.9, 128.7, 128.3, 128.0, 127.6, 122.0, 107.1, 19.9.

Suzuki-Miyaura-coupling: The 3-iodo-6-methyl-4-phenyl-2H-pyran-2-one **4** (94 mg, 0.3 mmol), 3-thiopheneboronic acid (58 mg, 0.45 mmol), Pd(PPh₃)₄ (11 mg, 0.009 mmol) and Na₂CO₃ (95 mg, 0.9 mmol) were dissolved in mixed solution (5.5 ml, toluene: EtOH: $H_2O = 2.5$: 2.5: 0.5), the reaction mixture was stirred at 80 °C for 12 h. Upon completion, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure, the resulting residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 10:1) to give the product **9** (62 mg, 77% yield).

6-Methyl-4-phenyl-3-(thiophen-3-yl)-2H-pyran-2-one (9):

Red solid, mp 147-149 °C; ¹H NMR (600 MHz, CDCl3) δ 7.32-7.26 (m, 3H), 7.23-7.22 (m, 1H), 7.23-7.22 (m, 1H), 7.15-7.14 (m, 2H), 7.11-7.09 (m, 1H), 6.76 (dd, J = 5.0, 1.1 Hz, 1H), 6.13 (d, J = 0.7 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl3) δ 163.1, 159.6, 152.4, 138.0, 133.3, 129.5, 128.9, 128.5, 128.3, 126.7, 124.0, 117.1, 107.2, 19.9; HRMS (ESI) calcd. for C₁₆H₁₂O₂SNa [M+Na]⁺: 291.0450, found: 291.0454.

Sonogashira-coupling: The 3-iodo-6-methyl-4-phenyl-2H-pyran-2-one **4** (94 mg, 0.3 mmol), phenylacetylene (58 mg, 0.45 mmol), $PdCl_2(PPh_3)_2$ (3 mol%), CuI (5 mol%) and diisopropylamine (0.5 ml) were dissolved in THF (5 ml) under N₂, the reaction mixture was stirred at 70 °C for 8 h. Upon completion, the reaction mixture was cooled to room temperature and quenched by NH₄Cl (saturated aq.). The mixture was diluted with 10 mL water and extracted with EtOAc (10 mLx3). The organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 10:1) to give the product **10** (78 mg, 91% yield).

6-Methyl-4-phenyl-3-(phenylethynyl)-2H-pyran-2-one (10)

Yellow solid, mp 168-170 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.76-7.75 (m, 2H), 7.52-7.50 (m, 3H), 7.41-7.39 (m, 2H), 7.31-7.28 (m, 3H), 6.24 (d, *J* = 0.8 Hz, 1H), 2.36 (d, *J* = 0.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 162.3, 160.6, 156.6, 136.5, 131.6, 130.2, 128.6, 128.4, 128.4, 128.3, 122.9, 106.2, 105.7, 97.3, 83.8, 20.2; HRMS (ESI) calcd. for C₂₀H₁₄O₂Na [M+Na]⁺: 309.0886, found: 309.0891.

5. Control Experiments:

Scheme Sla: Control Experiment of 1a with TEMPO under the atmosphere of air:

The solution of α -iodocyclopentenones **1a** (0.3 mmol) and **TEMPO** (0.6 mmol) in DMA (3 mL) was stirred at 120 °C for 3 h under an air atmosphere. Upon completion, the reaction mixture was cooled to room temperature, then sodium thiosulfate aqueous solution was added and the resulting mixture was extracted with ethyl acetate (10 mLx3), the combined organic layers were washed with brine, dried over MgSO₄, concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 10:1 to 5:1) to give the desired α -pyrone products **2a** in 22% yield, along with **3a** and compound **11** in 17% and 12% yields, respectively.

5-methylene-3-phenylcyclopent-2-en-1-one (11)

Product **11** was obtained as a white solid, mp 125-127 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.68-7.67 (m, 2H), 7.48-7.45 (m, 3H), 6.79 (s, 1H), 6.16 (s, 1H), 5.51 (s, 1H), 3.65 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 195.8, 168.0, 142.3, 133.5, 131.5, 129.1, 129.0, 126.9, 116.6, 34.1; HRMS (ESI) calcd. for C₁₂H₁₁O [M+H]⁺: 171.0804, found 171.0813.

Scheme S1b: Control Experiment of 1a with BHT under the atmosphere of air:

The solution of α -iodocyclopentenones **1a** (0.3 mmol) and **BHT** (0.6 mmol) in DMA (3 mL) was stirred at 120 °C for 3 h under an air atmosphere. Upon completion, the

reaction mixture was cooled to room temperature, then sodium thiosulfate aqueous solution was added and the resulting mixture was extracted with ethyl acetate (10 mLx3), the combined organic layers were washed with brine, dried over MgSO₄,concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 10:1 to 5:1) to give the desired α -pyrone products **2a** in 67% yield.

Scheme S1c: Control Experiment of 1a with **TEMPO** under the atmosphere of N_2 :

The solution of α -iodocyclopentenones **1a** (0.3 mmol) and **TEMPO** (0.6 mmol) in DMA (3 mL) was stirred at 80 °C for 15 h under a N₂ atmosphere. Upon completion, the reaction mixture was cooled to room temperature, then sodium thiosulfate aqueous solution was added and the resulting mixture was extracted with ethyl acetate (10 mLx3), the combined organic layers were washed with brine, dried over MgSO₄,concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 10:1 to 5:1) to only give **11** in 73%.

Scheme S1d: Control Experiment of 1a with BHT under the atmosphere of N_2 :

The solution of α -iodocyclopentenones **1a** (0.3 mmol) and **BHT** (0.6 mmol) in DMA (3 mL) was stirred at 80 °C for 15 h under a N₂ atmosphere. Upon completion, the reaction mixture was cooled to room temperature, then sodium thiosulfate aqueous solution was added and the resulting mixture was extracted with ethyl acetate (10 mLx3), the combined organic layers were washed with brine, dried over MgSO₄,concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 10:1 to 5:1) to give **12** in 46% yield, and **13** in 29% yield.

2,6-Di-tert-butyl-4-methyl-4-(1-methyl-2-oxo-4-phenylcyclopent-3-en-1-yl)cyclohexa-2,5-dien-1-one (12)

Product **12** was obtained as colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.57-7.56 (m, 2H), 7.46-7.41 (m, 3H), 6.89 (s, 1H), 6.48 (s, 1H), 6.39 (d, *J* =2.9 Hz, 1H), 2.89 (d, *J* =17.7 Hz, 1H), 2.54 (d, *J* = 18.1 Hz, 1H), 1.29 (s, 3H), 1.28 (s, 9H), 1.21 (s, 3H), 1.10 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 211.2, 186.0, 171.4, 148.0, 147.2, 143.9, 143.4, 133.5, 131.5, 129.0, 126.7, 125.7, 52.4, 43.8, 41.0, 35.0, 34.8, 29.6, 29.4, 20.8, 19.9; HRMS (ESI) calcd. for C₂₇H₃₅O₂ [M+H]⁺: 391.2632, found 391.2652.

5-methyl-3-phenylcyclopent-2-en-1-one (13)^[S1,S10]

¹H NMR (400 MHz, CDCl₃) δ 7.7-7.59 (m, 2H), 7.51-7.43 (m, 3H), 6.54 (t, *J* = 1.6 Hz, 1H), 3.33-3.26 (ddd, *J* = 18.4, 7.2, 1.6 Hz, 1H), 2.68-2.55 (m, 2H), 1.28 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 211.9, 172.0, 134.0, 131.2, 128.9, 126.8, 126.2, 40.7, 37.5, 16.6.

Scheme S1e: Control Experiment of 1a under the atmosphere of N_2 :

The solution of α -iodocyclopentenones **1a** (0.3 mmol) in DMA (3 mL) was stirred at 120 °C under a N₂ atmosphere. After stirred for 3 h, the reaction mixture was cooled to room temperature, then sodium thiosulfate aqueous solution was added and the resulting mixture was extracted with ethyl acetate (10 mLx3), the combined organic layers were washed with brine, dried over MgSO₄, concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel

(eluent: petroleum ether: EtOAc = 10:1 to 5:1) to give **13** in 41% yield, and the recovery of **1a** in 45% yield.

6. ¹H and ¹³C NMR Spectra Figure S1. ¹H and ¹³C NMR Spectra of 2a

7.5729 7.5638 7.5638 7.5579 7.4702 7.4409 7.4409 7.4439 7.4439 7.2598 6.3445 6.3445 6.3445 6.2873

2.5547 2.5292 2.5292 2.5292 1.7179 1.7179 1.7179 1.7056 1.6930 1.3632 1.3632 1.3632 1.3632 1.3632 1.2699 1.2699 1.2699 1.2699

Figure S4. ¹H and ¹³C NMR Spectra of 2d

Figure S5. ¹H and ¹³C NMR Spectra of 2e

Figure S8. ¹H and ¹³C NMR Spectra of 2h

Figure S9. ¹H and ¹³C NMR Spectra of 2i

Figure S11. ¹H and ¹³C NMR Spectra of 2k

Figure S12. ¹H and ¹³C NMR Spectra of 21

3.0492 3.0380 3.0380 3.0270 2.6425 2.6428 2.6428 2.6428 1.8513 1.8513 1.8455 1.8455 1.8455 1.8455 1.8420 1.8148

Figure S15. ¹H and ¹³C NMR Spectra of 20

Figure S18. ¹H and ¹³C NMR Spectra of 2r

Figure S21. ¹H and ¹³C NMR Spectra of 2u

Figure S24. ¹H and ¹³C NMR Spectra of 2x

Figure S25. ¹H and ¹³C NMR Spectra of 2y

Figure S26. ¹H and ¹³C NMR Spectra of 2z

Figure S27. ¹H and ¹³C NMR Spectra of 2aa

Figure S28. ¹H and ¹³C NMR Spectra of 2ab

Figure S29. ¹H and ¹³C NMR Spectra of 2ac

Figure S31. ¹H and ¹³C NMR Spectra of 2ae

Figure S33. ¹H and ¹³C NMR Spectra of 3a

Figure S34. ¹H and ¹³C NMR Spectra of 4

Figure S36. ¹H and ¹³C NMR Spectra of 6

Figure S37. ¹H, ¹³C and ¹⁹F NMR Spectra of 7

Figure S38. ¹H and ¹³C NMR Spectra of 8

Figure S39. ¹H and ¹³C NMR Spectra of 9

Figure S40. ¹H and ¹³C NMR Spectra of 10

7. ORTEP Drawings

Figure S44. ORTEP Drawing of 6 with Thermal Ellipsoids at 50% Probability Levels^[S9]

8. References

[S1] Y. Zhou, X. Chen, D. Yin, Y. Ling, S. Wang, X. Zhang and W. Rao, *Eur. J. Org. Chem.*, 2019, 999-1007.

[S2] H.-Y. Xu, X.-Y. Zhang, Y. He, S.-H. Guo and X.-S.Fan, *Chem. Commun.*, 2012, 48, 3121-3123.

[S3] T.-P. Luo, M.-J. Dai, S.-L. Zheng and S. Schreiber, Org. Lett., 2011, 13, 2834-2836.

[S4] C.-L. Sun and A. Fuerstner, Angew. Chem. Int. Ed., 2013, 52, 13071-13075.

[S5] Y. Hu, Q.-P. Ding, S.-Q. Ye, Y.-Y. Peng and J. Wu, *Tetrahedron*, 2011, 67, 7258-7262.

[S6] J. Wu, X.-Y. Sun and L. Zhang, Chem. Lett., 2005, 34, 796-797.

[S7] G. Gisby, S.-E. Royall and P.-G. Sammes, *J Chem. Soc. Perkin. Trans.*, 1982, 169-174.

[S8] P.-P. Huang, L.-Y. Liu, W.-X. Chang and J. Li, *Chem–Asian. J.* 2015, **10**, 548-552.

[S9] CCDC 1937263 (6), contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

[S10] L. Zhang and S. Wang, J. Am. Chem. Soc., 2006, 128, 1442-1443.